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Abstract 

 

Discovering novel, multicomponent crystalline materials is a complex task owing to the large 

space of feasible structures. Here, we demonstrate a method to significantly accelerate materials 

discovery by using a machine learning (ML) model trained on Density Functional Theory (DFT) 

data from the Open Quantum Materials Database (OQMD). Our ML model predicts the stability 

of a material based on its crystal structure and chemical composition, and we illustrate the 
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effectiveness of the method by application to finding new Quaternary Heusler (QH) compounds. 

Our ML-based approach can find new stable materials at a rate 30 times faster than undirected 

searches and we use it to predict 55 previously- unknown, stable QH compounds. We find the 

accuracy of our ML model is higher when trained using the diversity of crystal structures 

available in the OQMD than when training on well-curated datasets which contain only a single 

family of crystal structures (i.e., QHs). The advantage of using diverse training data shows how 

large datasets, such as OQMD, are particularly valuable for materials discovery and that we need 

not train separate ML models to predict each different family of crystal structures. Compared to 

other proposed ML approaches, we find that our method performs best for small (<103) and large 

(>105) training set sizes. The excellent flexibility and accuracy of the approach presented here 

can be easily generalized to other types of crystals. 

 

1. Introduction 

 

Since Fritz Heusler discovered the Cu2MnAl phase in 1903 [1], the Heusler structure (Fm3"m, 

X2YZ) has been widely used in a variety of applications, such as for superconductors, 

thermoelectrics, shape memory alloys, etc. [2] Beyond the original “full” Heusler structure, the 

Heusler family contains half Heusler (F-43m, XYZ), inverse Heusler (F-43m, XY2Z), and 

quaternary Heusler (F-43m, XX’YZ) [3], which all are decorations of a body-centered-cubic 

lattice. The larger space of possible numbers of compounds afforded by the fourth element in the 

Quaternary Heusler structure makes these materials particularly interesting for materials design. 

It is very likely to find QHs that exhibit superior properties than their 3-component analogues 

(e.g. ultralow thermal conductivity and high dielectric constants [4, 5]) provided this additional 
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degree of freedom. However, the large possible space of QHs (larger than 3.2 million 

compounds) frustrates materials discovery by experimental synthesis and characterization. 

 

High-Throughput (HT) atomistic Density Functional Theory (DFT) calculations have proven to 

be powerful tools for discovering new crystalline compounds [6-10]. For example, Kirklin et al. 

[11] performed high-throughput DFT calculations to predict potential compounds used as 

effective strengthening precipitates for a variety of different alloys matrices using the Open 

Quantum Materials Database (OQMD) [8, 12]. Aykol et al. [13] screened materials in the 

OQMD to find hydrofluoric-acid barrier coatings for Li-ion batteries using high-throughput 

DFT. Balluff et al. [14] also performed high-throughput DFT calculations in order to search new 

antiferromagnetic ternary Heusler compounds through the automatic flow for materials discovery 

library (AFLOWLIB) library. However, even high-throughput DFT searches have limitations. 

Over 3 million unique QH compounds can be formed from the 73 metallic elements and 

evaluating all of them is clearly impractical, as that search would be larger than the 3 largest 

DFT databases put together. What we need is a tool to quickly identify the materials that are the 

most likely to be stable. 

 

As shown by many recent studies, machine learning algorithms offer the ability to quickly 

identify promising materials in intractable search spaces [15-21]. Machine learning models are 

composed of three parts: (i) a resource of training data, (ii) a representation to convert that 

materials data into a form compatible with ML, and (iii) a ML algorithm to learn a function that 

describes how the representation relates to the material properties described in the training set. 

Besides wide applications of ML in chemical reaction[19, 21], drug research[20], material band 
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gap[22], and atom potential[23], several examples illustrate the successful use of DFT energetic 

data to construct ML models, and the use of these methods to find new materials. For example, 

Curtarolo et al. [24] predicted new binary compounds using a partial least squares regression 

model based on correlations among ab initio energies of structures from a pre-defined library of 

structure types. Meredig et al. [25] developed a decision tree model based on over 15,000 DFT 

energies from OQMD to predict the formation energy of a material based on its composition and 

used it to identify 4500 new ternary compounds. More recently, Faber et al. [26] employed ML 

to identify 100 new Elpasolite compounds out of a space of millions of possible candidates using 

a kernel-ridge-regression trained the energies of only 104 Elpasolite structures. These studies, 

among several others [27-42], demonstrate the promise of ML in accelerating the search for new 

materials.  

 

In this work, we create, validate, and benchmark a machine learning model for identifying new 

Quaternary Heusler materials. Our approach is distinct from previous examples in that we utilize 

the entire OQMD for training, which is an order of magnitude larger dataset and includes a wide 

diversity of structure types, not merely the Heusler structure. Our model works by training a 

model on the entire OQMD using the Voronoi tessellation method of Ward et al. [27] We then 

employed our model to predict the stability of all 3.2 million possible structures, and identified 

303 compositions that are especially likely to yield stable QH compounds. We confirm that 55 

are indeed stable through DFT calculaitons, and hence represent predictions of new, T=0K stable 

compounds that are promising for experimental synthesis. Lastly, we compare our method 

against other techniques in the literature, and also investigate the role of the training set data in 

the accuracy of the resulting ML model. We find that the models, perhaps unsurprisingly, get 
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more accurate as more QH structures are used in the training set, but more surprisingly find that 

the models also become more accurate as more non-QH data (i.e., data for other structures types) 

is used in training. We also devise a general workflow for selecting the best ML strategies 

depends on training data set size. We propose that this workflow can be used to accelerate the 

discovery of crystalline compounds for a broad variety of different crystal structures and 

compositions of materials. 

 

2. Methodology – Constructing the Machine Learning Model 

 

Machine learning models are composed of training data, a representation, and a machine learning 

algorithm. Here, we describe each of these three components of our machine learning model in 

turn. 

 

2.1. Training data 
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Figure 1. (Left) Crystal structure of quaternary Heusler compound (X1X2YZ). Red atoms 

represent X1 and X2 sites on the top right, blue atoms represent Y sites, and orange atoms 

represent Z sites, respectively. In case of quaternary Heusler compounds, X1 and X2 sites are 

decorated by different species. So, one composition has three symmetry-distinct crystal structure 

of QHs. (Right) Frequency of chosen elements in QHs training data sets. Red (blue) color 

indicates higher (lower) frequency. 

 

Our training data is taken from the OQMD (http://www.oqmd.org) [8, 12]. At the time of writing 

this paper, the OQMD contained 426,148 compounds, and all of these were used for ML 

training. The OQMD has a large number of Heusler compounds already in the dataset, due to 

previous high-throughput searches for novel materials with diverse applications, such as 

strengthening precipitates, thermoelectrics, spintronics, etc [9, 11, 43]. The OQMD dataset 

contains 184,094 ternary Heuslers (all possible combinations of 73 elements in a ternary full 

Heusler structure), 96,189 quaternary Heuslers (only ~3% of all possible combinations of 73 

elements in the QH structure), as well as a large array of 145,866 non-Heusler compounds.  

 

Fig. 1 shows the frequency of chosen elements in the QH training data sets, which features 

certain elements more prevalently due to previous use of the OQMD by other studies. For 

example, the QH dataset is biased towards compounds containing transition metals and Li due to 

most of this data coming from a study of Li-containing QHs [43]. The Li-containing QH study 

and others also focused on 18-electron compounds, which means that 17k of the 96k QHs in our 

training set contain 18 valence electrons. Other previous studies that employed the OQMD 
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focused on finding stable QHs based valence electron counting heuristics [2, 44-46], which 

means that 24 valence electrons QHs are also well-represented in our training set. 

 

In the OQMD, all first-principles DFT calculations are performed with the Vienna Ab-initio 

Simulation Package (VASP) [47-49] and the PBE parameterization of the generalized gradient 

approximation (GGA-PBE) [50]. Elements with incompletely-filled f shells are modeled using 

pseudo potentials that treat the f electrons as core electrons. For all structures, gamma-centered 

k-point meshes were constructed to achieve 8,000 k-points per reciprocal atom. For the total 

energy calculations, high quality static calculation of the relaxed structure is performed with an 

energy cutoff of 520 eV. More detailed information about the DFT calculations in OQMD is 

described in http://www.oqmd.org/documentation/vasp and Refs. [8, 12]. 

 

We seek to use this data to predict whether a new QH will be energetically stable at T=0K, 

which can be accomplished by predicting several different quantities. First, we could predict the 

raw DFT energy of the structure, which requires significant postprocessing to determine if the 

structure is stable. Alternatively, we could predict the formation energy, which requires less 

postprocessing, or the distance from the convex hull (a measure of stability) directly. The convex 

hull distance is the difference between the energy of a compound and the convex hull of all 

entries of the OQMD at the same composition, which is the lowest-energy combination of phases 

at that composition. For our task, we use the convex hull formed by all of the entries except the 

QH compounds to compute the convex hull energy. Using this definition, a stable QH compound 

will have a negative convex hull distance (i.e., where the distance is given by the difference in 
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energy between the QH compound and the convex hull at the same composition before including 

the QH compound). 

 

2.2. Material Representation 

 

The representation of a material is a set of quantitative attributes which serve as the input into a 

machine learning method. We used the Voronoi-tessellation-based representation of Ward et al. 

[27] to describe each material in our training set and the search space. Specifically, the Ward et 

al. [27] representation describes crystal structures based on a set of 271 attributes derived from 

the composition of the crystal (e.g., the mean atomic number, mean absolute deviation of the 

melting temperature) and from the Voronoi tessellation of the crystal structure (e.g., coordination 

numbers, ordering parameters, differences in electronegativity between neighbors). We employ 

Magpie to compute this representation for each entry [51] 

(https://bitbucket.org/wolverton/magpie.git). 

 

The Voronoi representation of Ward et al. has two advantages for our purpose: (i) it allows for 

using the entire OQMD as a training set, and (ii) it has the best accuracy of formation energy 

prediction on the full OQMD among available machine learning methods to date. The Ward 

Voronoi representation can be trained on the entire OQMD because it can be computed for any 

crystal structure. In contrast, some prior work uses representations [26, 28, 37], which requires 

all materials have the same crystal structure. As we will demonstrate, there is a significant 

advantage to being able to use training data from crystal structures types besides Heuslers. 

Additionally, as of the time this work was performed, the machine learning models created using 
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the Ward Voronoi method achieved the best accuracy for predicting the formation enthalpy using 

the full OQMD dataset (~80 meV/atom in 10-fold cross-validation), making it a strong choice 

for our application. 

 

2.3. Machine learning algorithm 

 

In this work, we adopt the Random Forest algorithm proposed by Breiman [52] because of its 

robustness to over fitting and ability to be trained using large datasets. Random Forest works by 

training many different decision trees models and combining their predictions together to create 

a single, more-accurate model. This “ensemble” approach is the source of the speed and accuracy 

advantages of Random Forest. First of all, each individual decision tree is trained on a different 

randomly-selected subset of the training data. Between the fact that no tree sees the entire dataset 

and that each tree is trained using a different subset, the aggregate Random Forest is less likely to 

be overfit than a single model. Secondly, the inherent parallelism of training many smaller 

models combined with the fact that the training time for each tree scales with only N logN, where 

N is the dataset size, make it computationally feasible to train Random Forest models on datasets 

with >105 entries. In our work, the models train in under an hour on typical hardware. Unless 

otherwise noted, we use Weka [53] to train Random Forest models. 

 

2.4. Search space 

 

Our goal is to identify stable QH compounds formed from any possible combination of metallic 

elements. We used the 73 metallic elements available in the OQMD:  Ac, Ag, Al, As, Au, B, Ba, 
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Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, Ir, K, La, Li, Lu, 

Mg, Mn, Mo, Na, Nb, Nd, Ni, Np, Os, Pa, Pb, Pd, Pm, Pr, Pt, Pu, Rb, Re, Rh, Ru, Sb, Sc, Si, Sm, 

Sn, Sr, Ta, Tb, Tc, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr. Considering there are three 

crystallographically-unique polymorphs at each composition, our search space contains a total of 

3,265,290 (73C4 x 3) variations. 

 

All the data and software necessary to recreate the methods employed in this search are available 

in the Supplementary Information and on GitHub: https://github.com/WardLT/ml-quaternary-

heuslers 

 

3. Results and Discussions 

 

3.1. Training set selection 
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Figure 2. Comparison of the accuracy of models trained on the formation enthalpy and convex 

hull distance across 25 repetitions of a cross-validation test. For each test, a model was trained on 

all of the available data in the OQMD minus 10% of the Quaternary Heusler entries, which were 

withheld for testing. We find the Mean Absolute Error (MAE) of the model trained on the hull 

distance is better for all iterations of the cross-validation test. 

 

 

 

 

Figure 3. Cross-validation accuracy (mean absolute error, eV/atom) of machine learning models 

trained on different datasets: (red circle) only Quaternary Heusler (referred to here as QH) 

compounds, (blue square) ternary (referred to here as TH) and QH compounds, (green triangle) 

the full OQMD dataset including TH and QH. We show the accuracy as a function of the number 

of QH compounds in the training set. The full-OQMD model achieves the best accuracy because 

it learns more generally how stability and crystal structure are related using data for crystal 

structures other than QH. Consequently, it takes over examples of a 3k QH structure for the QH 
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model to reach the accuracy of the OQMD model with only 1 QH example. At 90 k examples of 

QHs, all three models are equivalent.  

 

Our first task was to select an appropriate training set for training our model. As alluded to in 

Section 2.1, we have several options for training data: what to use as the output variable and 

what subset of our available data to use for training. 

 

We tested training a model using either the formation energy or hull distance as an output by 

using a leave-10%-out cross-validation test. In this test, we remove 10% of the QH entries from 

the OQMD dataset, train a model on the remaining entries, and then measured the Mean 

Absolute Error (MAE) of the predictions of the model on the 10% of the QH that were initially 

removed. We repeated the CV test using both the formation energy and hull distance as output 

variables using the same test data; and repeated the entire test with a different test split a total of 

25 times. The convex hull distances are the equivalent to a formation enthalpy plus an unknown 

constant, which means that the MAE between the two datasets are comparable. As shown in Fig. 

2, the model trained on the convex hull distance has a lower MAE for all 25 iterations of the test. 

From this, we conclude hull distance is a better choice for output variable. 

 

We also needed to decide between training the model on all available data or limiting our 

training set to only those materials with similar structures to our search space: QHs. For training 

the ML model, we investigated three different training sets: 1) training on only QH data (90 k 

compounds), 2) using both quaternary and ternary Heusler (TH) data, and 3) training on all 

available data in the OQMD, including both QH and TH data. We refer to these three sets as 
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“QH”, “TH+QH”, and “OQMD+TH+QH”, respectively. To decide which method is best, we 

performed a cross-validation test where we included gradually larger numbers of QHs in the 

training set and measured the accuracy of the model against the withheld QHs. We chose to 

withhold a randomly-selected 10% of our QH data as a test set and repeated each test 5 times 

using a different test set each time. 

 

Fig. 3 represents the accuracy of trained ML models based on the three different datasets as a 

function of training set size. The choice of training set is the most relevant when small number of 

QH data was in the training set. It takes over 3k QH training entries in order for the QH-only 

model to reach the comparable accuracy of the OQMD model with only 1 QH. With larger 

number of QH data, models behave accurately regardless of the choice of training set. For the 

largest training set size we tested (87k QH entries), the CV result of ML model trained using 

only the QH data (red in Fig. 2) shows MAE of 0.037 ± 0.001 eV/atom. The model using both 

the QH data and that from the ternary Heuslers (THs, as blue in Fig. 2) shows 0.039 ± 0.001 

eV/atom, and the model trained by the full OQMD dataset (as green in Fig. 1) shows 0.038 ± 

0.001 eV/atom. The superior accuracy of the “all OQMD” model at small dataset sizes 

demonstrates the advantage of re-using data. What this suggests is that the data about QH 

compounds is important, but not necessary for being able to build an accurate ML model. 

Considering that the accuracy of all three models are equivalent for large training set sizes, we 

conclude the ML model trained on the entire OQMD is the best option for identifying new, 

stable QHs. 
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Our finding that a large, diverse training set leads to the most accurate machine learning models 

agrees generally with lessons learned in other materials informatics studies. For example, 

Browning et al. demonstrated optimized training sets for molecular machine learning models 

have maximum difference between training entries[54]. Furthermore, it is well known in the 

potential fitting community that the training sets that span the entire space of structures to be 

sampled[55]. What we find, in our case, is that denser sampling over composition space is 

needed to achieve optimal prediction performance for finding new intermetallic materials. The 

superior accuracy of the “all OQMD” model demonstrates the utility of large training sets (e.g., 

the QM-9 dataset in quantum chemistry[56]) towards materials discovery. 

 

3.2. Validating machine learning model 

 

 

 

Figure 4. (a) A comparison between ML-predicted and DFT-calculated convex hull distance 

(eV/atom) from a grouped-validation test where we measured the performance of the model to 

predict the stability of Quaternary Heusler compounds at compositions not included in the 
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training set. The chart is a 2D-dimensional histogram where the color of the pixel corresponds to 

the number of entries with a certain DFT and ML convex hull distance. (b) Measurements of the 

ability of our model to rank polymorphs at a certain composition in the correct order, as 

measured using the average Kendall Tau statistic (τ). We measure the average τ for entries in 

different quintiles based on the minimum stability of all polymorphs at each composition 

(quintile 1 contains the 20% compositions which are the most stable in DFT). Note that a Kendal 

score of 1 means all polymorphs at compositions in that quintile were ranked in the correct order 

and a score of 0 indicates that, on average, the order was random. 

 

As our objective is to find new stable materials, our model needs to be able to predict the 

stability of a structure at compositions not included in the training set. As our training set 

includes multiple structures at each composition (there exist 3 possible QH polymorphs per 

composition), we employed a “grouped” cross-validation test to evaluate the performance of the 

model. In contrast to conventional cross-validation techniques which randomly partition entries 

between test and training sets, we first group entries by composition and then randomly partition 

these groups of entries during cross-validation. This grouped cross-validation procedure ensures 

that the same composition never appears in both the training set and test set, which provides a 

more rigorous test of the predictive ability of our model. 

 

Specifically, we performed a 10-fold grouped cross-validation test. We first grouped QH entries 

by composition and then randomly split the list of groups into 10 sets. We then trained our model 

using 9 of these 10 sets and all of the remaining data from the OQMD, and then evaluated its 

performance on the entries on the withheld set. We repeated this test 10 times by iteratively 
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withholding each of the 10 QH sets to use as the test set, and measured the performance of the 

model over all test sets. 

 

As shown in Fig. 4 (a), our model achieved strong predictive accuracy during this grouped cross-

validation test. The correlation coefficient (𝑅$) for the model was 0.91, and the MAE was 

53 meV/atom. Our training sets included, on average, 86569 QH entries, which is comparable to 

the largest training set size in Fig. 3. Consequently, we can compare the performance scores and 

note that our performance here is slightly worse than that observed in the test in Fig. 1, which is 

not surprising given the increased difficulty of the task. However, the performance still is quite 

strong, the Root Mean Squared Error (RMSE) of our model is less than 30% of the training set 

standard deviation. From this, we conclude that our model is capable of being used to predict the 

stability of Heuslers at compositions not included in our original dataset. 

 

Another desired performance characteristic of our model is the ability to distinguish which QH 

polymorph at a certain composition is the most stable. For a given composition (e.g., ABCD), 

there are 3 different ways to arrange these elements in the QH structure that are 

crystallographically distinct. For an ABCD composition on the X1X2YZ sites of QH, the 

following arrangements are distinct: ABCD, ACBD, and ADBC. All other permutations of these 

elements are symmetrically equivalent to one of these three structures. To determine whether our 

model is capable of correctly ordering polymorphs based on stability, we first identified the 5813 

compositions where we evaluated all three polymorphs. In these cases, our model determines the 

correct ordering 58% of the time and the average Kendall τ rank correlation coefficient over all 

5813 tests is 0.68. Considering that a model which ranked polymorphs randomly would select 
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the correct ordering with probability 1/6 (17%) of the time and would have a τ of 0, these scores 

are quite promising. As shown in Fig. 4 (b), our model achieves a strong ranking performance 

coefficient (τ = 0.76) for the compositions we are most interested in: those with more stable 

polymorphs. That said, given that the ranking is not perfect, we still recommend computing the 

stability of all three prototypes when searching for new QHs regardless to ensure the correct 

polymorph is found. 

 

3.3. Computational discovery of new quaternary Heuslers 

 

 

 

Figure 5. Summary of the machine-learning-assisted search for stable quaternary Heusler 

compounds (QH). The ML predicted 2,278 compositions where at least one compound has a 

convex hull distance of less than 0.1 eV/atom. Among those 2,278 compositions, 1,317 

compositions are not in training data and 303 compositions among those 1,317 do not contain 
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rare earth elements. As seen here, we find DFT-stable 55 QH compositions among 303 using ML 

prediction in this work. 

 

 

 

Figure 6. Plot of hull distances (eV/atom) by machine learning (ML) vs. DFT for the 303 QH 

compositions (Fig. 4) identified using a machine-learning-based screening. Most predictions 

from the ML model underestimate the formation energy (see the shaded region). As such, we 

ranked the predicted compounds based on hull distance for choosing order of priority for DFT 

calculations with the upper limit of 0.1 eV/atom. 
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Figure 7. Histogram of number of stable quaternary Heusler compounds (QHs) vs. number of 

valence electrons in the compound. As seen here, most of stable phases in the training set have 

18 or 24 valence electrons. Interestingly, we find many stable phases predicted by ML (and 

verified by DFT) that do not follow the electron counting rules. 

 

Fig. 5 summarizes the results of our ML-based predictions for searching new stable QH 

compounds. Our ML model predicted that compounds at 2,278 distinct compositions have 

convex hull distances that are less than 0.1 eV/atom above the convex hull. Among the 2,278 

compositions, 961 compositions were in the training set (OQMD) and their stability had already 

been calculated by DFT. As such, 1,317 compositions represent newly predicted phases that have 

not yet been investigated by DFT. Many of these materials contain rare-earth elements and, 

because rare-earth-containing systems historically have not been extensively explored, 

discovering a new compound containing these elements is relatively less challenging than those 

without any rare earth elements. For that reason, we removed any compounds which contain at 

least one rare earth from consideration. We then performed DFT calculations of all three 

polymorphs for each of the 303 non-rare-earth-containing compositions where we predicted at 
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least 1 QH to be stable. Based on our DFT calculations, we find that the 55 of our candidate QHs 

are indeed stable. As shown by Fig. 6, that the ML model tends to underestimate the convex hull 

distance and, consequently, we conclude our approach of screening based on a stability threshold 

of 0.1 eV/atom is practical. 

 

The efficiency of a ML+DFT approach is much higher than conventional unconstrained high 

throughput screening and even searches guided by electron-counting rules. In a conventional 

HT-DFT screening, we found 204 stable compounds by performing 96k DFT calculations. When 

only selecting compounds with 18 or 24 valence electrons per cell, we found 180 out of 17k 

compounds to be stable: a rate of approximately one stable material per 100 calculations. We 

found 55 stable compounds using only 909 DFT calculation based on our predictions from the 

machine learning model, which corresponds to a rate of one stable compound per 16 calculations 

– around 30 times faster than when using conventional HT. 

 

Many of our predictions contain elements from similar groups. 43 of our 55 predictions contain 

Li. In retrospect, a large number of Li predictions is somewhat unsurprising given that Li is the 

element that appears most frequently in the stable QHs in our training set. In 38 of these 43 Li-

containing QHs, the compound also contains at least 1 element from the Ni- or Cu-group. 

Untangling whether the large number of predictions with Li and a group 10/11 metal could 

provide either insight on how the biases in a training set affect ML predictions or, perhaps, on 

the stability of QHs, which could be an intriguing opportunity for further study. 
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The large majority of the stable compounds we found did not follow the 18 or 24 electron-

counting heuristic, as shown in Fig. 7. The lack of stable materials with 18 or 24 electrons cannot 

be explained by the absence of any 18 or 24 electrons in the training set because there are 22876 

compositions with 18 or 24 electrons and no rare-earth elements remaining in the search space. 

Our model simply does not predict many more 18/24 electron QHs to be stable. Rather, we find 

more compounds with 17 or 7 electrons to be stable in the QH structure. Both of these results 

suggest that other factors besides the number of valence electrons are important in predicting 

stability, and that our machine learning model was capable of finding and using them to predict 

new stable compounds. 

 

3.4. Comparing our machine learning model with other ML approaches 

 

 

 

Figure 8. Performance of several strategies for identifying stable crystalline compounds. The test 

was to identify 50 stable quaternary Heuslers (QH) out of a list of 20 k given a training set of 
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between 1 and 75000 quaternary Heuslers. We plot the number of stable compounds found after 

50 guesses as a function of training set size. We compare machine learning models trained with 

the Voronoi tessellation method of Ward et al. [27] using only QH data (Ward, QH) and a 

training set supplemented with data from the OQMD (Ward), the Kernel-Ridge-Regression-

based method of Faber et al. [26], the Data Mining Structure Predictor (DMSP) method [57], and 

the electron counting heuristics of [2, 44, 45].  This figure shows the number of compounds 

within the 50 predictions that were actually stable. 

 

As we have just demonstrated, our model is certainly capable of identifying new stable 

compounds at a substantially accelerated rate. However, our Voronoi-tessellation-based 

approach is not the only method for identifying new stable compounds. So, in this section, we 

evaluate the effectiveness of our approach (the Ward Voronoi tessellation method) against 

several other methods: random search, chemical heuristics, the machine learning approach used 

by Faber et al. [26] and the Data Mining Structure Prediction (DMSP) method of Fischer et al. 

[57] The approach by Faber works by learning a Kernel Ridge Regression (KRR) model based 

on the distance between the row and group number of elements on each site in a crystal. The 

DMSP method builds a classification model of whether a material will be stable based on which 

other crystal structure types (e.g., ternary Heusler) are stable in a chemical system. 

 

To compare these methods, we employed a test where we randomly selected between 1 and 

75000 quaternary Heuslers to train a model and then used the model to identify the 50 

compounds most likely to be stable from a search space of 20000 compounds not included in the 

training set. We scored the performance of each method by measuring how many of the selected 
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compounds were indeed stable, and report the average of this metric over 25 tests (each with a 

different training set and search space). 

 

As shown in Fig. 8, the best-performing algorithm changes as more QH data is made available. 

At the smallest training set size (only 1 QH training example), the model created using the entire 

OQMD dataset and the Ward Voronoi method (i.e., the method used in previous sections) 

achieves the best performance: 8.2 ± 0.4 compounds in the 50 choices were actually stable. At 

this small training set size, the second-best method was preferentially selecting compounds with 

18 or 24 electrons, which found 0.8 ± 0.2 compounds. While less than 1 stable compound per 50 

guesses is a low success rate, the heuristic is still a factor of three better than random selection, 

which further confirms that electron counting rules are helpful. Given the lack of training data, 

the machine learning methods that only use QH data (e.g., DMSP) perform equivalent to random 

selection. These results suggest that either using known heuristics (e.g., electron counting rules) 

or ML methods that use data from other crystalline compounds are the best choice when few 

examples of a new structure are available. 

 

At a moderate training set size of 1000 QH entries, we find that the model created using the 

Faber method [26] has the best performance. The Faber method finds 11.2 ± 0.9 stable 

compounds, which is clearly better than the score of 8.0 ± 0.2 for Ward Voronoi method trained 

on the entire OQMD. To further understand why the Faber method performs better, we tested a 

model created using the same KRR algorithm but with Ward Voronoi representation to define 

the distance between structures. We observed a performance of 4.88 ± 0.43 for this model when 

training using only the QH data – better than Ward representation using a Random Forest 
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algorithm, but worse than the same algorithm and the Faber representation. This lower 

performance suggests that both the algorithm and representation used by Faber are the keys to its 

strong performance. In contrast to the Ward Voronoi method, the Faber method uses a 

representation that only supports a single structure type, which apparently describes the QH data 

better than a general representation and leads to more accurate models even though it uses a 

smaller training set. 

 

We find that models created using the Ward method have the best performance at the largest 

training set size of 75000 QH examples. At such large training set sizes, we are unable to test the 

Faber method due to large time required to generate the kernel matrix. That said, given the 

trajectory of the performance of the Faber method with system size, it is possible that it may 

perform worse than the Ward method for large training set sizes. We find the models created 

with the Ward method perform equivalently well whether the model was trained using the entire 

OQMD or just the QH datasets; the models find 31.7 ± 0.8 and 32.0 ± 0.8 stable compounds per 

50 guesses, respectively. In comparison, the next best method, DMSP (as implemented in 

Magpie), achieves a score of 18.4 ± 0.6 compounds. We therefore conclude the Ward method is 

the best choice for large training sets (>104 entries). 

 

Given these results, we propose that different methods should be used depending on the amount 

of training data available. For small training set sizes, the ability of the Voronoi-tessellation-

based method of Ward et al. [27] to use data from crystal structures of different types allows it to 

make predictions about a new structure type with few examples. For larger training sets, we 

recommend using the method of Faber et al. [26], which – despite using only data describing a 
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single structure type – achieves better predictive performance for datasets greater than 1000 

entries in size. For even larger dataset sizes, the Faber method can become computationally 

intractable and we recommend using the Ward method. The threshold at which switching from 

the Ward method to the Faber method will likely be different for different types of crystals, and 

we propose that one should employ a similar cross-validation scheme as the one demonstrated in 

this section to determine which method is better suited for a particular problem. With the 

combination of these two methods and data from the OQMD, it is possible to find new stable 

materials at a rate up to 30x faster than random searching regardless of how many training 

examples are available. 

 

4. Conclusions 

 

In this work, we established a ML model that predicts the stability of crystalline materials and 

used to them to discover 55 new quaternary Heuslers. Our model, which is trained using the 

entire OQMD, achieves excellent accuracy on predicting the stability of quaternary Heuslers 

even with little training data describing compounds with that structure. After using this model to 

evaluate the stability of 3.2M candidate materials, we used the predictions to discover 55 new 

stable quaternary Heusler phases with only 909 DFT energetic calculations – a rate of 

discovering stable compounds 30x higher than what we previously achieved without machine 

learning. We then benchmarked our machine learning method against other approaches, and 

found that our method performs best for small (<103 entries) training sets and large training set 

sizes (>105), the method of Faber et al. 2016 is best for moderate dataset sizes (103-104 entries). 
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We envision that the combination of these two techniques make it possible to quickly identify 

new stable materials for many types of compounds. 
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