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Abstract 

We report a density functional theory study of the Pockels effect (linear electro-optical effect) in 
epitaxially strained SrTiO3. The electro-optical response is calculated for biaxial strain values 
ranging from -2.0% to 2.0% relative to the theoretically-optimized lattice constant. Under 1.0% 
tensile strain, the Pockels tensor components increase dramatically, with the largest components 
reaching maximum values of r111 = r222 = 505.64 pm/V. Under 1.2% compressive strain, the 
Pockels tensor exhibits a similarly large peak with a maximum value of 236.55 pm/V. 
These peaks in the electro-optical response originate from the softening of the phonon modes 
associated with ferroelectric phase transitions that result in the loss of inversion symmetry. Our 
results suggest that under the right circumstances, SrTiO3 can yield a very large electro-optical 
response, comparable to that of BaTiO3, which has one of the largest known responses. 

Introduction 

Silicon photonics has attracted a great deal of attention in recent years due to its potential for 
low-cost, low-power devices with very high data transmission rates [1–5]. The need for such 
devices is particularly urgent in conventional electronics as copper interconnects used today  
become unviable at signal frequencies above 40 GHz, a frequency that inter-chip communication 
is expected to reach this year [6]. Though optical modulators and switches have been developed 
for silicon photonics using the plasma-dispersion effect in silicon, they suffer from insertion 
losses, high power consumption, and undesired intensity modulations [1,7,8]. Hybrid, transition 
metal oxide-based devices have the potential to mitigate these problems as they offer access to 
optical phenomena not available in pure silicon, such as the linear electro-optic (EO) (or 
Pockels) effect. The Pockels effect, which is a change in the refractive index of a material upon 
the application of an electric field, exists only in materials with no inversion symmetry. Silicon is 
centrosymmetric and therefore has to be strained to show even a weak EO response [9,10]. As a 
result, there are currently very few silicon photonic devices exploiting the Pockels effect [11,12]. 
Materials with a large Pockels effect are well-suited for low-power and high-speed optical 
modulation [13]. In the telecommunications industry, LiNbO3 has long been used as the material 
of choice for optical modulators due to its sizable Pockels coefficient of ~30 pm/V  [13–16], 
which makes it potentially attractive in silicon photonic applications. However, LiNbO3 cannot 
be easily integrated on silicon, which has inspired a search for materials with large Pockels 
coefficients that can be  [13,17].  

The most promising among these materials is the ferroelectric perovskite BaTiO3 (BTO), which 
exhibits one of the largest known Pockels coefficients—both in thin films and in bulk (which has 
a coefficient of order ~1600 pm/V [16])—due to its lack of inversion symmetry and the presence 
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of soft phonon modes [18,19]. BTO can be also be grown epitaxially on silicon (001) [20,21]. As 
a result, BTO epitaxially integrated on silicon for use in photonics has been the subject of 
extensive, but primarily experimental, study [7,12,13,17,19,22,23]. 

Finding other electro-optically active materials that can be integrated on silicon is of significant 
scientific interest and of practical importance, as doing so will allow for greater flexibility in 
device design and applications. The incipient ferroelectric SrTiO3 (STO) is in many respects 
similar to BTO, but it is cubic at room temperature, and therefore, by symmetry, the Pockels 
effect is forbidden. However, STO is extremely close to a ferroelectric (FE) phase transition.  
Below 105 K, STO undergoes a structural phase transition to a tetragonal, non-polar 
antiferrodistortive (AFD) phase [24–26]. The dielectric properties are not significantly affected 
by this phase transition. Upon further cooling, the dielectric constant obeys a Curie-Weiss law 
that suggests a phase transition at a Curie temperature of ~20 K [27–29]. No phase transition 
occurs, however. Instead, the paraelectric phase is stabilized by quantum fluctuations [30–33]. 
The dielectric constant continues to increase as the temperature is lowered until it saturates to a 
constant value of ~20,000 at 4 K and below [29,30]. Additionally, like BTO, epitaxial thin films 
of STO can be grown on silicon [20,34–41], making it a candidate for integration into silicon 
photonic devices. Under epitaxial strain, phases previously forbidden for bulk crystals can 
appear [42]. Indeed, in STO, a FE phase stabilizes under biaxial strain [31,32,43,44]. This in 
turn, breaks the inversion symmetry of the unit cell, which should allow for an EO response. 
When grown on silicon (001), STO is placed under biaxial, compressive strain of -1.5% [35]. 
Therefore, one would expect a non-zero EO response under these conditions. Indeed, a non-zero 
EO response has been seen experimentally in strained STO, but not when grown on silicon. Ma 
et al [45] grew STO on (110)-oriented DyScO3, which led to fixed, non-uniform, in-plane strains 
of 1.1% and 1.2%. Furthermore, strained STO has been studied using density functional theory 
by Antons et al. [43], who predicted a divergence in the dielectric constant for certain critical 
values of both compressive and tensile strain. This divergence in the dielectric constant is driven 
by the softening of phonon modes at critical strain values at the onset of the second-order 
structural phase transition [43]. This was also observed theoretically and experimentally by Peng 
et al. [46], who studied thin films of STO under compressive, in-plane strain.  

In this paper, we investigate theoretically the electro-optical response of STO as a function of 
epitaxial strain. Using density functional theory, we vary the in-plane strain of bulk STO and 
allow the c-axis to respond. We are interested in modeling room-temperature STO because a 
device is likely to run at room temperature. Therefore, we do not include the AFD rotations of 
the oxygen octahedra because they are not present in the stable phases of the crystal at this 
temperature, which are the ferroelectric tetragonal, high temperature tetragonal and ferroelectric 
orthorhombic phases (FTI, HT and FOI, respectively), as shown by Pertsev et al.  [31,32]. We 
then study the influence of strain on the EO (Pockels) tensor. Moreover, we investigate the origin 
of the large EO response at the critical strain values and trace it to a strain-driven structural phase 
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transition caused by mode softening. A simple phenomenological model is invoked to highlight 
the physics of the phenomenon. 

Background and Methods 

The Pockels tensor, also called the linear electro-optic (EO) tensor, relates the change in the 
inverse dielectric tensor to an external electric field [16]: Δ ∑ . (1)
Because the change is linear in the electric field, centrosymmetric crystals do not exhibit the 
Pockels effect. There are three contributions to the Pockels tensor: an electronic contribution 
from the valence electrons, an ionic contribution from the displacement of the ions, and a 
piezoelectric contribution from the distortion of the unit cell through the converse piezoelectric 
effect [18,47]. Following Veithen et al [47], these can be calculated by expanding the electric 
enthalpy to third order in the applied electric field. The dielectric tensor can be calculated in 
terms of the second derivative with respect to the applied external electric field. The details of 
how this is done in ABINIT can be found in [48,49]. As a test, we computed the dielectric 
constants for purely ionic NaCl and the simple mixed-bonding binary oxide α-quartz. At the 
theoretically-optimized lattice constants, we find the dielectric constants of these materials to be 
5.24 and 4.86, respectively, in fair agreement with the experimental values of 5.90 [50] and 
4.65 [51]. The Pockels tensor can then be found from inverting the total derivative of the 
dielectric tensor. The electronic contribution comes from the valence electrons, and (in the 
principal axes of the crystal) can be written in terms of the second order nonlinear susceptibility 

 as 

       , (2)

where the  are the principal indices of refraction [18,47]. The ionic contribution comes from 
relaxation of the ions in the presence of the external electric field, and can be written in terms of 
a sum over transverse optical phonon modes at the Γ point of the Brillouin zone  [47]. This is 
given by 

Ω ∑ , . (3)

Here, Ω  is the volume of the unit cell,  is the Raman susceptibility, ,  is the mode polarity, 
and  is the frequency of the mode m. The Raman susceptibility and mode polarity are in turn 
given by Ω ∑ ,, , (4)

, ∑ ,, , (5)
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where  is the transverse optic phonon eigendisplacement1 of atom κ in the direction β at 
Γ due to mode m, ,  is the actual displacement of atom κ in the direction β,  is the linear 
dielectric susceptibility, and ,  is the Born effective charge of atom κ. The sum of the 
electronic and ionic contributions constitutes the clamped (strain-free) EO tensor 

. The unclamped (stress-free) EO tensor  includes the piezoelectric contribution, and can 
be written in terms of the elasto-optic (photoelastic) coefficients  and the piezoelectric strain 
coefficients  [47] as ∑ , . (6)
In our calculations, we neglect the piezoelectric contribution because its contribution to the EO 
tensor is small (see Discussion for details). We calculate the EO tensor using density functional 
theory (DFT) and density functional perturbation theory (DFPT). Our calculations were done 
using the ABINIT software package [47–49,52–55] with Teter norm-conserving 
pseudopotentials [56]. The valence electron configurations were 4s24p65s2 for the strontium atom 
(where we have included the semi-core s and p electrons), 3s23p64s23d2 for the titanium atom, 
and 2s22p4 for the oxygen atoms. The exchange-correlation energy was calculated in the local 
density approximation (LDA) [57,58]. We use a plane-wave cut off energy of 50 Hartree and a 
12x12x12 Monkhorst-Pack k-point grid [59] for all calculations. All cells were relaxed until the 
interatomic forces were smaller than 2 10  Hartree/Bohr. A theoretically-optimized lattice 
constant of STO 3.845 7.266 Bohr was used for the zero-strain case, which agrees well 
with the experimental value of 3.90  = 7.37 Bohr [60] (while slightly underestimating it, as is 
typical for LDA calculations). For the strained systems, the in-plane lattice constants were 
changed from the zero-strain value according to the amount of strain and were fixed, after which 
the c-axis lattice constant was optimized. Tetragonal symmetry of the cell was maintained in 
order to model an epitaxial film. Strains in the range ±2% were considered. After the cells were 
optimized, DFPT was used to calculate the phonons, Born effective charges, and dielectric 
tensor [49]. DFPT was also used in conjunction with the 2 1 theorem to calculate the 
nonlinear responses  and ,  [47]. These can then be combined as discussed above 
to calculate the EO tensor. It is necessary to calculate the elasto-optic tensor to calculate the 
piezoelectric contribution to the EO response, but ABINIT does not calculate it natively. To 
calculate it, we write it in terms of the strain as [61] Δ ∑ , , (7)
where  is the strain tensor. We can do this because the strain can be written as  σ , where  is the piezoelectric tensor,  is the applied electric field,  
is the compliance tensor, and σ  is the stress tensor. Since the piezoelectric contribution is only 

                                                            
1 The eigendisplacement  is related to the more typically used phonon eigenvectors by  ⁄ , where  is the mass of atom κ. 
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possible when we consider stress-free boundary conditions, the second term vanishes and 
Equation (7) reduces to the piezoelectric contribution we see when Equation (6) is inserted into 
Equation (1). Writing it in this way enables us to calculate the elasto-optic tensor components as 
described in [62] by selectively straining the unit cell, calculating the dielectric tensor, inverting 
it, and taking a numerical derivative. We used strains of ±0.0025% for the diagonal elements of 
the strain tensor and rotations of the lattice vectors of 0.45° for the off-diagonal elements of the 
strain tensor in calculating the numerical derivative. 

As will be discussed below, anharmonicity in the crystal is the primary driver of the EO 
response. To quantify the anharmonicity, mode Grüneisen parameters were calculated for several 
selected strain values. For an isotropic material, the mode Grüneisen parameter for phonon mode 
i and k-point q is defined as [63]  

       , (8)

where V is the volume of the cell and  is the frequency of the mode at q. For an anisotropic 
material, this can be generalized and written in terms of the strain  as 

      , , , , (9)

where the index P labels the polarization of the phonon mode [64]. These calculations were done 
using ABINIT in the same manner as the electro-optical calculations described above. To 
calculate the Grüneisen parameters for a given biaxial strain in the isotropic approximation, we 
need the phonon frequencies as a function of volume at that strain. Therefore, we apply 
additional hydrostatic strain to the already biaxially-strained crystal and calculate the phonon 
spectrum at the  point (because only the phonons at  contribute to the EO tensor). We then 
have phonon spectrum as a function of volume, from which we can extract the Grüneisen 
parameters using the finite difference method and Equation (8). Similarly, for the anisotropic 
model, we apply additional strain to the biaxially strained crystal to find the frequency as a 
function of that strain component, which we can then use to calculate the corresponding 
component of the anisotropic Grüneisen tensor with the finite difference method and Equation 
(9). Finally, the symmetry of the crystal will reduce the number of independent components of 
the Grüneisen tensor, reducing the total number of calculations necessary to compute the full 
tensor. 

For the rest of this paper we use Voight notation [16] for the first two indices of the EO tensor. 
That is to say, the index i in  is a Voight index labeling which component of the inverse 
dielectric tensor is responding to the perturbing optical electric field and j labels the component 
of the field. 

Results and Discussion 

Before we discuss our predictions for the EO tensor, let us briefly remark on the phase 
transitions we observe when biaxial (epitaxial) strain is applied to STO. In Figure 1, we plot the 
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polarization of the cell as a function of strain. Under compressive strain beyond -1.2%, the 
titanium atom is displaced in the 001  direction and the crystal undergoes a FE phase transition 
to a non-centrosymmetric, tetragonal 4  phase from the centrosymmetric, tetragonal 4/  phase seen between -1.2% strain and 1.0% strain (except at 0.0% strain, where we 
have the cubic perovskite 3  phase). For tensile strain above 1.0%, the titanium and 
strontium ions are displaced in the 110  direction. The space group becomes 2, and we 
have an orthorhombic, non-centrosymmetric structure. These results are in qualitative agreement 
with the findings of Antons et al. [43]. There is, however, one notable difference: we predict 
larger magnitudes of the critical strains at which the phase transitions occur. The difference in 
critical strains is likely due to the different pseudopotentials used in our respective calculations. 
The critical values of strain, at which the FE phase transitions occur, are also much larger than 
predicted using a Landau-Ginzburg-Devonshire model [31,32]. As discussed by Antons et al, 
this is likely due to the underestimation of the lattice constant in LDA, which stabilizes the 
paraelectric phase [43,65]. Another possible influence on the critical strain values is the absence 
of rotations of the oxygen octahedra in our analysis. The onset of these phase transitions is 
driven by softening phonon modes, as also observed by Antons et al. [43]. A plot of the 
frequency of the first optical mode as a function of the in-plane strain is shown in Figure 2. For 
compressive strain, the first optical phonon mode displaces the titanium ion in the 001  
direction. For tensile strain below the critical value, the first optical mode is actually a double-
degenerate mode, which displaces the titanium ion in the 110  and 110  directions. For tensile 
strain above the critical value, the degeneracy is lifted and the softest mode is the mode which 
displaces the titanium atom in the 110  direction. The displacement patterns of these phonon 
modes are shown in Figure 3.  

Our predictions of the magnitudes of the clamped EO tensor components under compressive and 
tensile strain are shown in Figures 4 and 5, respectively. Again, there is no EO response without 
strain because the unstrained unit cell is centrosymmetric. For compressive strain, we predict a 
large spike in the  component of the EO tensor, with a maximum of 236.55 pm/V at -
1.20% strain. There is also a peak in  at this strain with a maximum value of 50.22 pm/V. These large responses would result from an electric field which displaces the atoms 
parallel to the softening phonon mode, the displacement pattern of which is shown in Figure 
3(a). On the other hand,  remains relatively small and increases slowly with strain. This is in 
contrast to BTO, where the largest component under compressive strain is  (which is also the 
case under no strain for BTO [19,66]). This difference is likely due to how STO and BTO 
polarize under compressive strain. In STO, the polarization is entirely in the 001  direction, 
while in BTO, the polarization is closer to 111 . The phonon that contributes most to the EO 
response goes very soft at this strain, with a frequency of 18.30 cm-1. 

For tensile strain, we predict a maximum in the EO response at 1.00% strain. The magnitude of 
the largest component is 505.64 pm/V. The magnitudes of three other components, 

, , and , also peak at this strain, although their maximum value is below 100 pm/V.  
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Under tensile strain, the titanium atom is displaced in the [110] direction. In contrast with the 
compressive strain case, there are two softening phonon modes with significant contributions to 
the Pockels tensor. For strains smaller than the critical strain, the crystal is in the 
centrosymmetric, tetragonal 4/  phase. The two softest optical modes are degenerate and 
displace the titanium ion in the 110  and 110  directions. The 110  mode’s primary 
contributions are to the  components of the Pockels tensor, and the 110  mode’s primary 
contributions are to the  components. Furthermore, their contributions have the same sign. For 
strains above the critical strain, the crystal changes to the orthorhombic 2 phase, and the 
degeneracy between these two softest modes is lifted. The softest mode is the mode which 
displaces the titanium atom in the 110  direction. In this phase, the contributions of the modes 
to the Pockels tensor change. The signs of the largest contributions of the two softest modes 
agree for  and  and disagree for . That two modes have nearly equal contributions 
to the Pockels tensor (where they agree in sign) explains why the magnitude of the largest 
response under tensile strain is approximately double the magnitude of the largest response under 
compressive strain. However, because the degeneracy is lifted, the contributions to  
don’t cancel out exactly, so they therefore remain non-zero. Finally, at and above the critical 
strain, the contributions to , , and  are almost entirely due to the second softest 
mode, which displaces the atoms along the 110  direction. In general, under tensile strain, the 
largest responses are those to an electric field polarized in the 100  or 010  directions. At the 
critical strain, the frequency of the softest mode is 16.14 cm-1, and the frequency of the second 
softest mode is 24.33 cm-1. The displacement pattern of the softest mode is shown in Figure 3(b). 

In Table 1, we compare the magnitude of the piezoelectric contribution to the EO tensor to the 
magnitude of the clamped EO tensor at -1.0% and -1.2% strain. We see that the piezoelectric 
contribution is only 7.6% and 12.2% of the magnitude of the clamped tensor at these strains, 
respectively, justifying neglecting the piezoelectric contribution. 

Our results predict responses larger than what Ma et al [45] measured, even for what are 
ostensibly similar tensile strains. Recall, however, that LDA underestimates the lattice constant 
and that DFT calculations are done at 0 K, making direct comparison to experimental systems 
difficult. However, our results suggest there are values of strain for a real STO crystal at which 
the EO response could indeed be quite large. 

The electronic contributions to the EO tensor in STO are extremely small compared to the ionic 
contributions (less than 1% of the total response). As the phonon mode that leads to the FE 
transition softens, the ionic contribution to the EO tensor increases due to the factor of , as 
can be seen in Equation (3). Furthermore, the softening mode indicates that the anharmonicity of 
the film, which originates from the hybridization in the titanium-oxygen bond [65], is increasing. 
This can be quantified in several ways. In Tables 2 and 3, we list the anisotropic Grüneisen 
tensor components  and the isotropic Grüneisen parameter, respectively, of the first optical mode 
(which drives the FE phase transition) of the crystal under compressive strain. Due to the 
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tetragonal symmetry of STO under compressive strain, the only non-zero components of the 
anisotropic Grüneisen tensor are  and . Recall that under compressive strain the 
phonon mode that goes soft and drives the divergence in the Pockels tensor is polarized along the 
(001)-direction. This is reflected in Table 2 in the anisotropic Grüneisen tensor:  is positive 
and much larger than . In other words, the crystal is much more anharmonic in the (001)-
direction than it is in the (100)- or (010)-directions. Furthermore, the Grüneisen parameter is 
significantly larger at the critical strain than at -1.0% strain. For comparison, we calculate the 
Grüneisen parameter of the cubic, 0.0% strain structure. Because the ground state crystal is 
highly anharmonic, we find that the cubic structure also has a large Grüneisen parameter 
(compared to the highly harmonic silicon, which has Grüneisen parameters an order of 
magnitude smaller [67,68]), but is itself an order of magnitude smaller than that of the strained 
crystal, which is closer to the phase transition. This indicates that if the ground state structure of 
STO were not centrosymmetric, it would likely be a good electro-optically active material (like 
BTO).  This suggests that alloying with a judiciously chosen element (like barium, to make 
BaxSr1-xTiO3, for example) to break the inversion symmetry may be a way to induce a strong EO 
response. Our results and the correspondence to large Grüneisen parameters at the critical strain 
values suggests that large Grüneisen parameters, and therefore large anharmonicity, in non-
centrosymmetric crystals could indicate large EO responses. However, depending on the 
symmetry of the crystal and the size of the unit cell, the calculation of the full Grüneisen tensor 
can be resource intensive. We therefore calculate the Grüneisen parameter of the strained STO 
crystal, approximating it as isotropic. This is not unreasonable approximation as the c/a ratio at 
the critical strain is 1.02, which is very nearly cubic. The calculated Grüneisen parameters are 
listed in Table 3. They exhibit the same trends we saw in the full calculation of the Grüneisen 
tensor, in that the magnitude of the parameter increases as the strain approaches the critical 
strain. We can also compare the parameter with the average of the tensor components, and we 
see very good agreement at -1.0% strain and reasonable agreement at -1.2% strain. Therefore, the 
isotropic Grüneisen parameter could provide a quick way to screen materials for potential large 
EO responses with less cost than calculating the full tensor or the full EO response itself. 

Other simple models besides the isotropic Grüneisen parameter that can serve as a proxy are also 
of value. Consider a 1-D oscillator model of the Pockels effect. This can be written as an 
oscillator with an anharmonic contribution to the force and damping, with driving optical and 
static electric fields: , 0 , (10)

where the coefficient  is the damping constant,  is the anharmonic force constant, e is the 
electric charge, m the electron mass,  is a local field parameter given by 2 /3, and ,  and 0  are external optical and static electric fields, respectively. This model was 
analyzed by Kurtz and Robinson [69], who showed that the Pockels “tensor” (a single coefficient 
in this 1-D model) is directly proportional to the magnitude of the anharmonic force constant. In 
this spirit, we displaced the atoms in the STO unit cell from their equilibrium positions according 
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to the eigenvector of the first optical phonon mode, calculated the force on the titanium atom in 
that direction, and fit it to a simple oscillator with an anharmonic force in order to extract the 
anharmonic force constant. A schematic diagram of this model is shown in Figure 6. The results 
of doing so are presented in Table 4. The resulting anharmonic force constants are largest for the 
0.0% strain case and for the critical -1.2% strain case, while being lower for the paraelectric, -
1.0% case. This suggests two things: first, that this simplified model can be used to quickly 
screen anharmonic, non-centrosymmetric materials for EO responses, and second, it reinforces 
the notion that the anharmonicity in the crystal is the driving force behind the large EO response 
we see here. For comparison, we perform the same analysis for bulk silicon, which is a very 
harmonic crystal compared to STO (as evidenced by their thermal expansion coefficients of 2.93 10  K  [70] for silicon and 32.3 10  K  for STO [71]). Indeed, the 
anharmonic force constant in this model in silicon (also listed in Table 3) is much smaller than 
the constant for STO at any strain. 

Finally, a similar theoretical study was performed by Fredrickson et al [19], but for BTO instead 
of STO. Their study was done using the experimental lattice parameters for BTO. Despite this 
difference, they also predict large peaks in the EO response for certain critical strains that are 
associated with soft phonon modes. This may suggest that enhancement in the EO response 
under strain is a general feature of non-centrosymmetric perovskite crystals, but further study is 
needed before such a statement can be made with certainty. 

Conclusions 

Under both tensile and compressive biaxial strain, we calculate the EO response of STO. At 
certain critical values of strain, the response is significantly enhanced, and this enhancement is 
shown to be associated with the onset of a FE phase transition driven by a softening phonon 
mode. We relate this to the anharmonicity in the titanium-oxygen bonds using theoretically 
calculated Grüneisen tensor and illustrate this effect with a simplified 1-D model. A similar 
result is predicted for BTO [19], which suggests that enhancement of the EO response under 
strain is a characteristic of materials where strain may result in the onset of an appropriate 
structural phase transition. The magnitude of the enhanced EO response we predict in strained 
STO is comparable to the EO response of BTO thin films, which is among the largest known 
experimentally. Our work suggests that STO can be useful in silicon photonics if it can be grown 
under a sufficient amount of strain. 
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Figures 

Figure 1 

 

Figure 1: The magnitude of the polarization in STO as a function of strain. The onset of the 
polarization and the ferroelectric phase transition and displacement of the titanium ion in the 
(001) and the (110) directions occurs at -1.2% and 1.0% strain, respectively.  
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Figure 2 

 

Figure 2: Frequency of the first optical mode of STO as a function of strain. The mode is in the 
(001) direction under compressive strain (triangular markers) and in the (110) direction under 
tensile strain (square markers). The mode goes soft at -1.2% and at 1.0% strain, corresponding to 
the ferroelectric phase transition and the divergence in the EO response.  
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Figure 3 

 

Figure 3: The displacement patterns of the first optical mode which goes soft and drives the 
structural phase transition. The strontium ions are colored green, the titanium ions blue, and the 
oxygen ions red. (a) The displacement pattern for the soft mode for compressive strain is shown 
here. The titanium ion moves in the 001  direction and the oxygen ions move in the opposite 
direction. The strontium ion moves in the same direction as the titanium ion, but its displacement 
is an order of magnitude smaller, so we do not label it here. (b) The displacement pattern for the 
soft mode under tensile strain is shown here along the 001 -direction. The titanium and 
strontium ions move in the 110  direction and the oxygen ions move in the 110  direction. 
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Figure 4 

 

 

Figure 4: The magnitudes of the largest EO tensor components for STO under compressive 
strain. The EO response peaks at -1.20% strain. 
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Figure 5 

 

Figure 5: The magnitudes of the largest EO tensor components under tensile strain. The EO 
response peaks at 1.00% strain. 
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Figure 6 

 

Figure 6: A schematic diagram of the 1-D oscillator model we use to illustrate the importance of 
anharmonicity in the crystal for the EO response. For an applied external electric field , the 
equilibrium position of the oscillator shifts to . Similarly, for an external field , the 
equilibrium position shifts to . The resonant frequency of the oscillator, ⁄ , does 
not change with applied external field for a harmonic potential, but it does for the anharmonic 
potential. 
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Tables 

Table 1: The largest converse piezoelectric effect contributions to the Pockels tensor at two 
compressive strains, and a comparison of their magnitudes to that of the clamped Pockels tensor. 
The converse piezoelectric effect has a relatively small contribution when compared to the 
clamped contribution and can safely be neglected.  

Strain Largest  Component (pm/V) Fraction of Largest  Component 

-1.0% 0.47 0.076 
-1.2% 28.90 0.122 

 

Table 2: Non-zero components of the anisotropic Grüneisen tensor of the first optical mode for 
the ground state, cubic structure and for two structures under compressive, in-plane strain. The 
Grüneisen parameter for this mode is largest at the strain at which the mode is softest, and at 
which the EO response diverges. The average of the components is also included for comparison 
with the isotropic case. Note that we do not label the polarization as it is in the (001)-direction 
for the strained cases.  

Strain γ11 = γ22 γ33 γavg 
0.0% 12.3 12.3 12.3 
-1.0% -39.0 237.9 53.3 
-1.2% -78.0 825.0 223.0 

 

Table 3: Isotropic Grüneisen parameter of the first optical mode for the ground state, cubic 
structure and for two structures under compressive, in-plane strain. The Grüneisen parameter for 
this mode is largest at the strain at which the mode is softest, and at which the EO response 
diverges.  

Strain Grüneisen Parameter 
0.0% 12.3 
-1.0% 53.8 
-1.2% 172.2 

 

Table 4: Anharmonic force coefficient in a simplified 1-D model of the phonon mode driving 
the EO response. The larger magnitudes are indicative of greater anharmonicity. For comparison, 
we applied the same approach to silicon, which is well known to be harmonic. The anharmonic 
contribution is much smaller than in STO. 

Material Strain υ (Bohr-1 s-2) 
 0.0% -0.59 

STO -1.0% -0.50 
 -1.2% -0.59 

Silicon 0.0% 0.04 
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