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Diffraction data play an important role in the structural characterizations of solids. While reverse Monte

Carlo (RMC) and similar methods provide an elegant approach to (re)construct a three-dimensional model of

non-crystalline solids, a satisfactory solution to the RMC problem is still not available. Following our earlier

efforts, we present here an accurate structural solution of the inverse problem by developing a new information-

driven inverse approach (INDIA). The efficacy of the approach is illustrated by choosing amorphous silicon as

an example, which is particularly difficult to model using total-energy-based relaxation methods. We demon-

strate that, by introducing a subspace optimization technique that sequentially optimizes two objective functions

(involving experimental diffraction data, a total-energy functional, and a few geometric constraints), it is pos-

sible to produce models of amorphous silicon with very little or no coordination defects and a pristine gap

around the Fermi level in the electronic spectrum. The structural, electronic, and vibrational properties of the

resulting INDIA models are shown to be fully compliant with experimental data from X-ray diffraction, Raman

spectroscopy, differential scanning calorimetry, and inelastic neutron scattering measurements. A direct com-

parison of the models with those obtained from the Wooten-Winer-Weaire (WWW) approach and from recent

high-quality molecular-dynamics simulations is also presented.

I. INTRODUCTION

The reconstruction of three-dimensional models of com-
plex non-crystalline solids from experimental data consti-
tutes an archetypal example of inverse problems in materi-
als modeling. Inverse approaches provide a distinct route to
design complex disordered materials by directly incorporat-
ing a set of experimental observables in simulation method-
ologies. The resulting atomistic models thus exhibit a high
degree of compliance with a set of experimental data, and
the method, by construction, eliminates the need for accu-
rate total-energy functionals, which are necessary for conven-
tional simulations. A classic example is the Reverse Monte
Carlo (RMC) method,1–5 which attempts to construct a three-
dimensional model of disordered solids by inverting experi-
mental diffraction data in conjunction with a few structural
constraints. However, the difficulty associated with inverting
one-dimensional pair-correlation diffraction data in the pres-
ence of competing structural constraints, which leads to a dif-
ficult non-convex optimization problem, has been a major ob-
stacle in producing realistic structural solutions from RMC
simulations. Although the method has been employed for a
variety of disordered solids,3 the problem is particularly acute
for highly-coordinated systems, such as amorphous silicon (a-
Si) and tetrahedral amorphous carbon (ta-C). To our knowl-
edge, none of the RMC-derived models of a-Si reported in the
literature1–5 to date shows a pristine gap in the electronic den-
sity of states around the Fermi level and a low defect density
as observed in electron spin resonance (ESR) experiments.6

Inverse problems are often characterized by their ill-
conditioned nature and they are notoriously difficult to solve
satisfactorily.7 In the context of materials modeling, the diffi-
culty primarily arises from the volume of structural (and addi-
tional) information to be incorporated in the problem by con-
structing suitable penalty/constraint functions and the subse-
quent optimization of an objective function (involving exper-

imental data and constraint functions) in a high-dimensional
solution space. The presence of hierarchy among higher-order
correlation functions8,9 suggests that a minimal number of
constraints and experimental data sets need to be included in
the problem in order to produce structurally unique models.
However, the inclusion of too much information can make
very difficult the resulting non-convex optimization problem
and its accurate solution that satisfies the requirements of a
physical model.

An approximate solution of the constrained RMC problem
for a-Si was proposed by some of us more than a decade ago.1

While this approach produced correctly the two- and three-
body atomic correlation functions, as well as a reasonably
good electronic density of states (EDOS) with a hint of a spec-
tral gap in the vicinity of the Fermi level, the presence of a sig-
nificant number of coordination defects (e.g., three- and five-
fold coordinated atoms) limits the applicability of the method
and the resulting models for high-quality predictive studies of
amorphous silicon. Although a number of hybrid or related
methods,10–16 i.e., methods that involve a total-energy func-
tional in RMC simulations in addition to scattering data, have
been developed in the last decade to produce improved struc-
tural models of a-Si, none of the methods lead to atomistic
models that can match the high quality of the bond-switching
Wooten-Winer-Weaire (WWW) models.17–19 The purpose of
this paper is to present an information-driven inverse approach
(INDIA), combining experimental data and constraint infor-
mation with a total-energy functional to yield high-quality
atomistic models of amorphous silicon. We demonstrate that
the resulting structural models produce a clean gap in the elec-
tronic spectrum around the Fermi level with a few coordina-
tion defects. The atomistic models from the new approach
represent the very best of its class and they are comparable to
those obtained from the WWW method.

In recent years, information-based approaches have played
a crucial role in designing complex materials.10–13,16,20–22
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Molecular dynamics (MD) simulations, using knowledge-
based interactions obtained via machine-learning algorithms,
have been employed to produce high-quality MD models of a-
Si.23 Likewise, experimental data from nuclear magnetic res-
onance and infrared spectroscopy have been employed prof-
itably to understand the microstructure of hydrogen in a-Si:H
and the distribution of extended inhomogeneities (e.g., voids)
in a-Si.24–27 Electronic information too, from electronic densi-
ties of states, has been used in an effort to control and engineer
the band gap of a-Si using constrained molecular-dynamics
simulations.28 Thus, the incorporation of relevant structural,1

electronic,28 NMR,26 and IR29 information played a decisive
role in simulations, not only to develop better structural mod-
els but also to understand physical properties of the amor-
phous state that were not accessible from using conventional
atomistic simulations. This observation also applies to the
WWW method. An examination of the latter suggests that
the so-called WWW bond switches essentially introduce 5-
member and 7-member rings in crystalline or disordered sil-
icon networks while maintaining four-fold coordination for
each atom, coupled with the minimization of the Keating po-
tential energy to obtain local minima on the potential-energy
surface (PES). Thus, the application of bond switches in the
WWW method can be viewed as an inclusion of topological
information (i.e., 5- and 7-member rings) in simulations that
greatly facilitates the system to explore the relevant region of
the PES consistent with the induced ring topology and four-
fold coordination and to determine amorphous configurations
of silicon in the resulting procedure.

The remainder of the paper is as follows. In sec. II,
we present an information-driven inverse approach (INDIA)
that entails optimization of an augmented objective function,
incorporating experimental diffraction data, a few structural
constraints, and a total-energy functional. We show that the
difficulty associated with the optimization of the augmented
objective function can be considerably reduced by introducing
a subspace optimization technique, which sequentially opti-
mizes total-energy and experimental diffraction data (includ-
ing a few geometrical constraints) in a self-consistent manner
to determine optimal structural solutions, satisfying experi-
ments and a total-energy functional simultaneously. Section
III discusses the results from the simulations by examining
structural, electronic, and vibrational properties of the resul-
tant a-Si models. A comparison of the results with experimen-
tal data and those from the WWW and high-quality molecular-
dynamics models23,30 of identical size from the literature are
also presented here. The conclusions of this work is presented
in sec. IV.

II. COMPUTATIONAL METHOD

In conventional RMC simulations, one attempts to invert
a set of experimental diffraction data, Fex(k), by writing an
objective function,3–5

χ2(R) =
∑

i

[

Fex(ki)− Fc(ki;R)

σ(ki)

]2

+
∑

l

λl Cl(R), (1)

FIG. 1. A schematic illustration of the augmented space, P , con-

sisting of the objective-function spaces spanned by the experimen-

tal data (red), constraint information (blue), and a total-energy func-

tional (green). An optimal structural solution, R∗, corresponds to

the region of intersection of the three circles.

where Fc(k;R) correspond to simulated diffraction data ob-
tained from a three-dimensional distribution of atoms R,
σ(ki) is the error associated with Fex(ki), and Cl are a num-
ber of structural constraints, providing additional information
on the atomistic properties of the solid. The coefficients λl

are weights associated with Cl, which determine the relative
strength of the constraints in simulations. While Eq. (1) ap-
pears to present a well-posed inverse problem31,32 for struc-
tural determination of a solid, a direct determination of an ac-

curate optimal physical solution of the resulting non-convex
optimization problem has proven to be too difficult to ob-
tain, owing to the high dimensionality of the search space
and the presence of competing constraints in Eq. (1). The
information-driven strategy adopted here relies on the follow-
ing two observations: a) an optimal structural solution should
originate from the region of the solution space that simulta-
neously satisfies a set of experimental data and a total-energy
functional; b) the solution must represent a good local min-
imum on the potential-energy surface and that it ought to be
consistent with the structural constraints included in Eq. (1)
(see Fig. 1). Toward this end, we form an augmented objec-
tive function P(E,R), which is the direct product of a total-
energy functional E(R) and the function χ2 in Eq. (1),

P ≡ E(R)⊗ χ2(R)

≡ E(R)⊗

[

∑

i

(

Fex(ki)− Fc(ki;R)

σ(ki)

)2

+
∑

l

λlCl(R)

]

≡

[

E(R)⊗
∑

i

(

Fex(ki)− Fc(ki;R)

σ(ki)

)2
]

⊕

[

E(R)⊗
∑

l

λlCl(R)

]

≡ χ2
M ⊕ χ2

K . (2)

In Eq. (2), χM is the objective function in subspace M,
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FIG. 2. A flowchart showing information flow during simulations.

The subspace coupling between the M -loop and K-loop reduces the

computational complexity of the optimization problem and leads to

the generation of nearly defect-free configurations of amorphous sil-

icon.

spanned by the total-energy functional and experimental
diffraction data. A similar definition applies to χK in sub-
space K, where experimental diffraction data are replaced by
a set of structural constraints.33 The symbols ⊗ and ⊕ stand
for the operation of direct product and direct sum between the
subspaces that form the augmented objective function space
P . A schematic illustration of these regions and their relation-
ship to P is shown in Fig. 1. All optimal structural solutions
correspond to the region of intersection between the subspaces
via the mapping, f : R → P . We emphasize that, while sev-
eral optimal solutions might exist that can differ from each
other microscopically, it is necessary that they are macroscop-
ically similar in order to be considered as correct physical so-
lutions of the problem. In the following, we provide an ansatz
to obtain optimal structural solutions, R∗, that simultaneously
satisfy the objective functions χM and χK in subspaces M

and K, respectively. The procedure for determining an opti-
mal solution in R, by jointly optimizing χM and χK , consists
of the following steps:

1. Start with a random distribution of atoms and optimize the
objective function χM to fit experimental diffraction data and
a total-energy functional in M. This is achieved by conduct-
ing a reverse Monte Carlo simulation to fit the diffraction data
and minimizing the total potential energy via the Conjugate-
Gradient (CG) or an appropriate method in a self-consistent
manner. We refer to this step as the M -loop (see Fig. 2). The
convergence of this self-consistent loop is obtained by speci-
fying a maximum value of M and tolerance values for RMC
fitting and total-energy relaxations;

2. The structural solution, R∗
M , obtained on successful com-

pletion of step 1, is subjected to further treatment so that the
objective function χK , involving a coordination constraint,34

Cl(R), and a total-energy functional, E(R), is now opti-
mized. The optimization is performed as before for fitting
a coordinate-constraint function using a second RMC simu-
lation and total-energy optimization via CG relaxations or a
suitable scheme. The step is indicated as the K-loop in Fig. 2
and the convergence is handled in a similar manner by specify-
ing tolerance values for atomic coordination and total energy;
3. To ensure that the final solution satisfies both the objective
functions, χM and χK , a coupling is established between M

and K so that the resulting output, R∗
K , from step 2, can be

fed back to the M -loop to achieve self-consistency between
R

∗
M and R

∗
K , using suitable convergence criteria. The latter

involves specification of a coordination-defect density, a root-
mean-square deviation of the bond-angle distribution, and a
goodness-of-fit of the diffraction data in RMC simulations
within the feedback loop (via a green diamond), which de-
termine the final converged solution R

∗. In the event that
a converged solution cannot be obtained for a given number
of iterations, the program can either continue by generating a
new random configuration or exit the loop prematurely with
the current solution.

A flowchart of the optimization program is shown in Fig. 2.
The subspace optimizations ofχM andχK are indicated in the
flowchart as shaded regions in light red and light blue colors,
respectively. The two regions are connected by a feedback
loop through a green diamond in Fig. 2 in order to achieve a
self-consistent solution in subspaces χM and χK .

For total-energy optimizations, one can choose an appro-
priate classical, semi-classical, or quantum-mechanical force
field, depending upon the complexity of the problem to be
addressed. Here, we have employed the modified Stillinger-
Weber (SW) potential,35,36

E(R) =
1

2

N
∑

i=1

N
∑

j=1
(j 6=i)

v2(rij) +

N
∑

i=1

N
∑

j=1
(j 6=i)

N
∑

k=1
(k 6=i)
(k>j)

v3(rij , rik),

(3)
where v2 and v3 are the two-body and three-body contribu-
tions to the total potential energy, respectively, and they are
given by,

v2 =







ǫA

[

B
(rij

σ

)−p

− 1

]

e

(

σ
rij−aσ

)

, if rij < aσ

0, otherwise

and

v3 =











ǫλ

(

cos θjik +
1

3

)2

e

(

σγ
rij−aσ

+ σγ
rik−aσ

)

, if rij , rik < aσ

0. otherwise

In Eq. (3), rij is the distance between two atoms at sites
i and j, and θjik is the angle subtended at site i by the
vectors rij and rik. We employed the modified SW po-
tential parameters from Ref. 35, which are listed in Table I.
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Throughout the work, we have used the experimental den-
sity of a-Si of 2.25 g/cm3 and a maximum value of M=200
and K=1000 for achieving self-consistency within the M -
loop and K-loop, respectively. To compute the electronic
and vibrational properties of the optimal structural configura-
tion, we have used the first-principles density-functional code
SIESTA37,38 to thoroughly relax the final INDIA structures us-
ing fully self-consistent calculations. SIESTA employs local
basis functions, based on numerical pseudoatomic orbitals,
and norm-conserving Troullier-Martins pseudopotentials39 to
solve the Kohn-Sham equations self-consistently within the
framework of density functional theory. In this work, we em-
ployed double-zeta basis functions and the electronic correla-
tions were handled using the generalized gradient approxima-
tion (GGA), via the Perdew-Burke-Ernzerhof (PBE)40 formu-
lation.

TABLE I. Modified Stillinger-Weber potential parameters35

ǫ (eV) λ σ (Å) γ A B a p

1.64833 31.5 2.0951 1.20 7.049556277 0.6022245584 1.80 4

III. RESULTS AND DISCUSSIONS

Since the structural quality of a-Si networks is largely de-
termined by the two- and three-body correlation functions,
along with the concentration of dangling and floating bonds
(i.e., three-fold and five-fold coordinated atoms, respectively),
we begin by examining the radial and angular correlations
between atoms in the models. Noting that the method, by
construction, incorporates structural information at the two-
body level in real/reciprocal space, we shall focus our atten-
tion on network properties that involve higher-order correla-
tion functions, such as the bond-angle distribution (BAD) and
dihedral-angle distribution (DAD), statistics of the ring-size
distribution, and the local coordinations of atoms in the net-
works. These will be followed by an analysis of electronic
and vibrational properties of the models. Below, we discuss
the results from four INDIA models of size 216, 300, 512,
and 1024 atoms, each averaged over three independent con-
figurations, and provide comparisons with the corresponding
WWW and MD models, as well as experimental data from
as-deposited a-Si samples. For comparison, we generated a
set of MD models, using the modified SW potential, follow-
ing the methodology described in Ref. 30 and refer to those
as SW-MD models. Likewise, the WWW models were con-
structed using the modified bond-switching WWW algorithm
of Barkema and Mousseau.18 In addition, we have also com-
pared our results with a 512-atom model by Deringer et al. ,23

from using machine-learning-driven MD simulations (ML-
MD), 216- and 512-, and 1024-atom models by Pandey et

al. 13 and Igram et al. ,16 respectively, from using the Force
Enhanced Atomic Relaxation (FEAR) approach.
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FIG. 3. (a) The reduced pair-correlation functions, G(r), of a-Si

from INDIA (red) and WWW (blue) models of size 512 atoms. (b)

The corresponding static structure factors, S(k), from the INDIA

(red) and WWW (blue) models. Experimental data for as-deposited

a-Si samples (green) are included from Ref. 41. An enlarged view of

the first two peaks of the structure factors are shown in the inset for

a close comparison of the results.

A. Structural Properties

Figure 3 shows the reduced pair-correlation function (PCF),
G(r), and the corresponding structure factor (SF), S(k), for
the 512-atom INDIA and WWW models. Experimental data
from as-deposited samples41 of a-Si are also shown in the plot
for comparison. Although the results, in particular the simu-
lated structure-factor data, are expected to match with experi-
ments accurately, it is important to examine the PCF and struc-
ture factor closely due to the complementary nature of these
(primal and dual) quantities in expressing atomic pair corre-
lations. While a PCF expresses local (two-body) correlations
explicitly, its Fourier counterpart provides an overall match
(of two-body correlations) incorporating information from all
length scales. This is reflected in the first sharp diffraction
peaks (FSDP) in Fig. 3(b): the presence of small deviations
in G(r) beyond 5.0 Å appears to be translated into a small
but visible difference in the height of the FSDPs (see inset in
Fig. 3(b)).

The hierarchy among atomic-correlation functions implies
that the one-dimensional PCF/SF alone cannot fully charac-
terize a three-dimensional model of a-Si, unless the PCF/SF is
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TABLE II. Structural properties of ab initio-relaxed INDIA, MD, and

WWW models. 〈θ〉, ∆θ(∆θG) and Cn represent the average bond

angles, RMS deviations, and the percentage of n-fold coordinated

atoms, respectively. ∆E is the relative energy difference (in eV)

per atom from a 1000-atom crystalline silicon configuration and it is

related to heat of crystallization.

Model N 〈θ〉 ∆θ(∆θG)
a C4 C3 + C5 ∆E

INDIA

216

109.10 11.8 (11.3) 99.08 0.46+0.46 0.232

SW-MD 109.32 8.8 (8.4) 100.0 0.0+0.0 0.116

FEARb 108.80 14.6 99.08 0.46+0.46 –

WWW 109.16 11.1 (10.9) 100.0 0.0+0.0 0.185

INDIA

300

109.11 11.4 (10.8) 99.33 0.33+0.33 0.219

SW-MD 109.22 9.3 (8.5) 99.33 0.33+0.33 0.140

WWW 109.18 10.5 (10.1) 100.0 0.0+0.0 0.185

INDIA

512

109.09 11.5 (10.6) 99.60 0.20+0.20 0.216

SW-MD 109.27 9.1 (8.6) 99.22 0.39+0.39 0.125

ML-MDc 109.19 9.7 (9.4) 98.44 0.78+0.78 0.138

FEARd – – 95.90 1.17+2.73 –

WWW 109.11 10.7 (10.5) 100.0 0.0+0.0 0.192

INDIA

1024

109.01 11.9 (10.8) 98.34 1.07+0.49 0.236

SW-MD 109.27 9.3 (8.6) 99.22 0.59+0.19 0.132

FEARd – – 94.53 2.34 + 3.13 –

WWW 109.14 10.6 (10.3) 100.0 0.0+0.0 0.189

a Values within parentheses are from a Gaussian approximation
b From Ref. 13
c From Ref. 23
d From Ref. 16

also consistent with, at the very least, the bond-angle distribu-
tion (BAD), B(θ), and its width. Additionally, the latter must
be sufficiently narrow so that the network is subjected to min-
imal structural distortions with a fluctuation in the BAD con-
sistent with the value estimated from Raman spectroscopy.42

These considerations lead to the conclusion that the root-
mean-square (RMS) deviation or fluctuation of the bond-angle
distribution of a high-quality a-Si network should not exceed
9◦–11◦. Figure 4 shows the bond-angle distributions for 512-
atom INDIA and WWW models. The BADs from the INDIA
and WWW models closely match each other, with an aver-
age bond angle of 109.1◦±10.6◦ (INDIA) and 109.1◦±10.5◦

(WWW), obtained from a Gaussian approximation43 to the
shape of the respective BADs. A comparison of structural
properties of the models in Table II, obtained from a range of
simulation techniques, establishes that the INDIA methodol-
ogy has the ability to yield a-Si models par excellence. Thus,
it would not be inappropriate to conclude that the INDIA mod-
els presented here are significantly better than earlier RMC
models1,4 and their hybrid counterparts,12,13,16,44 and that they
are on a par with the models obtained from the WWW method
and recent high-quality molecular-dynamics simulations23,30

of amorphous silicon.

Table II summarizes some key structural properties of a-Si
models obtained from MD simulations and total-energy-based
relaxation methods that are particularly useful for direct com-
parison. Recognizing that the structural quality of a-Si mod-
els is chiefly determined by the PCF, the BAD and its width,
and the concentration of coordination defects in the networks

80 100 120 140 160
Angle (θ)

0

0.5

1

1.5

2

2.5

B
(θ

)

INDIA 512
WWW 512

FIG. 4. The bond-angle distributions, B(θ), of a-Si from 512-

atom INDIA (red) and WWW (blue) models. The average bond an-

gles and the corresponding root-mean-square deviations are given by

109.1◦±11.5◦(INDIA) and 109.1◦± 10.7◦(WWW).

and that the FEAR and INDIA methods essentially belong to
the same universality class (in the sense that they both rely on
the information paradigm), it is evident from Table II that the
latter consistently produces a-Si models with a smaller bond-
angle width and fewer coordination defects than the FEAR.
This observation is indicative of the electronic quality of the
models too. We shall see later that, unlike the FEAR mod-
els (see Refs. 12 and 16), the INDIA models produce a pris-
tine electronic gap around the Fermi level. Further, we shall
demonstrate that the size of the electronic gaps obtained from
the INDIA models is comparable with those from the WWW
models, as far as the models with 216, 300, and 512 atoms are
concerned.

In Table II, we have listed the value of ∆E = E(N)−Ec,
where E(N) and Ec correspond to the energy per atom for ab

initio-relaxed configurations of a-Si containingN atoms and a
crystalline network of silicon comprising 1000 atoms, respec-
tively. The value of Ec has been found to be practically inde-
pendent of N for N ≥ 512. Here, ∆E is associated with the
heat of crystallization of a-Si and has been obtained from dif-
ferential scanning calorimetry by Roorda et al. ,45 and Ruther-
ford backscattering and channeling, coupled with differential
scanning calorimetry, by Donovan et al. 46 For annealed (at
500 ◦C) and as-implanted samples of a-Si, the values of ∆E

have been determined by Roorda et al. to be 13.7± 0.7 kJ/mol
and 18.8 ± 1.0 kJ/mol, respectively. These values correspond
to the range of 0.135–0.205 eV/atom. Likewise, Donovan et

al. have reported a value of the heat of crystallization to be
11.9 ± 0.7 kJ/mol or 0.116–0.131 eV/atom. Thus, the ex-
perimental value of the heat of crystallization matches quite
closely with the computed values from the INDIA and SW-
MD models.

Probing higher-order correlations between atoms proves to
be rather difficult due to the high-dimensional nature of in-
formation involving four or more atoms. The distribution of
angles between two dihedral planes provides limited informa-
tion about four-body correlations but it is useful to examine
this correlation as an independent check for added credibil-
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ity. Figure 5 shows the distribution of dihedral angles for two
512-atom INDIA and WWW models. The presence of a char-
acteristic maximum at 60◦ and a minimum at 120◦ suggests
that the two models are similar as far as the correlations be-
tween dihedral angles are concerned.

0 30 60 90 120 150 180
Dihedral Angle (φ)

0.4

0.6

0.8

P(
φ)

INDIA 512
WWW 512

FIG. 5. Dihedral-angle distributions, P (φ), from 512-atom INDIA

(red) and WWW (blue) models. The characteristic dihedral peak at

60◦ and a dip at 120◦ are distinctly visible in the distributions.

The connectivity of atoms in amorphous networks can be
analyzed by computing the statistics of irreducible rings of
varying sizes. Rings are an important feature of topologi-
cal networks, which are defined as closed irreversible paths
or loops that start and end at the same atomic site. Here,
irreducibility implies that the ring cannot be further divided
into rings of smaller/equal size by topologically deforming
the original ring in the space of the embedding dimension. By
treating an amorphous network as a simple connected graph,
G = (V,E), where V (G) is a vertex set consisting of atomic
centers and E(G) is an edge set consisting of bonds between
two nearest-neighbor atoms, one can obtain the irreducible
ring-size distribution by computing the adjacency matrix of
V (G). Table III lists the irreducible-ring statistics for a num-
ber of INDIA, WWW, and two MD models, obtained using
periodic boundary conditions. The results for these four 512-
atom models are presented in Fig. 7. It is apparent that the
ring-size distributions in the INDIA and WWW models are es-
sentially similar, whereas the SW-MD model shows a compar-
atively high number of 6-member rings in the network. Table
III confirms that this observation also applies to the rest of the
SW-MD models. A comparison with the results obtained from
216-, 300- and 1024-atom INDIA and WWW models leads us
to believe that this excess topological crystal-like feature of
SW-MD models could be attributed to the modified SW poten-
tial, which exhibits a tendency to form diamond crystals dur-
ing MD simulations. It is also plausible that MD simulations
can sample the solution space more accurately than a total-
energy-based relaxation method in determining a low-energy
structure, which is topologically closer to the crystalline dia-
mond network. The values of ∆E for the MD models, listed
in Table II, appear to support this conjecture. In future, we ex-
pect to address this issue by taking into account the presence
of a few coordination defects that may affect the ring-size dis-

FIG. 6. A ball-and-stick representation of a 512-atom INDIA model

with a pair of coordination defects, consisting of a floating (green)

bond and a dangling (red) bond. The remaining 4-fold coordinated

Si atoms are shown in yellow color.

tribution.

TABLE III. Ring statistics for INDIA, WWW, and two MD models

comprising N=216, 300, 512, 1024 atoms. Columns 3 to 8 list the

number of rings per atom from ring sizes 4 to 9, respectively.

Model N 4 5 6 7 8 9

INDIA

216

0.005 0.389 0.889 0.611 0.139 0.032

SW-MD 0 0.278 1.125 0.676 0.060 0.009

WWW 0.028 0.444 0.745 0.528 0.171 0.040

INDIA

300

0.017 0.403 0.860 0.537 0.173 0.023

SW-MD 0.007 0.353 0.990 0.597 0.107 0.017

WWW 0.003 0.420 0.857 0.537 0.133 0.020

INDIA

512

0.018 0.404 0.789 0.613 0.152 0.014

SW-MD 0.008 0.359 0.939 0.619 0.133 0.023

ML-MDa 0.014 0.389 0.856 0.643 0.104 0.018

WWW 0.039 0.467 0.717 0.465 0.191 0.033

INDIA

1024

0.020 0.422 0.785 0.535 0.157 0.035

SW-MD 0.003 0.320 1.044 0.609 0.094 0.021

WWW 0.026 0.443 0.754 0.505 0.153 0.027

a From Ref. 23

B. Electronic and Vibrational Properties

While the results in the preceding section establish the
structural quality of the INDIA models, a strong coupling be-
tween local environments of atoms and the vibrational and
electronic degrees of freedom in a-Si warrants further exam-
ination to validate the vibrational and electronic properties
of the models. A good atomistic model of a-Si must ex-
hibit a clean electronic band-gap around the Fermi level and
the size of the gap should determine the electronic quality of
the model, by jointly taking into account the structural qual-
ity and the density of coordination defects in the network.
Although theoretical considerations47 lead to the existence
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FIG. 7. Ring statistics for four different models of a-Si of size 512

atoms. The SW-MD model shows a relatively strong presence of

6-member rings compared to its WWW and INDIA counterparts.

of such a spectral gap in tetrahedral amorphous networks, it
has been noted that the size of the gap and the density of
states in its vicinity are particularly susceptible to coordina-
tion defects. Until the recent developments of high-quality
MD models,23,30 only WWW models were capable of produc-
ing a clean gap in the electronic spectrum around the Fermi
level. It is therefore imperative to validate the accuracy of
new atomistic models by computing the EDOS and the size
of the gap therefrom. Likewise, the energy required to excite
vibrational degrees of freedom in a-Si – typically a few tens
of meV – suggests that the latter can be very sensitive to local
atomic arrangements, which may not be apparent in the elec-
tronic spectrum. Thus, a final analysis should also include a
statement on the vibrational density of states of the models.

Figure 8 depicts the EDOS for 512-atom INDIA and WWW
models, with the Fermi levels at 0 eV. The INDIA model pro-
duces a clean gap, which accurately matches the same from
the WWW model. This observation also applies to the 216-
and 300-atom INDIA models. Table IV lists the values of the
band gaps obtained from four INDIA models, along with the
corresponding values from the WWW and SW-MD models.
The results can be summarized by making the following ob-
servations: 1) The EDOS and the size of the gap from the 512-
atom INDIA model match accurately with the correspond-
ing results from the WWW and SW-MD models (cf. Table
IV); 2) A small but noticeable difference in the shape of the
valence-band tails for the 512-atom INDIA and WWW mod-
els in Fig. 8 can be attributed to a combination of the lack of
statistics and the different degree of disorder associated with
bond angles and bond lengths, and ∆E of the networks (0.22
eV for INDIA vs. 0.19 eV for WWW); 3) A small value of
the band gap (0.38 eV) noted for the 1024-atom INDIA model
points to the presence of 1.6% coordination defects and, pos-
sibly, the presence of a few strained bonds, as indicated by a
slightly higher value of ∆E = 0.24 eV. Overall, the electronic
properties of the INDIA models are on a par with the WWW
models.

Finally, Fig. 9 shows the vibrational densities of states of
512-atom INDIA and WWW models, obtained by diagonaliz-
ing dynamical matrices that were constructed in the harmonic
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FIG. 8. The densities of electronic states of a-Si from INDIA (red)

and WWW (blue) models with the Fermi level at 0.0 eV. A pristine

electronic gap of size approximately 1 eV is clearly visible.
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FIG. 9. The vibrational densities of states (VDOS) of a-Si from 512-

atom INDIA (red) and WWW (blue) models. Experimental data

from inelastic neutron-scattering measurements, from Ref. 48, are

also shown for comparison.

approximation, along with the experimental data from inelas-
tic neutron-scattering measurements by Kamitakahara et al. 48

The computed VDOS from the INDIA model agrees well with
experiments. In particular, the VDOS from the INDIA model
in the region from 300 cm−1 to 600 cm−1 has been found
to fit more accurately with experimental data than its WWW
counterpart.

TABLE IV. Comparison of band-gap values (in eV) for a-Si models

obtained from the INDIA, WWW, and SW-MD simulations.

Model size 216 300 512 1024

INDIA 0.753 0.884 1.007 0.38

WWW 1.007 1.008 1.013 1.012

SW-MD 1.003 0.881 1.006 1.009

Experimentsa 1.6–1.75

a Quoted values are for device-grade a-Si:H from Ref. 49
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IV. CONCLUSIONS

In this work, we have presented an information-driven in-
verse approach, or INDIA, to invert experimental diffrac-
tion data in conjunction with a few structural constraints and
a total-energy functional. Since one-dimensional scattering
data alone cannot describe a three-dimensional distribution of
atoms uniquely, and the presence of too many structural con-
straints can make the inversion problem somewhat ill-posed,
we have followed a hybrid strategy to augment the dimension
of the search space in an effort to determine an accurate struc-
tural solution of the inversion problem, aided by a total-energy
functional. It has been shown that the original inversion prob-
lem can be posed as a non-convex optimization problem in an
extended or augmented search space that involves informa-
tion from a set of experimental diffraction data, a few struc-
tural constraints, and an approximate total-energy functional
of the system. We then demonstrate that the complexity asso-
ciated with solving the resulting optimization program can be
considerably reduced by decomposing the extended objective
function into two subspace objective functions and optimizing
these two functions sequentially in a self-consistent way.

An examination of the optimal structural models, con-
sisting of up to 1024 atoms, shows that the vibrational,
electronic, and structural properties of the models match
accurately with the corresponding experimental data from
as-deposited samples of amorphous silicon. In particular, the
first sharp diffraction peak of a 512-atom INDIA model has
been found to match somewhat more accurately with exper-
imental structure-factor data than its corresponding WWW
counterpart. Likewise, a comparison of the vibrational
density of states (VDOS) with inelastic neutron-scattering
data reveals that the 512-atom INDIA model reproduces the
density of high-frequency vibrations more accurately than
the corresponding WWW model. Further analyses of various
structural properties – involving the pair-correlation function,
the bond- and dihedral-angle distributions, and the statistics
of n-member irreducible rings (n = 4 to 9) in the networks –
show that the INDIA models are on a par with the high-quality

WWW models and those obtained from recent high-quality
MD simulations using the modified Stillinger-Weber and
machine-learning-driven potentials. The electronic densities
of states, specifically the ones from 300- and 512-atom
models, obtained from a local-basis density-functional code
SIESTA using the generalized gradient approximation, show
the presence of a pristine gap in the electronic spectrum in the
vicinity of the Fermi level, with only a pair of coordination
defects. The size of the electronic gaps from the INDIA
models is found to be comparable with those from the
corresponding WWW models. Furthermore, the estimated
values of the heat of crystallization of the models closely
compare with those obtained by Roorda et al. 45 and Donovan
et al. 46 from differential scanning calorimetry measurements.
In conclusion, the new information-driven approach and its
implementation presented here can successfully invert a set of
diffraction data and structural constraints in conjunction with
a total-energy functional by producing atomistic models of
a-Si, which are significantly better than existing hybrid RMC
models of a-Si and are on a par with the WWW models, as
far as the structural, electronic, and vibrational properties of
a-Si are concerned.
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and A. L. Goodwin, Phys. Rev. B 95, 224108 (2017).



9

16 D. Igram, B. Bhattarai, P. Biswas, and D. Drabold, J. Non-Cryst.

Solids 492, 27 (2018).
17 F. Wooten, K. Winer, and D. Weaire, Phys. Rev. Lett. 54, 1392

(1985).
18 G. T. Barkema and N. Mousseau, Phys. Rev. B 62, 4985 (2000).
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