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Crystal plasticity causes structural fluctuations that can be scale-free and 

therefore admit power-law distributions. Numerous experiments, modelling, 

and theory have reported a scaling exponent that is in good agreement with 

mean-field predictions or a jamming-unjamming scenario. Via experiments on 

pure single crystals, we show here that the scaling exponent of a stress-

integrated distribution for dislocation-avalanche sizes is non-trivial and can be 

in agreement with both models by admitting values between 1.0 and 2.3. This 

range is dictated by the orientation of the deforming crystal, as long as the 

applied rate is below a critical value. For the highest symmetry tested, plastic 

strain can drive a change from truncated power-law scaling to pure 

exponential scaling. These findings show how the same crystal may yield 

different scaling exponents depending on intrinsic and extrinsic factors. 

 

 

In nature, many non-equilibrium systems exhibit power-law scaling of avalanche phenomena. 

Well-known examples are crackling-noise from earthquakes, magnetic domain-wall motion, or 

phase transformations [1]. In the past decades, signatures of scale-free probability distributions, ܲ, 

have also been reported for plastic flow curves of crystals [2], dislocation structures [3], or surface-
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step patterns obtained after deformation [4]. One central aspect of these observations is that 

plasticity can lack a particular scale, which, for example, has been deduced from pure power-law 

scaling (ܲ ן  ఛ) of acoustic emission pulse-energies of creep in hcp ice crystals [5], or fromିݔ

pure power-law scaling of strain increments directly extracted from a stress-strain graph of 

uniaxially strained fcc and bcc crystals [6-8]. Importantly, these studies were in strong agreement 

on the obtained scaling exponent, ߬, for event-energy or event-size distributions, which was 

found to be between 1.5 and 1.6. This numerical value is well in line with theoretical predictions 

from continuum and discrete dislocation models [9-10], and has prompted some studies to state 

that plasticity is a universal phenomenon that can be placed in the same “universality class” of 

other non-equilibrium systems with the same exponent [11-13]. Subsequent experiments and three 

dimensional discrete dislocation dynamics (DDD) further support this view [12, 14-15], but now 

report a truncated probability distribution of the form ܲሺܵሻ ן ݂ሺܵሻ ൈ ܵିଷ/ଶ, where ܵ is the event 

size and ݂ሺܵሻ is some cut-off function that may depend on finite crystal sizes, stiffness, or 

hardening coefficient [12].  

The seemingly consistent value of ߬ has lent support to mean-field models of avalanches near 

the depinning transition (MFD) [11, 16], in which the predicted stress-binned probability density 

indeed scales as ܲሺܵ, ሻߪ ן ܵିଷ/ଶ, whereas the stress-integrated distribution scales as ܲ௧ሺܵሻ  ଶ, which would have an exponent of െ1 if represented by a complementary cumulativeିܵן

distribution function ܥ௧ሺܵሻ (CCDF). Scaling collapses of binned data from both experiments 

and simulations [17-19] were found to match these predictions. Fundamentally, this suggests that 

the evolving dislocation network behaves as a stress-driven many-body system that interacts with 

a static pinning field. Here, an external stimulus (stress) acts as a control parameter that drives 

the system repeatedly to a pinning-depinning transition (yielding). At yield a critical point is 
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reached, and a non-equilibrium phase transition triggers a dislocation avalanche. In the context 

of MFD, different distributions, such as ܲሺܵ,  ሻ or ܲ௧ሺܵሻ, also allow establishing links betweenߪ

their respective scaling exponents and other found scaling, such as for example event size and 

event duration [20], but may require specific experimental conditions that cannot always be met.  

In contrast to viewing yielding as a depinning transition, numerous DDD simulations have 

underlined the fact that yielding is a result of collective trapping [21-22], i.e. jamming, due to the 

formation of a complex network of interacting dislocations. This dynamic picture relies on the 

collective dislocation interactions rather than a static pinning field and gives rise to a distinctly 

lower stress-resolved size scaling exponent of ߬ ൎ 1 [21, 23] (߬ ൎ 1.3, if stress-integrated [23]). In 

addition, the jamming-unjamming mechanism has revealed that critical fluctuations take place 

over a larger range of control parameters, which shows that the system does not have a critical 

point, but is always close to criticality [22-25]. 

The matter of pinning-depinning vs. jamming-unjamming remains debated, with some reports 

suggesting material specific or size-specific exponents [26-27], which however do not reveal what 

fundamental parameters, or their combination, may determine a given value of ߬. Hence, there is 

a strong lack of systematic experimental evidence obtained from realistic three-dimensional 

dislocation networks that potentially could conclude on the magnitude of ߬ and thereby on the 

dispute of pinning-depinning vs. jamming-unjamming. We address this shortcoming and 

demonstrate how scaling exponents for the same crystal can admit exponents numerically 

compatible with both theories. Specifically, we focus on the effects of crystal orientation, drive 

rate, and deformation history on ߬ by deformation experiments of pure Nb (bcc) and Au (fcc) 

crystals. 
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We find that the scaling exponent, ߬, for avalanche sizes increases systematically with 

increasing crystal symmetry in both Nb and Au, and its value for a given symmetry is distinctly 

higher in Nb than in Au. For a given lattice type, ߬ remains unaffected by drive rate as long as 

the applied deformation rate is below a critical rate ݑሶ ௧, but this rate is two orders of magnitude 

lower in Nb than in Au. Prior plastic deformation via cold rolling does not significantly affect ߬ 

for deformation rates at or below ݑሶ ௧, but shifts the power-law truncation to smaller avalanche 

sizes. It is furthermore demonstrated how a single crystal system (bcc Nb) can exhibit truncated 

power-law scaling for a low-symmetry orientation, while for the highest symmetry it can develop 

towards a pure exponential avalanche distribution during deformation. This means the same 

material can experience a strain-dependent shift from one distribution to another. On the basis of 

these observations, we conclude that scaling exponents of microplasticity can admit numerical 

values encompassing both MFD and jamming-unjamming, not supporting the notion of a 

universal exponent.  

We conduct microcrystal deformation experiments using a TI-950 nanoindentation platform. 

Precise details related to the experiments can be found in Refs. [28-29]. Nb and Au crystals of 2 

μm diameter and a nominal height of 6 μm were produced via focused ion beam milling. Four 

different loading-axis orientations (〈123〉, 〈011〉, 〈111〉, and 〈001〉) were studied. The 

displacement rates ݑሶ  were varied between 0.06 and 600 nm/s for Nb and 6 and 6000 nm/s for 

Au, and all crystals were deformed to an engineering strain of ~0.2. The force-displacement data 

was analyzed with custom Matlab codes, and determinations of the most suitable avalanche 

distributions and scaling exponents were done using the Maximum Likelihood Estimator (MLE) 

method [30-31] (see SOM for details [32]). In the following, avalanche sizes are reported in axial 
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displacement, whereas resolved shear stress, ߬௦, and shear strain, ߛ, is used to quantify the 

plastic flow response. 

The stress-integrated probability density distributions for Au are shown in Figure 1a (see Fig. 

S1 in the SOM for equivalent plots for Nb [32]). The MLE-analysis shows that the data is best 

described with a truncated power-law ܲ௧ሺܵሻ ן ݁ିఒௌ ൈ ܵିఛ and an orientation dependent 

exponent (see SOM for details [32]): ߬௨ۃଵଶଷۄ ൌ 1.01 േ 0.02, ߬௨ۃଵଵۄ ൌ 1.22 േ 0.08, ߬௨ۃଵଵଵۄ ൌ1.95 േ 0.07, ߬௨ۃଵۄ ൌ 1.62 േ 0.05. From the MLE-analysis and the correspondingly obtained 

truncated power-laws (fit lines in Figure 1a), we construct ܥ௧ሺܵሻ via integration of ܲ௧ሺܵሻ, 

obtaining ܥ௧ሺܵሻ ן Γሺ1 െ ߬, ߣ ൈ ܵሻ, with Γ being the upper incomplete Gamma function and ߣ a 

non-universal constant of ݂ሺܵሻ. Subsequently, a least-squares method was used to find the best 

fit between the constructed ܥ௧ሺܵሻ curve (with the ߬ and ߣ values taken from the MLE analysis) 

and the experimental CCDF. This is shown in Figure 1b for both Au and Nb, where the 

preference of ܥ௧ሺܵሻ over ܲ௧ሺܵሻ is motivated by the ability to present un-binned data. In the 

case of Nb, the same procedure was followed, with the particular difference that the highest 

symmetry loading axis (〈001〉) revealed a distinct change in flow response at low ߛ (see inset in 

Figure 1a; each curve is an average of 7 or more flow curves), after which ݀߬௦ ⁄ߛ݀  is equally 

low as for all other Nb orientations. The detailed analysis of the avalanche size distributions 

revealed a bimodal behavior, which changed at ߛ ൌ 0.03. As a result, Figure 1b displays two 

size distributions for Nb〈001〉, each for a different regime of ߛ. This lead to the following ܲ௧ሺܵሻ 

scaling exponents (see SOM [32]): ߬ேۃଵଶଷۄ ൌ 2.09 േ 0.13, ߬ேۃଵଵۄ ൌ 2.07 േ 0.08, and ߬ேۃଵۄ,ఊழ.ଷ ൌ 2.23 േ 0.22, all of which are best described by a truncated power-law. 

However, the best distribution for Nb〈001〉 and γ  0.03 is of pure exponential form.  
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[Figure 1 approximately here] 

Figure 1: a) probability density distribution ܲ௧ሺܵሻ for Au-microcrystals of various orientations. The full 

lines are truncated power-law fits obtained from MLE-analysis. The inset in a) shows the resolved shear 

stress as a function of resolved shear strain for different orientations of Nb. Each curve is an average of 

7-12 stress-strain curves. b) ܥ௧ሺܵሻ constructed from a) with corresponding truncated power-law fits for 

differently oriented Au- and Nb-microcrystals. In the case of Nb〈001〉 for ߛ  0.03, an exponential 

distribution fits the data best. ݑሶ௨ ൌ 60 nm/s and ݑሶ ே ൌ 0.6 nm/s. 

Figure 1b demonstrates this increase in scaling exponent with symmetry via ܥ௧ሺܵሻ. The 

increase in ߬ is small between the 1- and 2-fold symmetry, after which ߬ increases significantly 

for the 3- and 4-fold symmetry, which qualitatively agrees with results from phase field 

modelling [33]. In the case of Au, the MLE analysis shows no strong trend away from a truncated 

power-law as the most likely distribution, which can be quantified by the likelihood ratio, R, and 

the significance value, . This is different for Nb, where in general these parameters less strongly 

favor a truncated power-law, and where a strain-dependent type of statistics is observed for the 

4-fold symmetry. The latter shows that depending on strain, the power-law contribution can be 

lost entirely, transitioning the crystal into a system governed by pure exponential avalanche size 

statistics. This can be understood by the finite experimental resolution (~0.25 nm) and a 

decreasing correlation length due to network evolution. As a result, one effectively only probes 

the largest events of the underlying distribution, which potentially is still of the truncated power-

law type, but only the largest events can be resolved. Even though the distributions in Figure 1b 

visibly display different scaling behavior, we emphasize that fitting a truncated power-law with a 

fixed exponent, but a variable parameter in an exponential cut-off function, does not allow 

matching the experimental data. There is thus a marked influence of crystal orientation on the 

scaling exponent, where Au〈111〉, Nb〈123〉, and Nb〈011〉 are orientations that, within 
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experimental uncertainties, may suggest agreement with MFD (߬ ൌ 2), and the exponent value of 

Au〈011〉 may be seen as support for a jamming-unjamming picture (߬ ൎ 1.3 [23]). We note that ߬ 

scales somewhat with ݀߬௦ ⁄ߛ݀  for Au, but that this is not the case for Nb. The cut-off values at ܥ௧ሺܵሻ ൌ 0.001 for the different orientations reveal grouping into two main groups, one of 

which includes the 〈123〉- and 〈011〉-orientations, and the other one 〈111〉 and 〈001〉 (Au) or 〈001〉 

(Nb). This trend matches the surface morphology of the deformed crystals that exhibits well-

localized slip for the two lower symmetries, and well-distributed faint slip steps for the higher 

symmetries.  

 Since the structural fluctuations caused by the external drive have finite time scales, and in the 

case of crystal plasticity, are thermally activated, it is possible to truncate the avalanche size 

distribution at the lower size end when drive conditions are not sufficiently slow (close to the 

adiabatic limit). This could generally reduce the size-scaling exponent if the underlying 

avalanche dynamics is of similar time-scale as the drive. For each crystal system studied, it is 

thus of importance to precisely determine at which external drive rate, ݑሶ ௧, this occurs. 

Following the identical procedure as for the data in Figure 1, we find that ܲ௧ሺܵሻ for different 

applied rates for both Nb〈011〉 and Au〈111〉 are truncated power-laws: ߬ேۃଵଵۄ,./௦ ൌ2.09 േ 0.04, ߬ேۃଵଵۄ,./௦ ൌ 2.07 േ 0.08, ߬ேۃଵଵۄ,/௦ ൌ 1.80 േ 0.05, and ߬௨ۃଵଵଵۄ,/௦ ൌ2.02 േ 0.05, ߬௨ۃଵଵଵۄ,/௦ ൌ 1.95 േ 0.07, ߬௨ۃଵଵଵۄ,/௦ ൌ 1.53 േ 0.19. Figure 2 

summarizes ܥ௧ሺܵሻ for these distributions. For the higher rates, no valid truncated power-law 

could be identified. It is thus found that ݑሶ ௧ is as low as 0.6 nm/s in the case of Nb, and 60 nm/s 

in the case of Au, in order to not affect ߬. These results are independent of orientation, which we 

will comment on further in relation to Figure 3. Given the data in Figure 2, ݑሶ ௧ thus needs to be 

quantified for each studied material prior to concluding on the numerical value of ߬. By 
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increasing ݑሶ , the distributions lose a growing fraction of their smaller avalanches, pushing ܥ௧ሺܵሻ to the higher event sizes and reducing the exponent, eventually erasing the scaling.  

 

[Figure 2 approximately here] 

Figure 2: C୧୬୲ሺܵሻ for Nb〈011〉 (a) and Au〈111〉 (b) as a function of applied displacement rate ݑሶ . Above a 

critical rate, ݑሶ ௧, the scaling exponent depends on ݑሶ . Full lines are truncated power-law fits. 

 

 Whilst the effect of applied rate (external drive velocity) has been touched on in the literature 

[17, 34], the data in Figure 2 demonstrates for the first time the importance of finding ݑሶ ௧, which 

from an experimental perspective is an unexpectedly low rate for Nb. These constraints will 

become increasingly severe at larger sample sizes, because typical deformation experiments are 

based on strain-rate constancy rather than maintaining a constant absolute displacement rate. 

 An extraction of the peak-event velocity from the time-resolved velocity profiles [35] for all 

orientations reveals a very systematic scaling of type ۄܵۃ~ۄݒۃఈ, where ۄݒۃ is the average peak 

velocity and ۄܵۃ the average event size for that bin. Such scaling has to our knowledge only been 

predicted by MFD (ߙ ൌ 0.5) [36] but has not yet been reported for jamming-unjamming. In the 

present work, the emphasis lies on the fact that at ݑሶ ௧ orientation does not affect ߙ, but material 

does (ߙ௨ ൌ 0.73 േ ேߙ ;0.06 ൌ 0.66 േ 0.16). At ݑሶ  ሶݑ ௧, ߙ decreases with increasing rate. 

More importantly, and in relation to the findings of Figure 2, one can conclude that, within the 

experimental resolution, it is the low velocity of the smallest avalanches that sets ݑሶ ௧. In both 

cases, the ratio ۄݒۃ/ݑሶ ௧ ൎ 160 േ 40, depending on the scatter bounds. Figure 3 also reveals 

that the velocity-size scaling remains the same across all orientations and shear strains. Instead, 

the only off-setting factor is the lattice type, which manifests itself in a reduced avalanche 

velocity for Nb that can be understood on the basis of rate-limiting screw dislocation activity 
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during the avalanche. Since events of all sizes can occur at any ߛ, Figure 3 furthermore shows 

that any increase in dislocation density during flow does not change the velocity-size scaling, i.e. 

the avalanche dynamics seems insensitive to network evolution in the tested crystals. This is 

most prominently shown with Au〈111〉, which has a distinctly higher hardening rate than the 

other orientations (see SOM [32]), but yet ߙ is identical.  

 

[Figure 3 approximately here] 

Figure 3: Avalanche peak-velocity as a function of avalanche size for Au and Nb of various orientations, 

and cold-rolled Au〈011〉 and Nb〈011〉. All data was obtained at ݑሶ ௧. 
 

 The insensitivity of the avalanche velocity-size scaling on dislocation network can further be 

demonstrated on the basis of pre-deformation of the same original crystals. To this end, we cold 

rolled Nb〈011〉 to 25%, and Au〈011〉 to 30% and 75% thickness reduction, respectively. This 

amount of cold rolling is known to introduce a dislocation substructure corresponding to stage II 

or III hardening [37-38]. The size-velocity data is in all cases indistinguishable in comparison to the 

as-received well-annealed crystals. The truncated power-law scaling exponent of ܲ௧ሺܵሻ for the 

cold rolled crystal conditions are: ߬ேۃଵଵۄ,ଶହ%ௗ ൌ 1.95 േ 0.06, ߬௨ۃଵଵۄ,ଷ%ௗ ൌ 1.27 േ0.07, and ߬௨ۃଵଵۄ,ହ%ௗ ൌ 1.23 േ 0.07 for which ܥ௧ሺܵሻ is shown in Figure 4a. These 

exponents are within the error bar of the as-grown crystals, but a clear increase of the 

exponential truncation ݁ିఒௌ is observed, underlining how large avalanches are increasingly 

suppressed by the increased network entanglement and substructure formation. This finding is 

somewhat different than previously proposed [39], where ܲ௧ሺܵሻ was found unaffected by pre-

deformation to the onset of stage III hardening. We note that the subtle change of ܥ௧ሺܵሻ for 
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Nb〈011〉 is visibly indistinguishable in ܲ௧ሺܵሻ, likely due to the involved binning procedure. In 

stark contrast to the orientation dependence displayed in Figure 1, where a true change in ߬ is 

seen, the apparent slope change in Figure 4 due to pre-straining is only due to amplified power-

law truncation. It is thus crystal orientation that determines ߬ for ݑሶ  ሶݑ ௧, but not the pre-

existing dislocation network, as long as power-law fluctuations are admitted and the pure 

exponential regime has not been reached. 

 

[Figure 4 approximately here] 

Figure 4: ܥ௧ሺܵሻ for Au〈111〉 and Nb〈011〉 after cold rolling, revealing identical scaling exponents, but 

increasing dominance of the exponential truncation. All data was obtained at ݑሶ ௧. 
The above experimental study on pure single fcc and bcc microcrystals reveals that the scaling 

exponent for event-size distribution of intermittent plastic flow varies significantly in a material-

orientation-rate parameter space, which puts earlier experimental studies in a different 

perspective. Indeed, one has to reassess to what degree previously reported agreements with 

MFD are robust against the variations shown here. Since the jamming-unjamming picture has 

per-se no pre-defined exponents, it needs to be seen to which degree compatibility is found with 

the experimentally revealed non-trivial exponents. Since some of the here revealed changes of ߬ 

are not due to truncation effects that may be classified as experimentally tunable (tuned-

criticality [17]) our results indicate that fluctuations in crystal plasticity are not universally 

described by the same exponent. Furthermore, it is possible to obtain an arbitrary exponent by a 

combination of a given orientation and a rate larger than the critical rate. 

The overall range of exponents could be framed within a picture where crystal symmetry 

drives a transition from a jamming-dominated ensemble to a pinning-dominated ensemble, by an 
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increasing density of sessile segments originating from initial slip system interaction. Such a 

scenario raises the question as to why the lower symmetry Nb crystals already have scaling 

exponents numerically representative of MFD, thereby excluding a jamming-unjamming 

mechanism. This can be reconciled by the fact that boundary conditions in microcrystal 

deformation are known to trigger deformation on additional slip systems than geometrically 

predicted [40]. Considering only the primary and conjugate slip planes and one active slip 

direction per plane, it is straightforward to show that a bcc crystal oriented for single slip has 

initially 6 interacting slip systems available, which already exceeds the number available to the 

highest symmetry fcc crystal. Correspondingly, if at sufficiently slow driving rate, slip system 

interaction is determining ߬, the active number of them give room for both MFD and jamming-

unjamming. Since this picture requires the precise knowledge and details on the evolving 

dislocation structure as to verify the symmetry driven development of an effective pinning field, 

only realistic three-dimensional DDD simulations will allow scrutinizing this proposition. 

Deformation of crystals having highly mobile dislocations that exhibited scale-free behavior 

has also motivated attributing self-organized critical (SOC) behavior to plasticity [6]. This 

concept describes a dynamical system that arranges itself such that it always is at a critical point 

[41]. One of the important properties of SOC behavior is that it is self-similar or scale-free. The 

fact that the same type of crystal (here Nb) can admit fluctuations that are best described by a 

truncated power-law at low strains, but subsequently transitions to pure exponential fluctuations, 

suggests, at least within the experimental resolution, that the crystal transitions into a state of 

network entanglement for which SOC behavior may no longer be applicable.  

This study reveals the large range of scaling exponents that plasticity in pure crystals may 

admit, therefore shedding light onto inconsistent data in the literature and highlighting the need 



 
12 

 

to carefully examine under which conditions reliable comparisons between scaling exponents 

can be made. Such efforts are critically needed in order to exploit statistical properties of 

evolving dislocation ensembles in order to incorporate the physics of groups of dislocations into 

novel macroscopic deformation models. 
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