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Defects in 2D materials are becoming prominent candidates for quantum emitters and scalable
optoelectronic applications. However, several physical properties that characterize their behavior,
such as charged defect ionization energies, are difficult to simulate with conventional first-principles
methods, mainly because of the weak and anisotropic dielectric screening caused by the reduced
dimensionality. We establish fundamental principles for accurate and efficient calculations of charged
defect ionization energies and electronic structure in ultrathin 2D materials. We propose to use the
vacuum level as the reference for defect charge transition levels (CTLs) because it gives robust
results insensitive to the level of theory, unlike commonly used band edge positions. Furthermore,
we determine the fraction of Fock exchange in hybrid functionals for accurate band gaps and band
edge positions of 2D materials by enforcing the generalized Koopmans’ condition of localized defect
states. We found the obtained fractions of Fock exchange vary significantly from 0.2 for bulk h-BN to
0.4 for monolayer h-BN, whose band gaps are also in good agreement with experimental results and
calculated GW results. The combination of these methods allows for reliable and efficient prediction
of defect ionization energies (difference between CTLs and band edge positions). We motivate and
generalize these findings with several examples including different defects in monolayer to few-layer
hexagonal boron nitride (h-BN), monolayer MoS2 and graphane. Finally, we show that increasing
the number of layers of h-BN systematically lowers defect ionization energies, mainly through CTLs
shifting towards vacuum, with conduction band minima kept almost unchanged.

I. INTRODUCTION

Two-dimensional (2D) materials provide the unique
opportunity to scale future electronics smaller than ever
believed physically possible, implying engineering 2D ma-
terials is a promising strategy that can meet the demands
of future nanotechnologies1. As defects play a crucial role
in the optical and electronic properties of these systems,
engineering of defects in 2D materials has sparked contin-
uous interest2–7. For example, defects in h-BN have been
found to be the source of stable polarized and ultra-bright
single-photon emissions at room temperature8–11. Hence,
the development of our understanding of defects in 2D
materials will open up further possibilities for emerging
applications in quantum information and nanotechnology
with much better scalability than traditional defects in
3D materials.

Unlike in their 3D counterparts12–16, first-principles
techniques for calculating defect properties in 2D materi-
als still face significant challenges. Specifically, eliminat-
ing the periodic charge interactions for charged defects
in 2D materials requires a charge correction scheme that
accounts for the weak and anisotropic dielectric screen-
ing of 2D systems17,18. Furthermore, several exchange-
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correlation functionals that provide accurate electronic
structures for 3D bulk systems are no longer applica-
ble to ultrathin 2D systems. For example, the fraction
of Fock exchange (α) in hybrid functionals can be ap-
proximated as the inverse of dielectric constant (ε∞) of
the material19,20; however, ε∞ cannot be uniquely de-
fined for low dimensional systems as discussed in previ-
ous studies.21–23 Therefore, the determination of α in hy-
brid functionals for 2D materials remains an open ques-
tion. On the other hand, many body perturbation the-
ory techniques (e.g. GW approximation) give accurate
quasiparticle energies such as band gaps and band posi-
tions; however, high computational cost and slow conver-
gence with respect to empty states make the screening of
many defects in 2D materials impractical with conven-
tional implementations24–29.

In our previous work30,31, we developed an efficient
and accurate method that can give reliable charge cor-
rections for total energies and electronic states of charged
defects in 2D materials without any supercell extrapola-
tions, and then provided accurate defect CTLs with the
DFT+GW scheme32–35. Such implementation is built
on top of the WEST-code36, Quantum-Espresso37 and
JDFTx38 packages. In our GW calculations, we avoided
explicit inclusion of empty states and inversion of dielec-
tric matrices36,39,40, while also speeding up vacuum size
convergence with a 2D Coulomb truncation41.

In this paper we will further investigate the possibili-
ties of even less expensive but similarly reliable compu-
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tational methods for both defect charge transition lev-
els and ionization energies in 2D materials. The rest of
the paper is organized as follows. In section II, we dis-
cuss the methodology, including details of computational
methods in II.A. and how to compute thermodynamic
charge transition levels in general in II.B. Then in sec-
tion III we discuss our results where we have addressed
two important issues for 2D materials: in section III.A.,
we determine which level of theory and which electron
chemical potential reference should be used to calculate
a CTL in 2D systems; in section III.B., we show how to
define the fraction of Fock exchange in hybrid function-
als for accurate band edges and band gaps; in the end,
section III.C., we combine these two findings to obtain
accurate defect ionization energies for 2D materials.

II. METHODOLOGY

A. Computational Methods

In this work, all structural relaxations and total en-
ergy calculations were performed using open source plane
wave code Quantum-ESPRESSO42 with ONCV norm-
conserving pseudopotentials43,44, a wavefunction cutoff
of 70 Ry and a k-point mesh equivalent to 12 × 12 × 1
or higher in the primitive cell. The GW calculations
were performed using the WEST code45, which avoids
explicit empty states and inversion of dielectric matri-
ces. We employed the contour deformation technique for
frequency integration of the self energy. The final val-
ues of GW corrections were extrapolated between 9 × 9
and 12 × 12 k-point meshes to infinite k-points similar
to Ref. 30. A two-dimensional Coulomb truncation30,41

has been applied to speed up the vacuum size conver-
gences. The charge corrections for the total energies and
eigenvalues of charged defects employed the techniques
developed in Ref. 30,31, which were implemented in the
JDFTx code38,46,47. More computational details can be
found in supplementary materials.

B. Thermodynamic Charge Transition Levels

A thermodynamic CTL is the value of electron chem-
ical potential εF at which the stable charge state of the
system changes, e.g. from q to q + 1. Therefore, CTLs
are calculated through the equivalency of the formation
energies q and q + 1, given by Eq. (1)13.

εq+1|q = Ef
q (Rq)− Ef

q+1(Rq+1)

= Eq(Rq)− Eq+1(Rq+1)− εF (1)

Here Ef
q (R) is the defect formation energy with charge

q and geometry R, and Rq is the relaxed geometry of
the system with charge q. Eq(R) is the total energy
that relates to Ef

q (R) and εF following the definition of
Eq. (1) in Ref. 30. Diagrammatically, Eq. (1) is the

Figure 1. Schematic plot of the two paths
(distinguished with blue/red color) that transition from

charge state q to q + 1. For each path, there is a
corresponding vertical excitation, which can be
computed either with EAq+1 or IPq (noted with

up/down arrowheads), as discussed in the main text.

energy difference between two potential surface minima
in position space R, as shown in Fig. 1.

III. RESULTS AND DISCUSSIONS

A. Implementing Quasiparticle Corrections in
Defect Charge Transition Levels

In extended systems, local and semi-local function-
als fail to yield accurate total energy differences be-
tween two charge states, i.e. where an electron remov-
ing (IP)/adding process (EA) is involved. An alternative
approach30 is to separate Eq. (1) into two parts: the ver-
tical excitation energy between two charge states (q and
q + 1) at the same geometry (R) (denoted as quasipar-
ticle energies εQP ) and the geometry relaxation energy
at a fixed charge state (denoted with Erlx). In general,
as ground states theory, DFT provides reliable geome-
try relaxation energies at a fixed charge state in many
systems. For the 2D systems we tested in this work, we
found the total energy difference of geometries optimized
at semi-local and hybrid functionals is less than 10 meV,
which leads to a negligible difference in charge transition
levels (see SI Table IV). Hence, this separation allows
us to accurately calculate the vertical excitation energies
with a higher level of theory appropriate for non-neutral
excitations, such as the GW approximation.

One can separate Eq. (1) by two possible physical path-

ways from Ef
q (Rq) to Ef

q+1(Rq+1) as shown in Fig. 1.

One pathway (red path) occurs with a vertical excitation

at Rq (Ef
q+1(Rq)−Ef

q (Rq)) followed by a geometry relax-

ation at the charge state q+1 (Ef
q+1(Rq+1)−Ef

q+1(Rq)),

shown in Eq. (2). The other pathway (blue path) oc-
curs through the geometry relaxation at the charge state
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q plus a vertical excitation at Rq+1, corresponding to
Eq. (3).

εq+1|q = Ef
q (Rq)− Ef

q+1(Rq)︸ ︷︷ ︸
εQP

+Ef
q+1(Rq)− Ef

q+1(Rq+1)︸ ︷︷ ︸
Erlx

= εQP
q+1|q(Rq) + Erlx

q+1 (2)

εq+1|q = Ef
q (Rq)− Ef

q (Rq+1)︸ ︷︷ ︸
Erlx

+Ef
q (Rq+1)− Ef

q+1(Rq+1)︸ ︷︷ ︸
εQP

= Erlx
q + εQP

q+1|q(Rq+1) (3)

Note that all three equations (Eq. (1), (2), (3)) are the-
oretically equivalent. Yet, in practice they may yield
sizable differences, when εQP is computed through eigen-
values at a specific level of theory instead of total energy
differences.

Furthermore, the vertical excitation energies εQP
q+1|q in

Eq. (2) and Eq. (3) can be determined from either the
ionization potential of the charge state q (IPq) or the elec-
tron affinity of the charge state q+ 1 (EAq+1) , as noted
in Fig. 1 with up/down arrowheads. We obtained IP and
EA through eigenvalues at different levels of theory based
on the Janak’s theorem48. Within the framework of DFT
with local and semi-local functionals, energy is a contin-
uous and smooth functional of the number of electrons
in the system E[n]. This results in non-linear behavior
with respect to electron number and gives inconsistent
eigenvalues (∂E/∂n) of the q and q + 1 systems (result-
ing in IP 6= EA)49,50. Following the discussions in Ref.
51, an eigenvalue between the q and the q + 1 systems
can be approximated to the second order as:

εQP
q+1|q(R) ≈ −1

2

[
∂E

∂n

∣∣∣∣
n=(q+1)−

+
∂E

∂n

∣∣∣∣
n=q+

]
(4)

Therefore, to the second order in electron number, εQP

is obtained by taking the average of IPq and EAq+1:

εQP
q+1|q(R) =

1

2

[
EAq+1(R) + IPq(R)

]
(5)

By employing this principle in Eq. 5, we compared the
CTL obtained with PBE, PBE0 and G0W0@PBE for
three different defects in monolayer BN and S vacancy
in MoS2 as shown in Table I. Here we propose to set
εF equal to the vacuum level (determined by the electro-
static potential in the vacuum region of supercells) and
use it as a reference for Eq.(1). We found this choice
(opposed to the commonly used band edges) is particu-
larly advantageous for obtaining consistent CTLs among
different methods as shown in Table I. (More computa-
tional details for G0W0 can be found in SI, with numer-
ical techniques as in Ref. 30). We note that our choice
of using the vacuum level as the reference for 2D mate-
rials has similarity with the idea of using the averaged

Defect
Method CB VNCB CN VNCB VS

(h-BN) (MoS2)

CTL (0/+1) (0/+1) (-1/0) (-1/0) (-1/0)

PBE Eq1 -3.63 -4.22 -3.54 -1.57 -4.29
Eq2 -3.61 -4.29 -3.51 -1.66 -4.29
Eq3 -3.64 -4.33 -3.49 -1.67 -4.29

PBE0 Eq1 -3.65 -4.19 -3.50 -1.87 -4.33
Eq2 -3.60 -4.17 -3.50 -1.87 -4.32
Eq3 -3.62 -4.21 -3.50 -1.21* -4.31

G0W0 Eq2 -3.40 -4.29 -3.74 -1.74 -4.34
Eq3 -3.28 -4.22 -3.73 -1.70 -4.38

IPq(Rq)-EAq+1(Rq)

PBE 2.68 2.60 2.75 2.50 0.947
PBE0 1.15 1.09 1.13 1.42 0.023
G0W0 0.04 0.20 0.03 0.19 -0.202

Table I: Charge transition levels (CTLs) relative to
vacuum (in eV) of multiple defects in monolayer h-BN
and VS in monolayer MoS2. These values are collected

via three methods (Eq. (1-3)) at various levels of theory
(PBE, PBE0, G0W0@PBE ). The CTLs relative to
vacuum are remarkably similar. The one exception,

VNCB (-1/0) at PBE0 (marked with *) incidentally has
a band inversion resulting in a CTL within the valence
band, breaking the reliability of Eq. (3). We also show
IPq(Rq)−EAq+1(Rq) at different levels of theory. Note

that at the G0W0 level, this difference is < 0.2 eV.

electrostatic potential as the reference level for 3D mate-
rials, as discussed in several previous studies.63–66 There
are several interesting observations from Table I, as fol-
lows. First, we found excellent agreement (within 0.1 eV)
among Eq. (1), (2) and (3) for each defect at a fixed level

of theory if εQP
q+1|q in Eq. (2) and (3) is obtained through

Eq. (5). Second, we found the results obtained among
PBE, PBE0 and G0W0@PBE are also strikingly similar
(within 0.2 eV) for several defects in h-BN as well as
VS in MoS2 which has a very different chemical bonding
character from h-BN. This suggests that CTLs of 2D ma-
terials relative to vacuum are robust to the level of theory
one chooses. Note that the difference between IPq and
EAq+1 is more than 2 eV for PBE, reduced to 1 eV at
PBE0 level (α = 0.25), but less than 0.2 eV at G0W0,
which indicates the delocalization error present in semi-
local DFT has been mostly corrected at G0W0@PBE51.
To the best of our knowledge, there are currently no avail-
able experimental values of defect charge transition levels
in ultrathin 2D materials to compare with our calcula-
tions, partially due to the difficulty of controlling and
identifying the chemical composition of defects in 2D
materials. However, this emphasizes the need to reli-
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ably predict defect charge transition levels in 2D mate-
rials from first principles, and then use them to identify
the chemical composition of defects by comparing with
experimental measurements, such as zero phonon lines
(ZPL). We note that we compared our results with the
previous theoretical studies at the corresponding level of
theory referenced to the valence band maximum (VBM),
and obtained overall good agreement for monolayer and
bulk h-BN as well as MoS2, as shown in SI Table V.

B. Generalized Koopmans’ Condition for the
Fraction of Fock Exchange in 2D Materials

After we obtained reliable CTLs relative to vacuum, we
focused on how to calculate accurate band edge positions
and band gaps of 2D materials in order to determine de-
fect ionization energies. Using the GW approximation,
we obtained an accurate quasiparticle band gap (indirect
at T→M) 6.01 eV for bulk h-BN (Table II), in excellent
agreement with the experimental fundamental electronic
gap 6.08 ± 0.01554. Meanwhile, our GW results for the
band gap of bulk h-BN (7.01 eV) and MoS2 (2.82 eV),
agree well with previously reported experimental values
(see Table II). Nonetheless, GW is still computation-
ally too demanding for defects’ screening and difficult
to obtain forces and optimize geometries. Therefore, the
development of computationally affordable methods such
as accurate non-empirical hybrid functionals for 2D ma-
terials is strongly desired.

System Defect α Gap
ML BN CB 0.409 7.344

CN 0.418 7.401
VNCB 0.382 7.174

BL BN CB 0.347 7.075
CN 0.351 7.101
VNCB 0.318 6.892

TL BN CB 0.324 6.994
CN 0.326 7.007
VNCB 0.298 6.801

Bulk BN CB 0.225 6.071
CN 0.227 6.087
VNCB 0.178 5.684

Graphane BC 0.467 6.503
NC 0.473 6.541

Table III: Predicted fraction of Fock exchange for use
in the PBE0(α) functional based on the IPq =EAq+1

condition. Note that for h-BN the corresponding MAE
compared with G0W0 results are 0.14 eV, 0.16 eV and
0.18 eV for CB, CN and VNCB, respectively.

The generalized Koopmans’ condition has been most
commonly used to determine the appropriate fraction
of Fock exchange (α) for molecules and molecular
crystals56–62. This principle has been successfully ex-
tended to defects in bulk semiconductors67 through the
enforcement of this condition (i.e. EAq+1 = IPq) on

defects in bulk semiconductors to obtain α and in turn
predict accurate electronic structure of the correspond-
ing pristine bulk systems. The fundamental assumption
is that the optimized α depends on the long range screen-
ing of the system and not on the nature of the probe de-
fects. This condition is also valid for deep defects in 2D
materials, where defect wavefunctions are well localized
like molecular orbitals in the supercells, and their con-
tribution to dielectric screening is negligible compared to
the crystal environment. Another advantage of applying
this condition to 2D systems is that both EAq+1 and IPq

can be exactly referenced to vacuum. In order to validate
the applicability of the generalized Koopmans’ condition
to 2D materials, we used the defect CB as a probe to de-
termine α for h-BN (BC (boron substitution of carbon)
for graphane and VS (sulfur vacancy) for MoS2). This
method gives α of 0.409, 0.347, 0.324, 0.225 for mono-
layer, bilayer, trilayer and bulk h-BN, respectively as
shown in Table III. Note that the α value 0.225 for bulk
h-BN, agrees well with the predicted α from the inverse
of high frequency dielectric constant (α = 1/ε∞ ≈ 0.2)68,
which supports the assumption that long-range screening
determines α. We also investigated other defects CN and
VNCB as probes of α as shown in Fig. 2 (their corre-
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Figure 2. The IP at q = 0 and the EA at q = +1 for
the defects CB, CN and VNCB in monolayer h-BN as a

function of the fraction of Fock exchange α for
PBE0(α). The predicted exchange constant (α = 0.409,

0.41 and 0.382, respectively) is the corresponding
crossing point where EAq+1 = IPq.
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System PBE HSE PBE0 B3PW PBE0(α) G0W0 EXP.
ML MoS2 1.74 | K→K 2.17 | K→K 2.85 | K→K 2.58 | K→K 2.85 | K→K 2.82 | K→K 2.752,53

Graphane 3.57 | Γ→Γ 4.41 | Γ→Γ 5.06 | Γ→Γ 5.04 | Γ→Γ 6.54 | Γ→Γ 6.41 | Γ→Γ –
ML BN 4.71 | K→K 5.70 | K→Γ 6.33 | K→Γ 6.33 | K→Γ 7.34 | K→Γ 7.01 | K→Γ –
BL BN 4.49 | T→M 5.81 | T→M 6.46 | T→Γ 6.17 | T→M 7.08 | T→Γ 7.00 | T→Γ –
TL BN 4.36 | T→M 5.68 | T→M 6.40 | T→M 6.03 | T→M 7.01 | T→Γ 6.92 | T→M –
Bulk BN 4.22 | T→M 5.60 | T→M 6.28 | T→M 5.91 | T→M 6.07 | T→M 6.01 | T→M 6.08 ± 0.015

Table II: Electronic band gaps (eV) for various pristine 2D materials. In general, PBE severely underestimates the
gap. Hybrid functionals HSE, B3PW, and PBE0 (α = 0.25) generally enlarge the bulk band gap, but still

underestimate the gaps of ultrathin BN and graphane compared with experiments and GW approximation. Only
PBE0(α) with α satisfying IPq = EAq+1 of localized defects (CB) in h-BN yield gaps in good agreement with

experiment54 and G0W0@PBE. Note that the spin-orbit coupling (which was not included in this calculation) will
lower the band gap of MoS2 by 0.1 eV55, which will bring our PBE0(α) and G0W0 results in even better agreement

with experimental electronic band gap.

sponding electronic structure can be found in SI).

Interestingly, we found that IPq and EAq+1 from
Kohn-Sham eigenvalues varied linearly with α. Fig. 2
shows this linearity for three defects in monolayer h-BN,
and three defects predict similar α, which justifies the
insensitivity of α to the explicit defect. Note that de-
fects with localized wavefunctions such as atomic substi-
tutions (CB ) determine more accurate α compared with
less localized defects such as VNCB, because the former’s
contribution to dielectric screening is negligible and the
screening is mostly determined by the crystal. It is also
notable that the slopes of IPq and EAq+1 are opposite
but nearly equal, explaining why the average of IPq and
EAq+1 as εQP for CTL in Eq. (5) works well (as shown
in Table I).
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Figure 3. Comparing computed band gaps of h-BN
(monolayer, bilayer, trilayer, bulk), graphane (CH), and

MoS2 with PBE0(α) versus those computed with
G0W0@PBE . Overall we find that our PBE0(α) results
agree very well with G0W0, yielding a MAE of 0.11 eV.
The grey diagonal area highlights ±0.25 eV agreement.

Most commonly, two-dimensional systems are synthe-
sized with a few layers of the material, therefore under-
standing the effect of increasing thickness is essential to
connect with realistic experiments. As such, we have
computed the band gaps of monolayer, bilayer, trilayer
and bulk h-BN, as well as graphane and MoS2, with sev-
eral hybrid functionals including HSE, PBE0, B3PW and
PBE0(α) (with α predicted earlier), and G0W0@PBE as
shown in Table II (the experimental photoemission gaps
are also shown). As anticipated, PBE strongly underesti-
mated monolayer h-BN band gap: 4.71 eV with a direct
transition at the K point. With any level of theory be-
yond PBE, monolayer h-BN is predicted to have a larger,
indirect gap from K to Γ. In accordance with quantum
confinement, we observed that the band gaps of h-BN ob-
tained at B3PW, PBE0(α), and G0W0 show a sharp in-
crease at ultrathin BN (monolayer to trilayer) compared
to bulk BN (in agreement with a previous study69). How-
ever, HSE and PBE0 provide almost the same band gaps
between ultrathin and bulk BN. This is because there is a
severe change in the dielectric screening from monolayer
to bulk, and a different portion of Fock exchange must
be instilled.

Using PBE0(α) we obtained results consistent with
quantum confinement and in best agreement with our
G0W0 calculations with a MAE of 0.11 eV (Fig. 3). In ad-
dition, the B3PW functional70,71 provided a more accu-
rate bulk BN band gap than PBE0 and HSE but still un-
derestimated the band gaps of ultrathin BN. In graphane,
PBE0(α) (with a predicted exact exchange of 0.473) leads
to a gap of 6.54 eV, in agreement with G0W0@PBE, 6.41
eV. Coincidentally, MoS2 has a predicted exchange of
0.250 (the default of the PBE0 scheme) and yields a gap
of 2.85 eV in great agreement with G0W0@PBE, 2.82
eV. Therefore, the direct/indirect transitions and mag-
nitude of the gaps from bulk to monolayer are provided
accurately solely with PBE0(α) and G0W0. In brief, the
results shown in Table II validate our method for deter-
mining accurate fundamental band gaps for 2D materials
from first-principles. We note that calculated band edge
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positions relative to vacuum are also similar at PBE0(α)
and G0W0 as shown in Fig. 4 and SI.

C. Defect Ionization Energies in 2D Materials

Finally, we can obtain the defect ionization energies
based on the methods proposed earlier for CTLs and
band edge positions relative to vacuum. For example,
CTLs and ionization energies for CB in h-BN computed
at PBE, HSE, PBE0(α) and G0W0 levels of theory as a
function of number of layers are shown in Fig. 4. Con-
sistent with the findings in Table I, CTLs changed less
than 0.1 eV across different theoretical methods relative
to vacuum. Interestingly, no clear trend and only small
difference have been found in the band edge positions of
h-BN from monolayer to trilayer. These results illustrate
that one just needs to correct the band edge positions
of pristine h-BN with PBE0(α) or G0W0, and use CTLs
determined from DFT with semi-local functionals, then
the difference of the two yields accurate defect ioniza-
tion energies. On another note, we found there is a clear
monotonic decrease in the ionization energies of defects
in h-BN with increasing number of layers (the ionization
energy is placed adjacent to the corresponding arrow in
Fig. 4). As shown in Fig. 5, the ionization energy of the
CB defect in h-BN is lowered with increasing number of
layers. This effect can be understood as a result of in-
creased dielectric screening with more layers of h-BN, and
is consistent with the effect of dielectric environments on
the ionization energies of MoS2

72. Due to accurate band
gaps and the insensitivity of charge transition levels to
the level of theory as discussed earlier, the PBE0(α) re-
sults agree well with G0W0 @PBE for the ionization en-
ergies of CB in h-BN with different number of layers(blue
and green points in Fig. 5).

IV. CONCLUSION

In summary, we have established fundamental princi-
ples to reliably and efficiently compute ionization ener-
gies for defects in 2D materials. Specifically, band edge
positions of the pristine systems should be computed
with our proposed PBE0(α) hybrid functional or GW
approximations. We note that we obtained a fraction of
Fock exchange α from 0.2 (bulk h-BN) to 0.4 (monolayer
h-BN) by enforcing the generalized Koopmans’ condi-
tion. Meanwhile, we have demonstrated the insensitiv-
ity of CTL’s computed by various functional choices as
well as G0W0, when the CTL’s are referenced to vacuum.
Therefore, the defect CTL may be obtained reliably by
standard DFT with semi-local functional, when it is cal-
culated relative to vacuum. We have successfully ap-
plied the proposed methods for a variety of defects from
monolayer to trilayer h-BN, graphane and MoS2. The
combination of these methods will allow for reliable pre-
diction and validation of defect ionization energies in two-

dimensional materials, which can be potentially used to
identify the chemical composition of defects in 2D materi-
als through comparing with experimental measurements.
We also demonstrated that defect ionization energies de-
creased with increasing number of layers in h-BN, due to
enlarged dielectric screening. Our findings in this work
suggest efficient and accurate methods to compute defect
ionization energies and electronic structures in 2D mate-
rials, which can be applied to screening new promising
defects for quantum information and optoelectronic ap-
plications.
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Figure 4. Charge transition level CB (+1/0) in h-BN with varying number of layers at different levels of theory.
The red, green, blue lines represent the band edges and defect charge transition levels for monolayer, bilayer and
trilayer h-BN, respectively. The dashed blue line represents the charge transition level of the defect in the middle

layer of the trilayer h-BN. Defect charge transition levels gradually become shallower with lower ionization energies
while increasing the number of layers (ionization energies are written adjacent to arrows from the CTL to CBM).

Note that the defect CTLs are very similar relative to vacuum between different levels of theory.
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of layers. Note that PBE0(α) and G0W0 give results in

excellent agreement.
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