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Abstract

We provide a brief discussion of “What is machine learning?” and then give a number of examples

of how these methods have recently aided the design and discovery of new materials, such as new

shape memory alloys, with enhanced targeted properties, such as lower hysteresis. These examples

illustrate how discoveries can be made from large databases, for example, those generated by high

throughput DFT calculations and also how they can be made from experimentally growing smaller

databases in an active learning manner. Additionally, we discuss such advanced machine learning

methods as multi-objective and multi-fidelity optimization that permit proposing new materials

with the simultaneous optimization of more than one targeted property, such as a material with low

hysteresis and high Curie temperature, and permit using fewer costly experiments and calculations

by combining them with less costly ones to achieve modeling comparable to using only many costly

ones. We conclude with a brief discussion of future machine learning opportunities in the context

of high throughput experiment and on-the-fly adjustment of synthesis. More speculatively, we end

by discussing how might we tailor material science more fittingly with machine learning.
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I. INTRODUCTION

Using machine learning methods to aid the design and discovery of new materials is a

rapid growth area in materials research and will continue to be so for the foreseeable future.

Without doubt, this explosive growth was fueled by President Obama’s 2011 announcement

of the Materials Genome Initiative (MGI)1 and is being sustained by the ensuing govern-

mental infrastructure developed to co-ordinate this initiative’s implementation by various

agencies. The intent of the MGI is the maintenance of our country’s manufacturing compet-

itiveness by halving the time it takes to discover new materials. Ideally, we want to discover

game-changing materials, those with one or more properties that lie far beyond those cur-

rently known, that enable the development of new technologies and lead to the marketing of

new products based on these extraordinary properties. In other cases, alternative materials

are sought, perhaps for reasons of cost or environmental friendliness. In MGI announce-

ments, Kevlar and Li-based batteries, are oft-quoted examples of new materials marketed

because they have exceptional properties or are desirable replacements.

The MGI has rapidly changed the way many material scientists do research, not only in

this country but worldwide. Mandated is research that is much more data and computation

driven than in the past. In practice, computations are creating large databases. Machine

learning methods are the main tools being used to facilitate the exploration of these data.

There is hope and reason to believe that these methods, when applied to properly crafted

material databases and properly used, will augment and in many cases supplant the time

consuming, intuition-based, trial-and-error experimentation that has been the traditional

route to the design and discovery of new materials.

The intent of this article is not to review the progress and status of the MGI but rather to

convey “some lessons learned” that illustrate the potential of machine learning methods in

several perhaps not so obvious but in fact essential ways. For example, to date, much of the

use of machine learning methods in materials science has been strongly coupled to the nearly

simultaneous generation of large databases by high-throughput density functional theory

(HT-DFT) calculations and in some cases the generation of databases by high throughput

experiments. However, examples now exist where the use of less common machine learning

tools makes it possible to grow small experimentally generated databases into larger ones

and along the way to predict new materials. We review this approach and discuss how it
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was also recently used in the context of non-high throughput DFT calculations: Instead

of the present agenda of trying to compute all possibilities with computational accuracy

sacrificed for speed, the alternative approach focuses on identifying a few possibilities at a

time that will make the most difference with respect to what we presently know, computing

these possibilities as accurately as possible, and verifying them experimentally.

Whether the databases are large or small, generated experimentally or computationally,

the motivation for discovering new materials is coupled in an essential way with the need for

ones with specific functionalities more advanced than those we currently have. Generally,

improvements in more than one functionality are sought. For example, we might want new

shape memory alloys with lower hystereses and higher Curie temperatures. Below, we discuss

machine learning methods that optimize the search for materials needing the simultaneous

enhancement of multiple properties (multi-objective optimization).

We also note the existence of multi-fidelity optimization methods that permit the com-

bination of calculations with different levels of accuracy, experiments with different mea-

surement precisions, and even calculations and measurements with the resulting precision

approaching that of the more expensive calculations or measurements. Examples here in-

clude combining many HT-DFT calculations that use less accurate approximations for the

electronic interactions with fewer DFT calculations that use more accurate ones to produce

band gap predictions whose accuracies approach an all high fidelity analysis.

In short, instead of giving a somewhat standard summary of textbook machine learning

ideas and methods, we focus on the broader picture, discuss some newer methods and more

importantly reference their successes. Accordingly, we look more to the future than to the

past. We are sharing lessons we learned. We acknowledge a number of very recent reviews of

the field, for example,2–12. The active learning, multi-objective and multi-fidelity methods

we discuss are not noted by them. Hence, this update of progress in the field complements

the perspectives they provide.

In the next section, we present a brief historical perspective that gives a simple example of

how data has been used to search for new materials to show how machine learning allows us to

build upon it. We then give a somewhat philosophical description of machine learning. What

is it? It is not physics, chemistry, or materials science. How does this domain knowledge

enter? It is largely upon us. We then review several applications of different machine

learning methods to the prediction of new materials, note cases where the predictions have
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been validated experimentally, and thereby illustrate the broad spectrum of applications

possible13. Finally, we conclude by noting other methods awaiting a chance to impact the

design and discovery of new materials.

II. HISTORICAL PERSPECTIVE

Using data and in particular data generated from theoretical calculations to assist in the

design and discovery of new material is not new. One of the earliest instances of such an

endeavor was the search for new semiconductors, the game changing materials of the 70’s,

that resulted in the introduction into the materials design and discovery process of what

are called structure maps (for example, Fig. 1). Initially applied to octet AB materials14,

these maps are simply scatter plots of two physical properties of the constituent A and B

atoms, such as their ionization potentials, valences, ionic radii, etc. A pencil and ruler was

used to draw boundaries between the plotted data that cluster known materials with the

same crystal structure. The challenge was to identify the physical quantities to place on the

x and y axes that promoted the greatest segregation of materials into the same structure.

“Holes” in the resulting data clusters represented possible new materials and their likely

crystal structures. One of the earliest and most effective structure maps was proposed by

St. John and Bloch15 who chose as the x and y co-ordinates the symmetric combinations

rσ = |(rAp + rAs ) + (rBp + rBs )| (1)

rσ = |rAp − rAs |+ |rBp − rBs | (2)

of the s and p orbital dependent radii of the A and B atoms estimated from an early pseudo-

potential, a concept then in its infancy. A pioneering paper by Chelikowsky and Philips16

states the vision:

“Structural energies are, for the most part, too small to be calculated quantum

mechanically. . . . However, if we consider the problem from the point of view

of information theory, then the available structural data already contain a great

deal of information. . . . Thus one can reverse the problem, and attempt to

extract from the available data quantitative rules for chemical bonding in solids.”

In other words, the Periodic Table establishes trends in the chemical properties of the atoms

as one moves across its rows. In the solid state, remnants of these trends persist. The
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FIG. 1. Structure map of the octet AB compounds with Pettifor’s Mendeleev numbers as the co-

ordinates. The different symbols shapes denote the different crystal classes: the circles are rock salt;

the down-pointing triangles, zinc blende; the squares, wurtzite; the up-pointing triangles, cesium

chloride; and the diamonds, and the diamond, diamond. Symbols colored blue mark compounds

expected to be ionically bonded (those in rock salt, wurtzite and cesium chloride structures); red,

covalently bonded (zinc blende and diamond). For clarity, bounding boxes clustering the different

crystal structures are not drawn.

problem is to extract these trends from the data and use them to predict new materials.

This vision is also that of much of today’s use of machine learning in the materials sciences.

The structure map approach was extended by Zunger17 to all AB materials with the

symmetric combinations of ionic radii but with rA and rB computed by a different pseudo-

potential, and with a pencil and ruler he clustered the 574 then known AB materials in

the observed 34 crystal structures. In the mean time, Pettifor18 proposed a different set

of co-ordinates for a structure map based on what he called Mendeleev numbers. This

one-dimensional sequence of numbers relabels the elements in the two-dimensional Periodic

Table for the most part by going down the columns. He showed doing this captures co-

ordination tendencies of the elements and hence structural similarities between materials

differing by the presence of one or more of these elements. These co-ordinates do not require

computation or measurement and hence became readily used in structure maps for clustering

physical properties other than crystal structure, such as melting temperatures.

What would happen if we were to use simultaneously both the ionic radii and the
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FIG. 2. An Ashby plot with Young’s modulus and density as the co-ordinates. Multiple material

classes are represented.

Mendeleev numbers to capture the two different types of trends? Obviously, we would

need more than a ruler and pencil to identify and draw the boundaries between the data

clusters because we do not know how to plot anything in four dimensions. In this particular

case, machine learning is the replacement for the pencil and ruler: It allows us to extend

the concept of a structure map to three or more dimensions, provides us with a method to

remove the subjectivity in the decisions of where to draw the boundaries, and replaces boxy

boundaries with more sophisticated and flexible manifolds19.

While a structure map is useful for a first cut in identifying possible new materials from

data, it is clearly limited. It is interesting to note another type of two-dimensional scatter

plot, called the Ashby plot (Fig. 2), that is used in the materials engineering problem of

selecting the best material to use in a particular application20. It displays two properties of

many materials for multiple classes of materials simultaneously. Historically, an Ashby plot

displayed the Young’s modulus versus the density for overlays of metals, polymers, ceramics,

foams, etc. Specific procedures evolved for choosing the material class and the material in

that class for the application at hand, for example, depending on whether the material would

be used as a rod in tension or as a plate subject to bending.

What is characteristic for each material class in an Ashby plot are limiting boundaries of

high Young’s modulus and low density, high Young’s modulus and high density, etc. From

the point of view of an Ashby plot, the search for new materials is about pushing one of these
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boundaries in a favorable direction. For example, for alloys of the form AxByC1−x−y with

A, B and C fixed, for what values of x and y will we find a material with higher Young’s

modulus and lower density relative to the alloys we already know? As we discuss below

(Section VI), these boundaries are called Pareto fronts, and machine learning methods exist

that adaptively predict values of x and y whose Young’s modulus and density are likely to

push the front favorably. Used this way, machine learning proactively addresses a goal of

MGI.

III. MACHINE LEARNING

We define machine learning as a collection of computational methods for using information

in data we have to make predictions about data we currently do not have. Closely related to

machine learning is data mining which uses machine learning and other methods to unveil

information already in the data we have but is not apparent. Crudely speaking, in our AB

material example, observing clusters in the structure plot is data mining; predicting new

materials using the rule of filling in the holes in the clusters is machine learning. Better

definitions of both fields exist; however, our experience has been that we are asked less often

about what is machine learning than we are asked about where is the physics, chemistry, or

material science. We already stated that there is no physical science in the machine learning

methods. They are application neutral. Our example about structure maps gives a hint

about how the science enters. In part, it is through the data. To understand the entry

better requires that we discuss a bit more about what machine learning is and how it is

validated.

Except for the biosciences (for example, the Human Genome Initiative), chemical sciences

(Chem-informatics), and astronomy (for example, satellite data analysis), the other physical

sciences, including the material sciences, are somewhat “Johnnies come lately” in their use

of machine learning methods. The widespread use of these methods in the engineering

sciences, social sciences, financial sciences, statistics, marketing, etc. have lead to a plethora

of methods and techniques that are application independent, even though each originated in

a particular field. For example, below we discuss the use of machine learning in identifying

possible new perovskite materials. The gradient tree boosting method used there has been

used to study the short-fin eel population in waters off New Zealand.
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In machine learning, there are many generic tasks21–23. These tasks include modeling

the data by some probability distribution function, clustering the data, classifying the data,

regression analysis, feature reduction, etc. For each task, numerous methods exist. What

defines the discipline using any of these methods is not just the source of the data and the

information sought from it but also the parametrization of the data. The parameterization

defines the variables we use in the machine learning. These variables are most often called

the features but sometimes called descriptors. The features are ultimately the main portals

for the science.

In a few more words, it is useful to think of a data point as a sample drawn from some

probability distribution function that represents the complete description of the problem. Of

course, we do not know this distribution. Further, we do not know the independent features

on which it depends. For a given material, on the other hand, we can easily conjure up a

host of physical properties relative to the constituents of the material and to the material as

a whole that we believe are relevant and use all as features. In the Historical Perspectives

section, we noted that different parameterizations of structure maps, that is, different choices

of features, changed how well the data separated into crystal structures. In machine learning

language, the search for the best structure map was a search for the best feature set. In

short, using what we know a priori about what physical quantities control the properties

of interest is currently where our domain knowledge mainly enters. Often, we can propose

too many features with most not being independent of each other. Occam’s razor controls

our psyche: Less is more. While there are machine learning methods to aid in identifying

from this set the ones most and least important, the burden is upon us to choose how we

populate the set. We can depopulate or repopulate as needed.

In the physical sciences, we typically look at data to establish general principles and then

use these principles to predict beyond what we know. On the one hand, we are trying to

use machine learning to help us extend our knowledge of materials beyond what we know.

On the other hand, we can ask what are the general principles for using these methods?

Unfortunately, there are at best a few.

First, we point out the No Free Lunch Theorem (NFLT)24 that says “A universal optimizer

does not exist.” Most machine learning methods optimize something, typically performing

a constrained fit of a cost, loss, or utility function to the data. The NFLT suggests there

is no best optimizer for doing this. In part, this is why there are so many methods. You
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might have several methods that you like more than others. For a given application, one

will work better than the rest. Typically, you will need to try all to find out which one. If

you change the problem, for example, by adding a lot more data or by adding and removing

some features, another of your favorite methods might rise to the top.

Likely while in high school or thereabouts, we all were told if you use enough parameters

you can fit anything. Indeed this is the case. In machine learning, this dictum translates into

the bias (the error of the fit) versus variance (the variations in its predictions) problem22.

In standard applications, machine learning returns a statistics-based model built upon the

data. In making predictions, we use this model mainly to interpolate between the data we

know. If we fit the data too accurately (low bias), the risk is we become extremely limited

in how far we can controllably interpolate (high variance) between data points.

How does machine learning address the bias versus variance problem? In most cases,

some form of a technique called cross-validation is used22,23. In cross-validation, we machine

learn on only part of the data and then test the resulting model by observing how well

it predicts the held-out data. By doing this multiple times for different sets of hold-outs,

we can compute, for example, the average accuracy of the model as well as the average’s

standard deviation. In most fields, a high accuracy with a small standard deviation from

the cross-validation are the bases for confidence in the predictions of the model. In the

physical sciences, we also have the luxury of asking how well do these predictions compare

with experiment.

IV. LARGE DATABASE EXAMPLES

Since x-ray diffraction was discovered, databases of measured structures of molecules

and solids have been assembled and grown large. Several well known structural databases

are the Cambridge Structural Database (CSD)25 and the Inorganic Chemistry Structural

Database (ICSD)26. Today’s databases combine to cover organic, metal-organic, purely in-

organic compounds (including pure elements, minerals, and inter-metallic compounds), and

alloys. The ICSD, for example, is devoted to inorganic compounds, has nearly 200,000 en-

tries with about 6000 added per year, and returns for each entry such information as the

unit cell, space group, atomic parameters, site occupations, Wyckoff positions, molecular

formulas and weights, mineral groups, etc. Because of repetitions, incorrect entries, incom-
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plete entries, etc., the effective sizes of these databases are smaller than the size advertised.

Additionally, not all known materials lie in them. While giving detailed structural infor-

mation of a material, the entries give little information about other physical properties and

functionalities.

What are some of the uses made of this structural information of already fabricated

materials? Returning to our example of AB materials, the central task for finding new such

materials is finding from a known compound, say NaCl, what substitutes for Na or Cl. Here,

we would naturally try atoms chemically similar to Na or Cl, expecting to keep the result in

the same crystal structure. In short, the structural databases for fabricated materials contain

information about the observed substitutions of one element for another for various crystal

structures and chemical compositions. In particular, they give an empirical likelihood that

element A can be replaced by another element B and remain in the same crystal structure.

Using the information in the ICSD, Glawe et al.27, for example, constructed a matrix where

each entry (A,B) measured this likelihood, and then by using a sparse matrix method to

reorder its rows and columns to reduce the bandwidth of the matrix, they generated blocks

of structurally and chemically similar compounds along the diagonal of the reordered matrix

to create a modified Pettifor chemical scale. This new scale was similar to the one found

by Pettifor who used intuition and trial and error on a much smaller set of data. Thus,

they reaffirmed and sharpened this classic work. Similar in spirit is the work of Hautier

et al.28. Using machine learning methods, they constructed not a matrix but a probability

function for substitution that fitted the known data very well, and from it re-established

such relatively known trends as rare-earths substituting freely for each other as do the alkali

elements. With the model, they can now predict the likelihood (probability) of substituting

ions into known structures to produce compounds not yet in the ICSD; that is, with it, they

can propose not yet formed prototype polymorphs.

Today, the biggest databases of structural and other material information are those re-

cently created by HT-DFT calculations. Three such databases are the Materials Project29,

AFLOW10, and the Open Quantum Materials Database (OQMD)30, plus the NOMAD

Repositiory which contains information from the previous three and more31. The AFLOW

database has nearly 2 million DFT calculations based on 60,000 ICSD entries and nearly

2 million prototypes. The OQMD has information generated by over 470,000 DFT calcu-

lations based on 40,000 compounds in the ICSD (compounds already formed) plus 430,000
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FIG. 3. A simple illustration of a T = 0 and P = 0 convex hull. The energy is plotted vertically

and compositions of various compounds formed from the A and B atoms are plotted horizontally.

The solid lines connect points on the hull. Phases α and β lie on the hull and hence are in some

stable crystal structure. Phase χ, at composition A2B, lies above the α phase and hence is a

metastable A2B of a different structure (a polymorph). δ denotes a case where the composition

decomposes into the stable α and β phases. After29, supplementary material.

prototypes (compounds not yet formed) generated by decorating the known crystal struc-

tures in the ICSD with the combinatorial replacement with all ions in the periodic table,

observing such constraints as charge neutrality. For each compound, the database has the

compound’s space group, formation energy, number of atoms per unit cell, lattice vectors,

density of states, visualization of the crystal structure, etc. For a given chemical composi-

tion, it calculates its zero temperature and zero pressure phase diagram based on a convex

hull (CH) analysis using all the compounds in the database (Fig. 3). To determine in which

ground state a chemical composition is stable, the analysis finds the set of phases which

have a ground state energy lower than all other structures or a linear combination of struc-

tures. These ground states are linked to form a convex hull. The stability of a chemical

composition in a given structure is measured by the energy difference between it and the

CH. A stable compound sits on the hull and hence has an energy difference of zero. A

metastable compound sits above the hull. The analysis allows for a composition to decom-

pose (phase separate) into two or more ground state compositions in appropriate crystal

structures. The energy of a decomposing compound also sits above the hull. Solid solutions
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are not considered.

While the databases help identify prototypes, the challenge is understanding which of

them are likely to be formed at non-zero temperatures and pressures. Part of the problem is

many compounds recorded in the ICSD are in non-zero temperature and pressure structures

that are thermodynamically metastable. These structures can differ from the structures

which are stable in the ground state, or they might not have stable ground states and, for

instance, decompose. In fact, the same ground state uncertainties could occur if the material

is thermodynamically stable. Simply put, many compounds in the ICSD sit above the DFT

computed convex hull. Using the Materials Project database, Sun et al.32 studied this

distance as a function of chemistry and composition. For predicting formable compounds,

they proposed including those within a certain distance above the hull, which we call the

degree of metastability, in addition to prototypes on the CH.

Different HT-DFT databases can give different predictions depending on how the DFT

is done and the CH is constructed. The latter depends on the type and number of crystal

structures in which the chemical composition is found or is assumed found and the num-

ber and types of structures into which it is assumed to decompose. With respect to the

former, Legrain et al.33 recently illustrated these differences in ab initio approaches in a

paper on materials screening for the discovery on new half-heuslers. They found that the

ab initio approaches showed significant inconsistencies among themselves about whether a

given chemical composition would be found in a half-heusler structure or not. The chemical

compositions they considered were taken from the ICSD and a set of prototypes generated

by a combinatorial decoration of the three allowed crystal structures. They found the ab

initio predictions were also significantly inconsistent with the experimentally observed struc-

tures, but machine learning models trained on the experimental data had cross-validated

predictions of accuracy of 91% in predicting the known half-heuslers and 99% in predicting

those that were not.

The work of Balachandran et al.34 on predicting new perovskites with OQMD found

a similar degree of inconsistencies with known data and a similar degree of success with

the cross-validated predictions of machine learning models. They emphasized that part of

the reason for inconsistencies is that the CH analysis and machine learning are predicting

two different substantive quantities. The CH analysis is predicting the zero temperature

mechanical stability of the crystal structure; the machine learning models are predicting
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formability as they are trained on data of materials formed and measured. If a degree of

metastability is added to the CH analysis, as suggested by Sun et al., the OQMD stability

predictions show more agreement with compounds known to have been formed. Still this

agreement is only 67%. It was proposed that if machine learning predicts a compound is

formable and OQMD predicts it is stable, then this compound is more likely to be formable

experimentally as a perovskite than the other machine learning predicted prototypes. In this

way, a total of 87 new perovskites, including 6 in the cubic phase, were proposed for synthesis.

By and large, these proposed perovskites have a lanthanide or actinide occupying the A and

B sites of the perovskite structure or A being an alkali, alkali rare earth or transitional

metal, and B being a p-block element. This proposal awaits experimental verification.

What were the machine learning analyses of Legrain et al. and Balachandran et al.?

Both combed the ICSD and recent literature for known formable compounds with the ABC

chemical composition of half-heuslers or ABO3 composition for oxide perovskites. Each

material class is defined by a limited set of space groups. For half-heuslers, it is 216;

for perovskites, fifteen35. If the compound belongs to the right space group or groups,

it was given the label “half-heusler” or “perovskite.” If it was anything else, for example,

a stable compound in another space group or compound decomposing into a number of

compositions in other structures, it was given a label “not-half-heusler” or “not-perovskite,”

thereby reducing the prediction problem to what in machine learning is called a binary

classification problem. From existing experimental information, Legrain et el. identified 164

half-heuslers, 11,022 not-half-heuslers, and 71,178 prototypes; Balachandran et al. identified

254 perovskites, 136 not-perovskites, and 625 prototypes. The tasks are now to specify a

set of features, choose a machine learning classifier, and cross-validate the data. The result

is a model into which features of prototype compounds are inputed and outputted are the

predictions of being a half-heusler or a perovskite or something else which is known only to

be not a half-heusler or a perovskite.

For the binary classifiers, Legrain et al. used random forests36, and Balachandran et

al. used random forests and gradient tree boosting37. These machine learning methods are

examples of ensemble methods, meaning that their results are combinations of the results

of more than one model. A random forest method is a linear combination of the application

of the decision tree method ( a strong classifier) to many random samples of the data and

sub-sets of its features. A decision tree method21–23 classifies the data by scanning the
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feature sub-sets and splitting the data into two pieces based on the values of the one feature

that maximizes a function that defines a decision boundary. Often, this function is the

information theory entropy so that the split pieces represent an information gain relative

to the unspilt piece. Each piece is then split into two and so on. Usually, the splitting is

stopped before each piece is one data item. The depth of the tree determines the tightness of

the fit. Generally, a random forest method is well suited to control variance. A gradient tree

boosting method uses an ensemble of weak classifiers built iteratively. Weights are assigned

to the data. If at a given step a datum is misclassified, its weight is increased before moving

to the next step. The current classifier is modified by adding to it the gradient of a function

that refines the classification boundary. The weak classifier in the gradient tree boosting

method used by Balachandran et al.38 was, roughly speaking, a random forest of shallow tree

depth (weak classifiers). Generally, accuracy is the advantage of the gradient tree boosting

method.

Both groups started with a relatively long list of features. One characteristic of a decision

tree method is its ability to return an estimate of the relative importance of a given feature

to the fit. Roughly, this is a measure of the frequency with which a feature triggered a split.

Eventually, Legrain et al. used a recursive method to reduce their list of relative importances

to six features that included such quantities as ratios of the C and B ionic radii and C and

A electronegativities, plus several statistical covariances computed between various pairs

of radii and eletronegativities. Balachandran et al. borrowed from prior experience39 and

selected four sets of two feature pairs: the tolerance and octahedral factors, Shannon’s ionic

radii for the A and B atoms40, the bond valence theory distances between the A and O ions

and the B and O atoms41, and Villars’s simple choice of Mendeleev numbers42. The first

feature pair has a long standing use in structure maps for classifying perovskite materials.

The other three have been receiving more recent use. They found that the accuracies and

variances of predictions of the first two classifiers agreed on the average, and using Mendeleev

numbers or bond valence distances produced a slightly less accurate model than using the

other two feature pairs. Besides classifying perovskite or not, they also classified a perovskite

whether it is cubic or not. Beyond their utility as repositories of information, these examples

illustrate how databases of DFT calculations, in conjunction with experimental databases,

can be employed to discover possible new materials.
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V. SMALL DATABASE EXAMPLES

In contrast to the combinatorial approaches in high throughput calculations that generate

large data sets on ideal systems at T = 0 and P = 0, real materials problems typically involve

multi-components, solid solutions and defects at T 6= 0 and P 6= 0. While for crystals, DFT

often returns reliable structural information and useful estimates of such physical quantities

as dielectric and elastic constants, in general DFT cannot return information on important

functionalities such as whether the material is a superconductor, anti-ferromagnetic, etc.

Most functionalities are established and quantified by experiment. As experiments can be

quite time consuming and expensive, often data on only relatively few well-characterized

samples (between 10 and 100) are available. Hence, it is important to consider approaches

that we can tailor and apply to small data sets. The important question becomes how can we

learn from the existing limited data and guide the next experiments in a way that minimizes

the number of new materials and measurements needed to find a material with an enhanced

targeted property43. Industry, as well as application areas such as drug design and cancer

genomics, are very much at the forefront in developing iterative feedback methods, that is,

adaptive learning methods, to reduce the number of experiments or calculations needed44,45.

Such methods fall within the scope of what is known as Bayesian Global Optimization

(BGO)46,47. Here, we will describe how these methods are now starting to be used in

materials science.

The essential idea is that we first use machine learning methods to construct a “surrogate”

representing the data. The problem can be one of binary classification, in which case we can

use the methods described above, or optimizing a property, such as a Curie temperature,

in which case to construct the surrogate we need a regression method, such as support

vector regression (SVR)21–23, to fit the features parameterizing the data to the property.

If all we were doing is machine learning, we would then use the learned model to make a

prediction. However, this prediction is not necessarily optimal as it merely “exploits” the

model’s prediction. If we think of a cost function landscape for the property in the space

of features and if the cost function is not convex, such a “best value” prediction would

likely correspond to a local minimum48. To minimize the number of experiments, we need

a means to “explore” this landscape by choosing a better next experiment than merely

using the best prediction from the model49. In some sense, the surrogate alone allows us
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FIG. 4. An active learning loop for finding optimal targets includes a surrogate model learned

from data and an experimental design component with a utility function that encodes the basis

for selection of the next experiment or calculation. Possible compounds are ranked based on

maximizing the expected utility and the idea is for the iterative loop to successively improve the

search.

to interpolate between data points, but what we are looking for is a means to explore

(extrapolate) beyond the points where we are most certain.

A Bayesian approach for the surrogate model, sampled from a prior distribution that

incorporates smoothness and locality, has been found to be a powerful means to find the

extrema of functions. Moreover, assuming the sampling to be a Gaussian process50 has been

demonstrated to be efficient in guiding the next experiment. The predicted mean and vari-

ance of this process subsequently serve as the input to a utility function, which prioritizes the

basis of the decision to be made of what to do next in terms of doing a particular experiment

or calculation51. Thus, the next experiment is chosen based on maximizing the expected

utility function from the list of the many allowed possibilities. This aspect of choosing the

optimal next experiment, or experimental design as its known in statistics52,53, based on

the prediction of the surrogate model is part of the active learning loop (Fig. 4), which is

repeated until the desired outcome, for example, a material with an optimal property, is

met.

Since a Gaussian process is frequently encountered in physics and statistics, and we

will reuse it in later Sections, we briefly describe it here. It is a collection of random

variables such that any finite collection of them has a multi-variate Gaussian distribution.

In terms of machine learning algorithms, they belong to the class called Bayesian methods.
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These methods do not target a best fit but instead compute something called a posterior

(probability) distribution over models. The latter provides a quantification of the uncertainty

in the predictions of the model. The significance of assuming Gaussian distributions for

regression problems is that we can exactly perform many of the required algebraic operations

and integrations by executing simple linear algebra operations on vectors and matrices. Here,

we will just summarize a few results of lengthy analyses50.

We assume our data, D = {(~xi, yi)|i = 1, N}, is drawn from some underlying probability

distribution f(~x) where ~x is a vector whose components represent the known values of the

features chosen for the problem. A Gaussian noise model N (0, σn) represents the error ηi

associated with the measurements or predictions of yi, our targeted physical observable,

yi = f(~xi) + ηi. (3)

Given the data, what we want is an estimate of the mean value y∗ of y for a proposed set of

features ~x∗. In terms of probability theory, we seek the conditional probability P (y∗|~x∗,D).

For a Gaussian process, we can show that

P (y∗|~x∗,D) = N (µ,Σ) (4)

where the mean µ and covariance matrix Σ of this Gaussian distribution are

µ = Kxx∗K
−1
xx y

Σ = Kx∗x∗ −KT
xxKxx∗

The K’s in turn are block matrices computed from a covariance matrix function

K =

 Kxx Kxx∗

KT
xx∗ Kx∗x∗

 (5)

with the matrix Kxx expressing the covariances among the observed values of the features,

the matrix Kxx∗ between the observations and the proposed feature, and the matrix, Kx∗x∗

between the proposed features. In essence, ~y

y∗

 ∼ N (~0, K). (6)

The covariance matrix K, usually called the kernel, is some assumed function that usually

depends on the displacement ~d = ~x − ~x′ in the space of features. For example, a simple,
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natural, but not always the most common choice is

K(~d) = σ2 exp

−|~d|2
2`2

 + σnδ(~x− ~x′). (7)

After the parameters of the kernel, in the above case σ, σn and `, are adjusted to the data

by a procedure called the maximum likelihood method, we can insert the kernel and the

proposed ~x∗ into (4), find µ, our estimate for the new y∗, and use Σ as the estimate of its

uncertainty.

Thus, using a Gaussian process for the surrogate model, maximizing a utility function,

and feeding back the new information to augment the data set, retrains the GPs and forms an

active learning loop that is the basis of BGO. We can choose the utility function from a range

of functions, including minimal or maximal variances in the predictions for allowed possibil-

ities, upper or lower confidence bounds indicating a linear combination of exploitation and

exploration but with the linear coefficient varying with the number of measurements54, rel-

ative entropy (Kullbach-Leibler divergence), modified objective cost of uncertainty55–57, the

well known criteria of improvement from the current best in the training data, such as prob-

ability of improvement P [I]58 or expected improvement E[I]43,59, and extension of expected

improvement to nonzero measurement noise known as sequential kriging optimization60 or

knowledge gradient61, which aims to find the sample that most improves the model rather

than maximize expected improvement. The relative performance of several of these func-

tions have been recently compared for the case when the surrogate model is well matched to

the data62. If µ∗ is the best value of the material property y obtained at some point, then

the expected improvement E[I] possible by testing the material with proposed features ~x′

is given by

E[I] = E[max[(y − µ∗), 0]] =
∫ µ∗

−∞
(y − µ∗)p(y|~x′)dy, (8)

where I = max[(y − µ∗), 0] is the improvement and the possible values of y are Gaussian

distributed according to p(y|~x′). Simple manipulations lead to the result

E[I] = σ[φ(z) + zΦ(z)], (9)

where z = (µ − µ∗)/σ and φ(z) and Φ(z) are the standard normal density and cumulative

distribution functions. In spite of its simplicity, the expected improvement is found to be

an excellent performer for extrema problems; however, maximum variance performs well for

other types of problems.

18



These methods have been utilized in computational codes to rapidly and efficiently learn

features to attain targeted properties. An example is the design of light emitting diodes

(LEDs) using APSYS, an industry standard code in the field of semiconductor physics. One

finds that an efficiency of 75% is obtained within 10% of the total iterations that could be

performed63. Thus, these methods show enormous promise in minimizing computational

costs incurred in running simulations designed to find optimal solutions.

In materials science, these ideas recently accelerated the discovery of a number of new

alloys and ceramics with a feedback loop that involves experiments instead of calculations.

An example is the search for NiTi-based shape memory alloys with very small thermal

hysteresis. Thermal hysteresis governs fatigue, and the idea is to find chemistries and com-

positions which will minimize thermal hysteresis. The approach of Xue et al.64 assumes a

family of alloys defined by Ni50−x−y−zTi50CuxFeyPdz, where x, y and z are compositions

constrained by 50 − x − y − z ≤ 30, x ≤ 20, y ≤ 5 and z ≤ 20 to avoid undesirable solid-

solutions. The number of components here is less than five, but in principle we can include

more components at the expense of having a larger search space of allowed possibilities.

For this example, 22 well-characterized samples from the same laboratory comprised the

training data out of a possible space of 800, 000 allowed compositions. The best compound

that had a thermal hysteresis as small as 1.84K was found on the sixth iteration. Of the

36 compounds synthesized and characterized, 14 had better performance than those in the

initial training data. One can ask if these findings are the result of random occurrence. In

statistics, a P -value (due to the eminent statistician R. A. Fisher) is often used as a measure

of statistical significance. For the alloy problem, it can be shown that P < 0.001, implying

that the probability that the results are based purely on random chance is very small. The

study compared the performance of several surrogate models and utility functions and found

the combination of a support vector regressor (SVR) for the surrogate model and the E[I]

for the utility function had the best performance on the training data. In contrast, Yuan

et al. experimentally compared the performance of four utility functions in their search for

BaTiO3-based piezoelectrics with large electrostrains. Their objective was to find a solid

solution constrained to the family of compounds given by Ba1−x−yCaxSryTi1−u−vZruSnvO3

with a large strain at an electric field of 20 kV/cm. Here x, y, u and v are the mole frac-

tions of specific dopants that obey 1 − x − y > 0.6, x < 0.4, y < 0.3, 1 − u − v > 0.6,

u < 0.3 and v < 0.3. There are potentially about 605, 000 possible compositions (controlled
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within 0.01%). Yuan et al.’s training data was 61 compounds that they synthesized under

controlled conditions in their laboratory65. Clearly, this problem’s large search space cannot

be explored experimentally by just trial and error. The BGO design strategy with E[I]

found the optimal compound with a Sn composition of 3% in the third iteration. On either

side of this Sn composition, the strain decreases. These examples illustrate the efficacy of

discovering new compounds with targeted properties in an active learning strategy involving

experiments. Other types of examples include work on guiding DFT calculations towards

targeted regions66,67, use of probability of improvement to identify grain boundaries68, op-

timization of graphene nano-ribbons to identify configurations with high thermoelectrical

properties69, maximizing the intermolecular binding energy for lead ion solvation in hybrid

inorganic-organic perovskites70, use of knowledge gradient function to study the stability of

an emulsion as well as to maximize the output current in an optoelectronic device71, max-

imizing the expected utility of the KL divergence to select parameters of a Cahn-Hilliard

model for thin films on a substrate72 and minimizing the difference between predicted prop-

erties and experiments of a polymer nanocomposite73 using GP and expected improvement.

The influence of different means of estimating model uncertainty for a number of materials

data sets has also been examined74. The increasing use of high throughput synthesis and

characterization methods in materials science will make BGO type approaches even more

relevant as decisions are made on-the-fly.

It is important to recognize that the BGO strategy is heuristic, and an important un-

mentioned consideration is the stopping criterion. In the previous examples, the iterative

loop was performed until a material was discovered with acceptable performance superior to

any in the training data. However, there is no assurance that in subsequent iterations the

performance will not degrade. In addition, a number of examples suggest that even when

the surrogate is not particularly good (poorly fits the data), the resultant BGO scheme per-

forms quite well in finding good solutions. Thus, these observations raise questions about

how good the surrogate model needs to be. Answering these questions represent active areas

of research.
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FIG. 5. A Pareto front for two objectives or properties, y1 and y2. A solution is a material with

a given combination of y1, y2, which is viable and meets the constraints but is not necessarily

optimum in either criterion. A dominated solution (black dot) is one where there exists some other

solution better in both or either of y1 and y2, and a non-dominated solution (red dot) is one where

no other solution is better in y1 and y2. The trade-off line or surface of non-dominated solutions

is the Pareto front. The arrow is the direction in which the PF needs to move in order to find

materials with large y1 and small y2.

VI. MULTIOBJECTIVE OPTIMIZATION

It is often the case in materials science that more than one property is of interest so that

we may wish, for example, to maximize one property but minimize the other with the aim

of finding the material with the best trade-off in properties. We often display the data for

two properties in a Pareto plot (Fig. 5) in which the axes correspond to the properties, and

we then identify a special boundary in the plot on which lie materials where none of the

properties can be improved without deteriorating the value of the other property. These

materials define a Pareto front (PF) that represents the best trade-off, and well known

examples of such fronts include the Ashby plots.

The method of Section V generalizes to more than one property so that we may select data

or samples such that the candidate material after measurement improves the existing PF (in

the green-shaded area of Fig. 5. With two properties, we need to train a surrogate model for

both properties independently with their requisite features. Within the BGO method, we can
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use a Gaussian Process or another predictor, such as SVR, or an ensemble-based model, such

as Gradient Tree Boosting, for the surrogate model. The GP naturally gives a distribution

with its mean and variance. For the latter predictors, we generate an ensemble of model

predictions from which we can then estimate the mean of the objectives and their variances

using the statistical method of bootstrapping21–23 by sampling a large number (typically

1000-5000) models with subsets of the training data selected randomly with replacement.

An important question in building a machine-learned model is ensuring that we do not

underfit or overfit the data. The use of n-fold cross validation, hyper-parameter tuning,

as well as ensemble methods, such as bagging and boosting22,23, help minimize the risks of

underfitting and overfitting. Bagging uses complex models (e.g., random forest) to smooth

predictions, whereas boosting uses simpler models (e.g., gradient tree boosting) to boost

their aggregate complexity.

The utility function that encodes the decision making process is now a two-dimensional

generalization of the one dimension case75. So in the case of improvement, we write the

probability P [I] that a new sample of a so far unsynthesized compound is an improve-

ment over existing data as the total probability of a candidate data-point with P [I] =∫
green φ(y1, y2)dy1dy2, where the integration is over the green-shaded region in Fig. 5 and

y1 and y2 are the properties, and φ(y1, y2) is the uncorrelated Gaussian probability dis-

tribution function formed from the mean and variance of y1 and y2 distributions, that is,

φ(y1, y2) = φ(y1)φ(y2). We have therefore assumed a Gaussian distribution for the predicted

values with a mean and variance. Similarly, the expected improvement E[I] is the first

moment of I, the improvement from the best so far, of the joint probability distribution

φ(y1, y2) over the green area in Fig. 5. It has been shown75,76 how to geometrically calculate

E[I] = P [I(x)]∗L (akin to a moment) in a couple of ways depending on whether the “length”

L is evaluated using the Centroid or Maximin approaches, and their relative performance

has also been compared77. For the Centroid, L is the distance between the centroid at a

candidate data point, x, and closest point on the Pareto front. Thus, for possible candidate

points in the region of improvement, E[I] is calculated by taking the product of P [I] with

the minimum distance between points on the known PF and centroid of the probability

distribution within the region of improvement. The candidate point with the largest E[I]

is then the choice for the next measurement. Similarly, for the Maximin, L is maximum of

the minimum distance of either of the means (µ1, µ2) of a particular candidate point from
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individual PF points. The former considers improvement over both the properties com-

bined, whereas E[I] for Maximin considers each property separately, takes the one which

is smaller from a particular PF point, and then maximizes that amongst all the PF points.

Both strategies select a data-point such that its measurement gives the maximum change

to the PF. As for the one property case, the process of updating the model predictions

and testing new materials tries to ensure that the model is reasonably accurate throughout

the whole space (“exploration”) and that it also converges to the global minimum rapidly

(“exploitation”). Thus, there is competition amongst these goals to accurately learn the

model.

It is instructive to add another property to the NiTi-based shape memory alloy exam-

ple considered previously64,78. In addition to searching for a composition to minimize the

thermal hysteresis, we also add minimizing the transition temperature. Starting with over

100 well-characterized alloys, each being described in terms of one or more features repre-

senting aspects of structure, chemistry, and bonding. The features are selected based on

prior materials knowledge. For example, it is known the martensitic transition temper-

atures (which affect thermal hysteresis) are strongly correlated with the valence electron

concentration (fraction of valence electrons) and electron number per atom. In addition,

the thermal hysteresis is affected by the atomic size of the alloying chemistries and so the

features include a number of different types of radii, electronegativities, and valence electron

numbers. Figure 6a shows the optimal Pareto Front with seven data points in this data set

of 100 points, and Fig. 6b compares the different strategies and shows that employing multi-

objective optimization design strategies decreases the number of measurements required to

find the optimal PF by nearly 20% compared to random selection. The Centroid-based de-

sign strategy and pure exploration perform similarly; however, the Maximin approach shows

superior performance compared to all other strategies, particularly if the prior datasets are

smaller. These results are quite general and other data sets, including those from DFT

codes, such as for band gaps and dielectric constants, behave similarly79,80. Recently a re-

lated approach, the hypervolume indicator, formulated the expected improvement in the

context of multiobjective optimization81–83. The hypervolume is a measure of the size of the

space enclosed by all solutions on the Pareto front and a user-defined reference point. The

expected improvement in hypervolume is the gain for a given input point and measures the

closeness of an approximation or candidate point to the Pareto front. Although not as well
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FIG. 6. Upper: The seven points (green) in the optimal PF of a shape memory alloy data set

with over 100 points. These were obtained using a design process starting from a set of subset of

data-points which are considered as known with the goal to find all the optimal PF points in as

few design cycles as possible. Each red colored point is dominated by at least one point in the PF.

Lower: A comparison of several selection strategies. For the same data set, the size of the prior

training dataset is plotted against the average number of cycles required to find all the points in

optimal PF. The design strategies using expected improvement, E[I], for multiobjectives in which

the exploration and exploitation of data are more balanced, perform well.

studied, the approach is quite competitive compared to the usual expected improvement

criterion on the objectives.

Although there has been considerable work devoted to finding Pareto fronts using tech-

niques as diverse as Monte Carlo sampling77 and swarm optimization, guiding experiments

and calculations towards choosing appropriate materials or features likely to enhance prop-

erties in as few iterations as possible, is the ultimate aim of accelerated discovery. We have
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therefore focused on this problem and the challenges indicated previously in Sec. V for a

single objective also apply here, including the assumption that the data on the random

surface follow a Gaussian distribution.

VII. MULTIFIDELITY OPTIMIZATION

A multi-fidelity optimization method, sometimes called co-kriging or sequential kriging,

combines many inexpensive lower accuracy calculations with fewer higher accuracy calcu-

lations to make predictions whose accuracies are comparable to those produced by higher

accuracy computations alone. The greater the difference in the costs of the computations,

the greater is the cost advantage of the method. These methods are also based on the

mathematics and assumptions of Gaussian processes50.

In multi-fidelity optimization, using just two accuracies for simplicity, our data becomes

D = {Dcheap,Dexpensive}. A requirement is that the set of features in the expensive data is a

subset of the features in the cheap data. Then, we assume the expensive data are produced

by Gaussian processes that are the differences between the cheap and expensive observations

for the shared set of features. With more than two levels of accuracy, we would simply define

more Gaussian processes to account for the new data and differences between the accuracies

of shared feature subsets at the different accuracy levels. Analysis eventually leads to a

conditional probability analogous to (4) but where the kernel K (5) is a 3× 3 block matrix

instead of a 2× 2 block matrix with the blocks indexed by cheap, expensive and proposed.

Without simplifying assumptions, the covariance matrices become large and expensive to

manipulate. The main assumption is that for any feature ~x′ 6= ~x, the Gaussian processes for

the cheap calculations do not add any information to the Gaussian process of the expensive

calculation for ~x. This assumption zeros some off-diagonal blocks of the co-variance matrix.

A recent breakthrough was made by Le Gratiet and Garnier84,85 who proved that with

this assumption they could decouple any Gaussian process scheme with s-levels of fidelity

and solve the multi-fidelity optimization problem as a sequence of Gaussian processes that

successively involve smaller co-variance matrices.

The title of the likely seminal paper in the field, “Predicting the output from a complex

computer code when fast approximations are available,” by Kennedy and O’Hagan86 gives

a huge hint on the obvious uses of these methods in materials science. For DFT calcula-
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FIG. 7. Jacob’s ladder of density functional approximations to the exchange-correlation energy

that specifies a prototypical opportunity for multi-fidelity optimization of density functional theory

calculations.

tions, for example, a cost-accuracy hierarchy of functional approximations for the exchange-

correlation energy is well established (Fig. 7). In fact, Pilania et al.87 used this hierarchy to

test two-level multi-fidelity predictions of the band gaps of double-perovskite materials (the

elpasolites). Accurate band gap calculations are often a big problem for DFT calculations

with the best methods being very expensive. For a set of 600 compounds and semi-local

(cheap) and hybrid exchange-correlation (expensive) functionals as the two fidelity levels for

DFT calculations, they computed all the higher and lower accuracy band gaps. They then

studied how well the multi-fidelity optimization method predicted the higher accuracy band

gaps as a function of the number of low and high fidelity data points used in cross-validation.

Not surprisingly, if the number of low fidelity data is fixed, the accuracy improves as the

number of high fidelity data is increased. More interestingly, if the number of high fidelity

data is fixed, the accuracy improves as the number of low fidelity data are increased.

The above study points to the promise of using these machine learning methods for ma-

terials science, where we have many complex computer codes and measurements and even

more fast approximations. We can envision, for example, using these methods to upgrade

HT-DFT databases, which as discussed above can have accuracy problems for certain classes

of materials. We can also use them with experimental data or with a combination of exper-

imental and theoretical data. For example, solid state cooling uses the ordering-disordering
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in ferroic materials undergoing phase transitions. The temperature change induced by the

presence or absence of an external field can be directly measured in situ but is time consum-

ing and hence will yield few data points. On the other hand, this change is less accurately

but more easily inferred by approximating the differentials in Maxwell relations and using

simpler experiments than measuring the changes in the order parameter versus the field.

The multi-fidelity methods easily extend to multi-objective predictions: What we called y

in the above equations we simply replace by ~y and adjust the dimensions of various matrices

accordingly.

VIII. OTHER OPPORTUNITIES

Advances in combinatorial synthesis and characterization are allowing us to explore larger

parameter spaces for rapid screening of possible new materials. For example, thin film

synthesis by sputtering can create composition gradients in three or more elements to hone

in on promising compositions for targeted properties, such as lattice parameters and local

co-ordination88. This analysis can then be followed by in-depth bulk synthesis on just

a few select compounds. This approach is a down-selection strategy rather than an active

learning one. In future, advances in measurement techniques will allow more high throughput

experiments89 to be conducted, and then the ability to make on-the-fly decisions as to what

next to synthesize and test by using, for example, the methods we discussed, becomes crucial

to save cost and time. Feature sets that include processing conditions, such as laser power,

travel speeds, and cooling rates, will become important in predicting and controlling the

resultant material microstructure in manufacturing, for example, by using laser processing.

National user facilities, such as the Advanced Photon Source at Argonne and the Linac

Coherent Light Source at the Stanford Linear Accelerator Center, are the sources of big

data in materials science that generate up to 100TBs of data per sample. Reconstructing

the real-space macrostructural image from the data is a challenging task. For example,

in High Energy Diffraction Microscopy, a forward model needs to be run at every finite

element to find the orientation of the “grain” that matches the Bragg spots on the detector

pattern90. This task requires substantial computational resources, let alone causing a time

delay in performing the next experiment. However, machine learning and optimization

methods, and in particular convolution neural nets (CNNs)91, provide a vehicle to construct
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models, depending on the numbers of neurons and hidden layers, that directly fit to the

large amounts of data to hundreds and thousands of parameters. CNNs are also being

increasingly utilized in scientific problems, including in the analysis of the output from large

scale computer simulations that generate vast amounts of data. In this activity, speed-up

relies on constructing reliable surrogate models whose predictions replace the need to carry

out complex calculations associated with the original problem. There is much current debate

on the merits of deep learning models, especially because they often appear as “black-boxes.”

Recent work by Lin et al.92 employs information theory and the renormalization group to

discuss the reasons why deep learning works so well and how “cheap learning” may be crafted

with far fewer parameters for functions of practical interest.

IX. SOME CLOSING THOUGHTS

Up to here, we have given admittedly selective glimpses of how machine learning has,

can, and is being used to assist the design and discovery of new materials. In closing, we

return to the question, “Where is the material science?” In the Machine Learning section, we

answered by saying it currently was mainly in the choice of features used to parameterized

the data. We now note several other ways it can enter. Materials science, as many other

sciences, is based on fundamental principles. We thus know a lot about the data and physical

behavior or possible data or behavior before we look at them. How might we take better

advantage of this domain knowledge?

In several places, we stated that a particular technique is Bayesian. By this we mean

the method was developed and is stated in terms of products and integrals over products of

probabilities. For two sets of events A and B, a fundamental result of probability theory is

Bayes’s Theorem,

P (A|B) =
P (B|A)P (A)

P (B)
, (10)

where P (A|B) and P (B|A) are their conditional probabilities and P (A) and P (B) are their

individual probabilities. For data analysis93, we usually write this theorem as

P (Model|Data) =
P (Data|Model)P (Model)

P (Data)
. (11)

P (Model|Data) is called the posterior distribution. It represents the probability of the

model after taking the data into account. Knowing it constitutes knowing the complete
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probabilistic solution to the problem. P (Data|Model) is the likelihood function. It is the

probability of the data given the model. P (Model) is called the prior. It represents what we

know about the model before the data is taken into account. Lastly, P (Data) is called the

evidence. It is the normalization of the posterior, that is, P (Data) =
∫
Model P (Model|Data).

Generally unstated is that much of machine learning is equivalent to maximizing the log

posterior

log[P (Model|Data)] ∝ log[P (Data|Model)] + log[P (Model)] (12)

with respect to the parameters of the model with the evidence ignored. For the log prior,

assumed functions satisfy general constraints about smoothness, non-negativity, etc. From

this point of view, we see that instead of seeking the complete solution, machine learning

instead generally settles for estimates of just two moments of that solution, the mean (the

location of the maximum of the posterior) and variance about the mean (the width of the

posterior distribution about its maximum). The log likelihood is the cost, loss, or utility

function for the problem. Standard least-squares fitting of a model to data is equivalent to

simply maximizing

log[P (Model|Data)] ∝ log[P (Data|Model)] (13)

Adding the log of the prior allows the machine learning methods to “regularize” the fitting

of the model to the data, making the analysis more robust. Noting the connection of a

machine learning method to Bayes’s Theorem is not done as generally little insight is gained

by doing so. However, with more specific physics-based assumptions for the prior, such as

required bounds on model parameters, correlations to be favored by the model, etc., the

machine learning would achieve a more specific material science character.

While the Bayesian approach is a natural and standard avenue to ingrain prior domain

knowledge, we now speculate about a possible approach that focuses on what we can say a

priori about the data instead of what we can say about the model. This approach mainly

applies to clustering, classification and regression problems.

All the machine learning we discussed starts with a data matrix that typically has materi-

als as its rows and features as its columns. Instead of expressing the data in this manner, we

could instead express it for use in a multi-relational learning method94–97 whereby the data

is mapped to, or better yet simply assembled as, multiple matrices of the same dimensions

where each matrix groups data among a set of one or two entities according to different
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FIG. 8. Schematic mapping of the data matrix to a m-multi-relational representation. The entities

labelling the rows and columns may differ. The relation changes from table to table.

relations based on our prior domain knowledge. This mapping is depicted in Fig. 8. The

data matrix Dmn maps to a tensor χijk. The tasks are to choose the entities and state the

relations.

To be a bit less abstract, as an example of multi-relational learning, suppose we have lists

the names of our past presidents and vice-presidents (the entities) and partial knowledge

of the their political party, who they were president of, and who they were vice-president

for (three relations). Mindful that in our history, we have had more political parties than

Democrat or Republican and the vice-presidents were not always of the same party as the

president, the task is to build a model that predicts the parties of each president and vice-

president.

Retuning to materials science, one or both entities defining the dimensions of matrices χk

for relation k in Fig. 8 most naturally would be a material, but the two entities could also

be a pair of features, two quantities which are not features, etc. Presently, our data tables

lump different types of features together. Instead, we could group in separate tables those

naturally associated, say those describing crystal structure, alloy concentration, functional-

ity, etc. The relations might be functional, Fk(value of i-th entity) = value of j-th entity,

or logical, (i-th entity, k-th predicate, j-th entity) with χijk = 1 if a relation exists or 0

if it is does not. As implied by our “presidential” example, multi-relational learning does

not require values for all entity pairs in the tables, something that allows us to use more

available data. We are now learning not only about relations within a table and but also

about those among the tables. This yields models that “fill-in” the missing entries.
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