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Abstract

To understand superconductivity in Chevrel phase compounds and guide the search for inter-

esting properties in materials created with Chevrel phase molecules as building blocks, we use

ab-initio methods to study the properties of single Mo6X8 molecules with X = S, Se, Te as well as

the bulk solid PbMo6S8. In bulk PbMo6S8, the different energy scales from strong to weak are: the

band kinetic energy, the intra-molecular Coulomb interaction, the on-molecule Jahn-Teller energy

and the Hund’s exchange coupling. The metallic state is stable with respect to Mott and polaronic

insulating states. The bulk compound is characterized by a strong electron-phonon interaction

with the largest coupling involving phonon modes with energies in the range from 11 meV to 17

meV and with a strong inter-molecule (Peierls) character. A two-band Eliashberg equation analysis

shows that the superconductivity is strong-coupling, with different gaps on the two Fermi surface

sheets. A Bergman-Rainer analysis of the functional derivative of the transition temperature with

respect to the electron-phonon coupling reveals that the Peierls modes provide the most impor-

tant contribution to the superconductivity. This work illustrates the importance of inter-molecular

coupling for collective phenomena in molecular solids.
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I. INTRODUCTION

Synthetic chemists are now able to assemble molecular clusters into crystal structures

with atomic precision1, making the search for collective and emergent properties in those

super-atomic solids a timely and important topic. The notion of bootstrapping interesting

molecular properties and strong molecular interactions into important bulk properties is

an important theme in the field. For example, the relatively high transition temperature

superconductivity in some members of the alkali-doped fullerenes is believed to arise from

intra-molecular vibrational modes2,3 whereas in other alkali-doped fullerenes it is argued4 to

arise from intra-molecular electron-electron interactions. The recent discovery of supercon-

ductivity in endohedral gallide clusters also exemplifies the rich set of possibilities provided

by molecular solids.5

Binary and ternary molybdenum chalcogenides, also known as Chevrel phase compounds6

are of great interest in this context. Their chemical formula is MmMo6X8, where M is a

metal element and X=S, Se, Te. The bulk compound can be viewed as a molecular crystal

of Mo6X8 units on the sites of a rhombohedral lattice, with the metal ions M in interstitial

sites. The materials have been of sustained interest to both physicists and chemists because

they can be superconducting with transition temperatures as high as 15 K (PbMo6S8)7 and a

high upper critical field.7–9 Despite some hints at unconventional superconductivity,10,11 it is

generally accepted that the electron-phonon interaction provides the pairing mechanism.12,13

Chevrel compounds have also been proposed as promising multivalent cathode materials

in Mg batteries.14 Recent experimental efforts have been directed at synthesis of lower-

dimensional Chevrel phase compounds.15

Since Chevrel phase compounds are built of Mo6X8 molecular clusters, it is natural to

approach the physics via a model of relatively weakly coupled clusters.16–18 But if this model

is sufficient to understand superconductivity in Chevrel phase compounds is still not clear:

specifically the role of the intra and inter-cluster vibrational modes19 in the superconductivity

needs to be established.

In this paper we analyze PbMo6S8 as a model system to gain insight into the role of intra

and inter-site interactions in molecular crystals and into the specifics of superconductivity

in the Chevrel marterials. To approach this system, we first calculate properties of isolated

Mo6X8 molecules and use the results to derive and parametrize effective Hamiltonians in-
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cluding electron-electron and electron-phonon couplings. We study the bulk properties of

PbMo6S8, calculating electron and phonon band structures, the electron-phonon coupling

and the intra-molecular Coulomb interaction. Migdal-Eliashberg theory is then used to cal-

culate the phonon renormalization of the bands and the superconducting gap functions and

transition temperatures. Our key result is that the picture of intra-molecular interactions

combined with weak constant electronic hopping between molecular units is not an adequate

description of the bulk compounds. Inter-molecule effects, most notably phonons that sim-

ply do not exist in the single molecule case except as a translation or a rotation of model,

play a crucial role in setting the electronic properties including superconductivity while the

intra-molecular couplings have significantly weaker effects. Screening of the intra-molecular

Coulomb interaction is of significant importance important in Chevrel phase compounds.

This manuscript is organized as follows. In section II, we consider isolated Mo6X8

molecules, identifying the important low energy degrees of freedom and interactions within

the building blocks of the solids. Section III and IV discuss electron and phonon band struc-

tures, Hubbard U, Hund’s exchange J and electron-phonon interaction in bulk PbMo6S8.

In section V, we present the consequences of the electron-phonon interaction and diagnose

which phonons are most important for superconductivity. Section VI is a conclusion.

II. MOLECULAR PROPERTIES

Molecular solids such as the Chevrel phase materials are composed of molecular building

blocks (Mo6X8 in the present case) held together with other elements (metal ions such as

Pb, in the present case). The first step in understanding the properties of molecular solids

is to determine the relevant orbitals of the building blocks, and the electron-electron and

electron-phonon interactions relevant to these orbitals. To obtain this information we study

properties of isolated neutral and charged Mo6X8 molecules using Density Functional Theory

(DFT) methods with the PW91 generalized gradient approximation exchange-correlation

functional20 as implemented in the NWChem package.21 The basis set for molybdenum,

selenium, tellurium is LANL2DZ,22 and for sulfur is 6-31G**.23,24

Neutral Mo6X8 molecules (shown in panel (a) of Fig. 1) have the symmetry of the Oh point

group. Panel (b) of Fig. 1 shows that the highest occupied molecular orbitals (HOMO) are

three-fold degenerate while the lowest unoccupied molecular orbitals (LUMO) are two-fold
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FIG. 1. Panel(a): Structure of Mo6X8 molecule; Panel (b): relative HOMO, first and second

LUMO levels of neutral Mo6S8, Mo6Se8 and Mo6Te8. The HOMO levels of all three are set to 0.

degenerate and transform according to the Eg representation of Oh. We focus on the LUMO

doublet here because in the bulk solids of interest the M ions transfer electrons to the Mo6X8

clusters, so the Fermi level lies in bands derived from these orbitals. Energetically, the Eg

orbitals are separated from other molecular orbitals by 1.0 eV in Mo6S8; this separation

becomes smaller for Mo6Se8 and Mo6Te8. Plots of the Eg orbitals are shown in Fig. 2: each

of those two orbitals approximately consists of dx2−y2 orbitals arising from four coplanar Mo

ions.

We can estimate the intra-molecular electron-electron interaction U of isolated Mo6X2−
8

from the charging energy: U = EMo6X
3−
8

+EMo6X
1−
8
−2EMo6X

2−
8

and Hund’s exchange J from

the energy difference between singlet and triplet: 2J = Esinglet

Mo6X
2−
8

−Etriplet

Mo6X
2−
8

From Table II,

we can see U ≈ 3.5 eV for Mo6X8 molecules. J ≈ 100 meV for all three molecules, and is just

large enough to overcome the Jahn-Teller electron phonon coupling in Mo6X2−
8 molecules as

discussed below.

We now turn to the electron-phonon coupling, focussing on those modes that couple

linearly to the LUMO orbitals. Phonons couple to electron bilinearly; the electrons transform

as the Eg representation of Oh and the direct product of two Eg representations of the Oh
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FIG. 2. Two-fold degenerate LUMO orbitals of neutral Mo6S8 generated by VESTA3.25 The value

for iso-surface in the plot was chosen to be 0.02 a.u.

group can be reduced as Eg × Eg = a1g + a2g + eg, so we need to consider only vibrational

modes belonging to the a1g, a2g and eg representations. The eg mode is Jahn-Teller active,

which means it can lift the degeneracy and lower the symmetry of the molecule. The phonon

frequencies and normal mode vectors are computed by diagonalizing Hessian matrix, leading

to a phonon plus electron-phonon Hamiltion which we write representing the phonons in

a first quantized form using a normalized phonon operator Q. For A-symmetry (scalar)

phonons we have

H(Qα) =
h̄ωα

2
(− ∂2

∂Q2
α

+Q2
α) + gαQαnel, (1)

where nel is the number of electrons in the LUMO states, α labels phonon modes, and gα is

electron-vibration interaction.

gα is electron-vibration interaction matrix element

gα = 〈ψ| ∂V
∂Qα

|ψ〉, (2)

where V is electron-ion interaction potential, and |ψ〉 is the LUMO orbital.

For e-symmetry (doublet) phonon modes we represent the mode as a two component

vector ~Q = (Qx, Qz) and write

H( ~Qα) =
h̄ωα

2
(− ∂2

∂ ~Q2
α

+
∣∣∣ ~Qα

∣∣∣2) + gα ~Qα ·
∑
abσ

d†aσ~τ
abdbσ, (3)
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FIG. 3. Adiabatic potential energy surface of Mexican hat shape calculated for the eg vibrational

mode of Mo6S2−
8 at 31.0 meV with the occupation of two electrons (n = 2). Qx and Qz are

degenerate vibrational modes, and they are renormalized by
√

h̄
mω , thus dimensionless. EJT is

Jahn-Teller stability energy due to structural distortion.

where τ is a Pauli matrix and a, b label the two states of the electronic Eg doublet.

The adiabatic potential energy surface (APE) for phonon mode α is defined as the ground

state eigenvalue of Eq. 1,3 with the kinetic energy (∂Qα) terms neglected. The difference

between the value at the minimum and the value at Q = 0 defines the phonon stabilization

energy

ωeff,α =
g2
αρ

2
el

2ωα
. (4)

Here ρel is the LUMO occupancy for the A-symmetry modes and is the maximal orbital

disproportionation (ρ = 1 for n = 1, 3 and ρ = 2 for n = 2) in the E (Jahn-Teller) case.

The coupling constants gα are determined from the calculated APES.

For A-symmetry phonons the APE is a parabola with minimum at Qα = −gαnel
ωα

. We find
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TABLE I. Quadratic frequency, linear coupling energy, and the Jahn-Teller stabilization energy for

occupation number n = 1, 2, 3. For the neutral molecule, ω1 = 32.8meV and ω2 = 29.9 meV. For

occupation n = 4, the Jahn-Teller effect is no longer active, but mode softening is still visible.

Occupation n = 1 n = 1 n = 2 n = 2 n = 3 n = 3

modes ω1 ω2 ω1 ω2 ω1 ω2

ω (meV) 31.8 28.4 31.0 27.8 28.5 27.3

g (meV) 49.4 27.0 46.0 23.8 38.8 18.8

k= g/ω 1.55 0.95 1.48 0.86 1.36 0.69

EJT (meV) 38.4 12.8 136.2 40.8 26.4 6.5

two A modes, with frequencies of 41.6 and 50.4 meV. The associated stabilization energies

are 0.2 and 7 meV, respectively, too small to be of relevance to the issues discussed here.

We neglect the A symmetry phonons henceforth.

For the E (doublet) phonons the APES has the familiar “mexican hat” form shown

for one of the phonons in Fig. 3. At the quadratic level considered here the theory has

the full O(2) symmetry in the phonon modes, so energy is a function only of ρ =
∣∣∣ ~Q∣∣∣.

Higher order terms in Q lift the degeneracy leading to three degenerate minima (visible

on close inspection in Fig. 3) as required by the Oh symmetry. We find two E-symmetry

modes; their frequencies, linear coupling parameters, and stabilization energies as function of

occupations of LUMO states are listed in Table I for Mo6S8. The coupling of the mode at high

frequency is much larger than that of the mode at low frequency. As the occupation number

increases, the vibrational modes become slightly softer and the linear coupling parameter

g becomes weaker. The total stabilization energy is the sum of the stabilization energies

of the two modes and is shown in Table II for the three different choices of calcogen ions.

As the chalcogenide elements become heavier, the Jahn-Teller stabilization energy decreases

significantly, which correlates with the manner in which size and flexibility of the molecules

change with chalcogenide element.

In the isolated singly charged molecule Mo6X1−
8 , the Jahn-Teller effect (EJT ≈ 50 meV)

is unopposed and we expect the molecule to distort away from a cubic shape. For the

doubly charged Mo6X2−
8 , the Jahn-Teller energy is about four times as large as it is for the

singly charged case, however, the distortion energy is reduced by the Hund’s exchange J
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(≈ 100 meV). Our calculation indicates a spin triplet ground state for Mo6X2−
8 , but the

energy difference is small enough that this conclusion should be treated as preliminary.

The large value of the on-site Coulomb interaction, which is much greater than the n = 2

Jahn-Teller stability energy, implies that an ensemble of singly charged molecules will not

disproportionate into bipolarons.

The Jahn-Teller stabilization energy is a useful measure for comparing the relative

strengths of the Jahn-Teller effects across different material families. The stabilization en-

ergy 186 meV we find for Mo6S8 at n = 2 is smaller than the 500 meV found in LaMnO3
26

or the 215 meV and 341 meV found for LiMnO2 and LiCuO2.27

TABLE II. Total Jahn-Teller stabilization energy, charging energy and Hund’s exchange for

Mo6X2−
8 .

Mo6S2−
8 Mo6Se2−

8 Mo6Te2−
8

EJT (meV) 186 145 86

J (meV) 103 100 90

U (eV) 3.7 3.5 3.4

III. BULK COMPOUND: ELECTRONIC PROPERTIES

A. Electronic Band Structure

We next study the electronic structure of PbMo6S8 solid via DFT calculations with PBE

as exchange-correlation functional,28 as implemented in the Quantum Espresso package.29

Unless otherwise noted the structures are fully relaxed both in terms of atomic positions

and lattice constants. Norm-conserving separable dual-space Gaussian pseudopotentials30

were used for all elements. The kinetic energy cutoff for wavefunctions is 80 Rydberg and

the convergence threshold for force is 1.0×10−4 Hartree/Bohr. Structural relaxations are

done with 4× 4× 4 Brillouin zone grid; and band structure calculations are also done with

density generated on that k-point grid.

The left panel of Fig. 4 shows the band structure and density of states (DOS) of PbMo6S8.

The relaxed lattice constant and bond angle are a = 6.55 Å and α = 89.12◦, in good

agreement with experimental values of a = 6.55 Å and α = 89.33◦.31 Consistent with the
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single-molecule results, we see that only two bands cross the Fermi level; these are derived

from the Eg states discussed above. The band width of the two Eg-derived bands is W ≈ 0.7

eV. Near the R-point the energy of the Eg bands is lower than that of the other filled bands,

but there are no band crossings, thus no band entanglement, enabling a straightforward

Wannier analysis of the two conduction bands.

The right panel shows the total density of states and its projection onto the component

atoms. The dominant contribution to the density of states near Fermi surface is from Mo

orbitals, with some contribution from S and negligible contribution from Pb. The Fermi

level is at a local and sharply peaked maximum in the density of states, consistent with

previous arguments by Andersen and co-workers18 based on the pressure dependence of the

superconducting transition temperature. The total DOS at Fermi level is NBS = 10.8/(eV

unit-cell), about a factor of 4 smaller than the experimental value Nγ = 44.4/(eV unit-

cell). (See Ref. 32 and references therein) The dominant source of the difference is the
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FIG. 4. Band structure (left panel) and density of states (right panel) of PbMo6S8. Since the unit

cell is very close to be orthorhombic, we used high symmetry points of simple orthorhombic lattice

in band structure. The Fermi level is set to 0.

9



Γ Γ

X

Y

Z

R

Γ

X

Y

Z

Γ

FIG. 5. Depiction of the Fermi surface of PbMo6S8 formed by the lower band (left panel) and the

higher band (right panel) in the primitive cell of the reciprocal lattice. Both plots were generated

by the XCrySDen package.35

electron-phonon coupling, as we will show below.

Using the Wannier9033 implementation of the maximally-localised Wannier function

method34 we studied the two Eg bands around Fermi level in some detail. From our calcu-

lation, the total occupation of these two bands is 2.0, which is consistent with a scenario

in which each Pb transfers two electrons to a Mo6S8 cluster. The occupations of the lower

and higher bands are 1.41 and 0.59, respectively. Two Fermi surfaces formed by the lower

and higher bands are shown in Fig. 5. For PbMo6S8, two sheets of Fermi surfaces can be

found, but they are not always well separated. This has implications for superconducting

order parameters, as we will discuss in section V B. The Fermi surface associated with the

lower band centered around Γ point is hole-like and the Fermi surface associated with the

higher band is electron-like. Two dimensional cuts of the Fermi surfaces are shown in Fig. 6.

On the XY plane through the R point (right panel), two separated Fermi surfaces are clear

with the larger one as the electron pocket. It should be noted that two Fermi sheets touch

each other at some places in Brillouin zone. For example, at the Γ point, two bands can be

found at Fermi level.
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FIG. 6. Density of states at the Fermi level of PbMo6S8 in the XY planes through the Γ point (left

panel) , through the R point (right panel).

B. Electron-electron interactions

We performed constrained random phase approximation (cRPA) calculations of the ef-

fective interactions between electrons in the two frontier bands, following the approach de-

veloped by Aryasetiawan et al.36 The polarization matrix in reciprocal space was calculated

in the random phase approximation as implemented in the BerkeleyGW package37 with a

2× 2× 2 k-point mesh, 100 unoccupied states and kinetic energy cutoff of 5 Ry for the po-

larization matrix. The result is divided into contributions between states in the low energy

sector (P le), which consists of two bands crossing the Fermi level, and processes involving

transitions in at least one other band (P r) as

P tot
GG′(q) = P le

GG′(q) + P r
GG′(q). (5)

A dielectric matrix representing screening by the other degrees of freedom is constructed

from P r as

εGG′(q) = δGG′ − νGG′(q)P r
GG′(q), (6)

and the partially screened interaction is defined as

W (r, r′) =
4π

Ω

∑
qGG′

νGG′(q)ei(q+G)·rε−1
GG′

(q)ei(q+G′)·r′ , (7)

where νGG′(q) is the bare Coulomb interaction and Ω is the volume of the unit cell.
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TABLE III. The values of the bare and screened local interactions in eV.

Ubare UcRPA U
′
bare U

′
cRPA Jbare JcRPA

5.36 0.28 5.07 0.18 0.139 0.044

The effective on-molecule interactions, namely the Hubbard U and Hund’s exchange

coupling J, are obtained by projecting W onto the two Eg orbitals of the isolated molecule:

Unm =

∫ ∫
drdr′φ∗n(r)φn(r)W (r, r′)φ∗m(r′)φm(r′), (8)

Jnm =

∫ ∫
drdr′φ∗n(r)φm(r)W (r, r′)φ∗n(r′)φm(r′). (9)

The bare and screened local electron-electron interactions are listed in Table III. The

bare interactions are larger than the charging energies reported in section II because the

isolated molecule calculations include relaxation of other electronic degrees of freedom (on-

molecule screening). We find that the screening is almost complete; the screened interactions

are factors of ∼ 20 less than the bare interactions, in contrast to other other molecular

materials including κ-ET organic,38 alkali-doped C60 and aromatic compounds.39 The strong

reduction of the interaction can be understood in terms of the very large dielectric constant

arising from the rest of the bands, εcRPA = limG+q→0 1.0/εcRPAGG
−1(q) = 24.0. We also observe

that, in contrast to the simple perovskite transition metal oxides even the Hunds coupling is

significantly renormalized, consistent with reported results for organic molecular materials.39

Given the band width W ≈ 0.7 eV found in band structure calculations, the interaction

strengths we find confirm that PbMo6S8 is far from the Mott transition regime and that local

correlation effects may be neglected. We may simply consider the material to be metallic

with essentially weak electronic correlations.

IV. PHONON BAND STRUCTURE AND ELECTRON-PHONON COUPLING

A. Phonon Band Structure

Starting from the fully relaxed electronic structures presented in the previous section

we used density functional perturbation theory (DFPT)40 to calculate the phonon band

structure and density of states shown in Fig 7. The calculated phonon density of states agrees

reasonably well with the density of states inferred from neutron scattering experiments.41
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FIG. 7. Calculated phonon band structure (left panel), and calculated phonon density of states

and measured neutron weighted phonon density of state (right panel), from Ref. 41.

Both calculation and experiment show a sharp peak at about 4 meV, and two gaps around

17 meV and 40 meV.

We have calculated the normal modes and find that the sharp peak in the phonon DOS

at 4 meV arises from two modes with large Pb displacements (these modes also contribute

to the very large dielectric constant), in agreement with the experimental observation that

the peak is absent in Chevrel phase compounds without Pb ions.41,42 Previous work had

suggested that the minimum in the DOS at 17 meV marked the separation between internal

(on-molecule) and external (intermolecular) vibrations.41,43 We find 2 internal modes below

17 meV, which suggests hybridization between internal and external modes is present below

17 meV, similarly to the result found with Born-von Kármán lattice dynamics calculations

with Lennard-Jones potentials.44
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B. Electron-Phonon Coupling

We have used DFPT to calculate the matrix elements gυij(k,p) describing the scattering

of an electron at momentum p in band j to momentum k in band i by emission or absorption

of a phonon mode υ at momentum k−p. The calculations were performed on a 4×4×4 grid

in the Brillouin zone and then interpolated onto fine grids via electron and phonon Wannier

functions following Refs. 45, 46 as implemented in the EPW code.47 The fine electron grid

is 32 × 32 × 32 and the fine phonon grid is 16 × 16 × 16. Computationally, phonon coarse

grid is the most expansive one to increase. When phonon coarse grid expands from 23 to

33 and 43, calculated total electron-phonon coupling λtot goes from 1.10 to 2.15 and 2.29.

Convergence with respect to electron and phonon find grid is quite good. Difference of λ

between grids of size 243, 123 and 323, 163 is smaller than 0.1.

From the matrix elements we calculate the band-resolved electron-phonon coupling func-

tion α2F as

α2Fij(ν) =
1

Ni(0)

∑
k,p,υ

|gυij(k,p)|2δ(εik)δ(εjk−p)δ(ν − ωυp), (10)

and the band-resolved total energy-phonon coupling constant as

λij = 2

∫ ∞
0

α2Fij(ν)

ν
dν. (11)

Band-resolved electron-phonon spectral functions and coupling constants are shown in

Fig. 8. The four αFij have similar structures, and give similar coupling constants. This

is very different from the two-band superconductor MgB2, for which intra-band coupling is

much stronger than inter-band coupling.48 We believe the difference arises because in MgB2

the two bands arise from physically distinct π and σ orbitals whereas in the present case

the two bands come from an on-molecule doublet.

The total coupling λtot =
∑

ij λijNi(0)/(Ni(0) + Nj(0)) = 2.29, is exceptionally large,

larger than other found in other materials with strong electron-phonon couplings.49 Density

state at Fermi level derived from experimental specific heat Nγ = 44.4 /(eV unit-cell) (see

Ref. 32 and references therein). Our band structure calculations combined with electron-

phonon coupling gives NBS × (1 + λ) = 36.3 / (eV unit-cell). The value is consistent

with that estimated by Andersen and collaborators18 but inconsistent with other published

estimates.32
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FIG. 8. Band-resolved electron-phonon interaction functions α2F from Eq. 10 and electron-phonon

coupling constants, from Eq. 11.

From Fig. 8, one sees that the modes with largest coupling lie in the frequency range

from 11 meV to 17 meV. At the Γ point, Pb-dominated modes form a low-lying transverse

doublet around 5 meV and a longitudinal singlet around 10 meV. After these three modes,

five modes can be observed below the gap at 17 meV. The atomic movement associated

with these five phonon modes at the zone center (Γ point) and zone boundary (X point)

are represented in Fig. 9. At the zone center, these five modes exhibit torsional character.

External torsional modes have previously been suggested to be important for superconduc-

tivity based on a molecular crystal model.43 At the zone boundary, these five modes show a

character consistent with physics of dimerization, as a whole cluster rigidly moves towards

its counterpart in the neighboring unit cell, albeit some mixing with other modes. Phonon

modes with these characteristics are consistent with Peierls coupling.50 At the zone center,

phonons are limited to one unit cell, and rotations can impact the electron hopping between
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FIG. 9. The five Γ-point phonon modes of PbMo6S8 with energies in the range of 11.0 meV to 15.6

meV ((a)-(e)) and the X point ((f)-(j)) of Brillouin zone, Pb atom is at one vertex of the cubic

unit cell. Green arrows represent real space motion of atoms in the displayed phonon modes. Each

sub-plot was generated by the XCrySDen package.35

molecules by changing overlaps between molecular orbitals, since molecular orbitals are gen-

erally not spherical. (as shown in Fig.2) At the zone boundary, phonons are extended to

two neighboring unit cells, and dimerization can modify electron hopping by changing the

distance between molecules. Based on the above observations, we conclude that in Chverel

phase compounds the most important contributions to the electron-phonon coupling are

Peierls type couplings from 11 meV to 17 meV.

To further understand physics of those phonon modes, we calculated the variation of

band structure due to the atomic displacement of the mode shown in panel (e) of Fig. 9.

As we can see in Fig. 10, for the 11th phonon mode at Γ point, the band width increases

with atomic displacement; but the degeneracy from the Γ point to the R point is preserved.

This degeneracy implies the phonon mode has no Jahn-Teller character; the increase of

band width illustrates that the main effect is an increase in the overlap of each Mo6S8 unit.

This is the expected behavior from Peierls coupling: inter-molecular hoppings vary with

vibrations; but intra-molecular states remain stationary. All information presented leads to

the conclusion that strongest electron-phonon coupling in Chevrel phase compounds occurs

via Peierls active modes.
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FIG. 10. Band structure of the 11th phonon mode at the Γ point, as shown in panel (e) of Fig. 9.

Atomic poitions X for each calculation are determined by X = X0 + αu. X0 are the equilibrium

atomic positions and u is the phonon mode displacement from DFPT calculation.

V. CONSEQUENCES OF THE ELECTRON-PHONON INTERACTION

A. Normal State Self Energy

The normal-state self-energy due to the electron-phonon interaction was calculated in

the Migdal approximation, using the one-loop diagram with non-interacting electron and

phonon Green’s functions and electron-phonon matrix elements obtained from our band

structure. We separate the integral over the electron momentum into an energy and a fermi

surface integral and focussing on the band-diagonal terms in the self energy we obtain

Σii(z) =

∫ ∞
−∞

dε
∑
lυ

∫ ∞
0

dνα2Fil(ν)[
1 + nυν − f(ε)

z − (ν + ε)
− nυν + f(ε)

z − (−ν + ε)
]. (12)
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Here, i,l label the electronic bands, and υ labels phonon modes.

After analytically continuing the frequency argument z to the real axis, we compute the

electron spectral function at T = 0 as

Ai(k, ω) =
1

π
=
(

1

ω − εi(k)− Σii(ω − iδ)

)
. (13)

Results are shown in Fig. 11. We see that the electron-phonon interaction significantly

modifies the dispersion only for energies within ∼ 20 meV of the fermi surface, leading

to velocity renormalization of a factor of 2-3 at these energies. The near correspondence of

bare and renormalized velocities at higher energies shows that phonons at higher frequencies,

including the internal Jahn Teller modes at ∼ 30 meV, have a relatively small effect on the

spectrum.

B. Superconductivity

With band-resolved electron-phonon spectral function defined in Eq. 10 and the self-

energy evaluated in the Migdal approximation, we study strong coupling two-band su-

perconductivity using the Eliashberg equations, following previous work on MgB2
51 and

Mg1−xAlxB2.52 The equations may be written on the imaginary axis as

∆i(iωn)Zi(iωn) =

πT
∑
m,j

[λij(iωm − iωn)− µ∗ij]
∆j(iωm)√

ω2
m + ∆2

j(iωm)
,

(14)

Zi(iωn) = 1 +
πT

ωn

∑
m,j

λij(iωm − iωn)
ωm√

ω2
m + ∆2

j(iωm)
, (15)

where ∆(iωn) and Z(iωn) are superconducting gap and renormalization function; ωn are

discrete Matsubara frequencies at temperature T , and λij is:

λij(iωm − iωn) = 2

∫ ∞
0

dΩ
Ωα2Fij(Ω)

Ω2 + (ωn − ωm)2
. (16)

We estimated the Coulomb pseudopotential µ∗ij within this theory via µij = U
√
Ni(0)Nj(0).

U = 0.28 eV used here is from a cRPA calculation, which gives µij ≈ 1.4. The Coulomb

pesudopotential reduced by retardation effects leads to53

µ∗ij =
µij

1 + µij ln(Eele/ωph)
. (17)
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FIG. 11. False-color representation of electron spectral function with (shaded) and without (white

line) electron-phonon interactions for near Fermi-surface momenta along the line from the R to the

X point of the Brillouin zone.

The typical electron energy Eele is approximated by the half band width of Eg bands:

W/2 ≈ 0.35 eV, and the relevant phonon frequency ωph ≈ 12 meV. (See the Bergmann-

Rainer analysis below) This method yields a Coulomb pseudopotential value of µ∗ij ≈ 0.24.

Eq. 14 and Eq. 15 were solved on the imaginary axis and the gap functions were ana-

lytically continued to the real axis via Padé approximants,54 as shown in Fig. 13. Super-

conducting gaps at the Fermi level as function of temperature are shown in Fig. 12. The

Tc from our calculation is found out to be 18.8 K, which is larger than experimental value

of 15 K by about 25%. In the framework of the two-band isotropic Eliashberg equations

used in this work, two possible reasons for this are the inadequate treatment of the Coulomb

interaction and the anisotropy of Fermi surfaces. As shown in recent work,55,56 retardation
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FIG. 12. Calculated superconducting gaps as function of temperature.

effects are less effective in systems with strong coupling and narrow bands, which is the case

for Chevrel phase compounds. In order to reproduce the experimental Tc with the calculated

α2Fij, the Coulomb pseudopotential would need to be µ∗ij ≈ 0.9. We found two isotropic su-

perconducting gaps are ∆1 = 3.93 meV and ∆2 = 3.59 meV. Earlier tunneling spectroscopy

had ∆ = 2.4 meV;57 more recent experiment shows ∆1 = 3.1 meV and ∆2 = 1.4 meV.13

The large gap from our calculation is reasonable, but the overestimation of the smaller gap

is significant. This discrepancy may arise from an exaggeration of α2F from the DFPT

calculations. Anisotropic calculations based on α2F from DFPT also overestimate Tc for

multi-band superconductors such as MgB2
58 and Ca-intercalated bilayer graphene.59

Earlier interest in Chevrel phase superconductors stemmed from their very high upper

critical field Hc2, which can be related to coherence length ξ0 via Hc2 ∝ 1/ξ2
0 . Indeed a

very short coherence length (20Å) has been reported based on magnetic measurements.60

We can estimate coherence length within BCS theory via the superconducting gap and
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FIG. 13. Real and imaginary part of the two gap functions as a function of energy as extracted

from Padé approximants

the Fermi velocity ξ0 = h̄vF
π∆

. We calculated the Fermi velocities for two bands based on

the DFT band structure, and they are renormalized by the electron-phonon coupling as

v∗iF = viF/(1 +
∑

j λji). For the lower band v∗lbF = 1.09 eV·Å, ξ∗lb0 = 173 Å and the higher

band v∗hbF = 0.85 eV·Å, ξ∗hb0 = 136 Å. The calculated coherence length is about one order

of magnitude larger than the those reported in experiment. This is not necessarily a con-

tradiction with experiment, Chevrel phase superconductors are known to be found in the

dirty limit,32,61 which implies measured coherence length is not an intrinsic property of pure

crystal. Previously the mean-free path l was estimated to be about 4 Å.62 ξ =
√
l × ξ∗ gives

a coherence length about 25 Å, which is very close to reported experimental number 20 Å.

We now extend the calculations to the other Chevrel phase compounds, assuming the

electron-phonon matrix elements gυij(k,p) take on values of those of PbMo6S8, but using the

material specific electronic band structures. Five Chevrel phase compounds were studied,
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TABLE IV. Experimental and calculated values of Tc, lattice constants, and the DOS for five

Chevrel phase compounds. 1 and 2 label the lower and the higer band. Experimental data are

from Ref. 61 and Ref. 63.

Exp. Tc Cal. Tc Exp. a (Å) Cal. a (Å) N1(0) N2(0) N(0)tot

PbMo6S8 15.0 18.8 6.55 6.55 5.66 5.10 10.78

SnMo6S8 13.0 17.2 6.52 6.52 6.12 4.30 10.42

YbMo6S8 8.8 16.2 6.50 6.49 3.52 6.74 10.26

LaMo6S8 7.1 11.0 6.51 6.52 0.94 6.60 7.54

YMo6S8 3.0 7.6 6.45 6.46 0.28 5.58 5.96

and they can be put into two categories: M2+Mo6S8 and M3+Mo6S8, corresponding to two

distinct doping levels for the Mo6X8 units. It is established that Yb, Sn and Pb belong

to the first type and Y and La belong to the second type.61 As shown in Table IV, the

main difference between those two types is the occupation of lower band around Fermi level.

For M2+Mo6S8, occupation of the lower band is incomplete, so there still is large DOS

at the Fermi level. For M3+Mo6S8, the occupation of the lower band is close to full and

the occupation of higher band is close to half. As a result, the lower band has very little

contribution to the DOS at the Fermi level, and one finds effectively a single band situation.

As shown in Table IV, our calculations reproduce the experimental trends across material

family very well. The lattice constants are quantitatively reproduced as is the variation of

the transition temperatures. The calculated transition temperatures correlate with the total

density of state at the Fermi level. This correlation can also explain that PbMo6S8 has the

highest Tc in Cheverl phase compounds, since Pb2+ has largest ionic radius in the family of

M2+Mo6S8 compounds. Our calculation overestimates the absolute transition temperatures,

with the overestimation being larger for the lower Tc values. A more detailed study of

electron-phonon coupling across the entire material family is an important topic for future

research.

To further address the question of which phonon modes are most important for super-

conductivity, we calculate the functional derivative of Tc with respect to α2Fij(ω) following

the scheme invented by Bergmann and Rainer,64 and later extended to two-band systems

by Mitrović.65 The inter-band spectral functions are not independent: α2Fij(ω)/α2Fji(ω) =
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FIG. 14. Total electron-phonon spectral function, and functional derivative of Tc with respect to

band-resolved spectral function. 1 and 2 label lower and higher band

Nj(0)/Ni(0). Only their combination as expressed through the off-diagonal spectral function

defined in Eq. 18 is meaningful,66

α2Fod(ω) =
Ni(0)α2Fij(ω) +Nj(0)α2Fji(ω)

Ni(0) +Nj(0)
. (18)

Functional derivatives of relevant quantities are shown in Fig. 14. Since three the α2Fij

are not very different, it is expected that their functional derivatives show similar features.

At low frequencies, the functional derivatives increase linearly with frequency, and they

reach a maximum at about 12 meV. This number is close to earlier suggestions based on

the comparison of low frequency phonons in PbMo6S8 and PbMo6Se8.41–43

As shown in section II, Jahn-Teller active intra-molecular modes are found at much higher

frequencies than 12 meV. The Bergmann-Rainer analysis shows their relevance to supercon-

ductivity is eclipsed by modes at lower frequencies. Combined with the fact that phonons

23



from 11 meV to 17 meV have the most important effect on the normal state spectrum, it

is clear that phonon modes in this frequency range are the drivers of superconductivity in

Chevrel phase compounds.

This finding is significant because inter-molecular phonon modes are generally thought to

not be relevant for superconductivity, because low-frequency phonon modes are less perti-

nent for superconductivity than the high-frequency ones.67 As mentioned in section I, super-

conductivity in faced-centered cubic X3C60 is thought to mainly arise from intra-molecular

vibrational modes.2,3 On the other hand, Peierls couplings are frequently discussed in the

context of metal-insulator transitions in low-dimensional materials. In particular, it has been

shown for one-dimensional organic conductors, the Peierls instability suppresses supercon-

ductivity at lower temperatures.68–70 Our work shows that the Peierls coupling is important

for superconductivity in 3D crystal such as Chevrel phase compounds.

VI. CONCLUSION

We studied intra and inter-molecular interactions in Chevrel phase compounds, using

PbMo6S8 as a model compound. Band structure calculations revealed two bands around

the Fermi level which originate from two Eg molecular orbitals and are about 0.7 eV wide.

Constrained random phase approximation calculations estimated an on-site Hubbard U value

of U = 0.28 eV and a value of Hund’s exchange J = 0.04 eV. Moreover, quantum chemistry

calculations of isolated molecules were carried out to parameterize the Jahn-Teller effect in

Mo6X8 molecules. The Jahn-Teller stability energy is EJT = 0.18 meV, which is smaller

than the band kinetic energy and intra-molecular Coulomb interaction values, but larger

than the Hund’s exchange. This energetic ordering is consistent with a metallic ground

state. If the band kinetic energy can be reduced via methods like chemical intercalation to

the extent that materials are in the strongly correlated regime, the ground state could be a

non-magnetic insulator because molecular Jahn-Teller effect suppresses Hund’s coupling.71

Density functional perturbation theory calculations with Wannier interpolations yield

very strong electron-phonon coupling values, with λtot = 2.3. Visible modifications to the

electronic bands near the Fermi level can be found in our calculated ARPES spectra. Band-

resolved electron-phonon spectral functions reveal that the largest couplings are due to

phonon modes in frequency range from 11 meV to 17 meV. Phonon modes in this frequency
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range show the characteristics of Peierls-active modes.

Superconductivity was studied by two-band Eliashberg equations, with band-resolved

electron-phonon spectral functions. Superconducting properties, Tc and the larger super-

conducting gap are all in reasonable agreement with experiments. Our current theory overes-

timates the the smaller superconducting gap. A Bergmann-Rainer analysis revealed that the

most important phonon modes for superconductivity have frequencies around 12 meV, which

is the spectral location of the largest electron-phonon coupling in PbMo6S8. To conclude,

our work showcases the importance of inter-molecular couplings for collective electronic be-

havior in molecular solids by illustrating a vital aspect that is overlooked in the standard

molecular crystal model.72 Internal Jahn-Teller active modes which should be important for

ground state magnetic properties in the strongly correlated regime, are not responsible for

superconductivity in Chevrel phase compounds.
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19 F. Pobell, D. Rainer, and H. Wühl, “Electron-phonon interaction in chevrel-phase compounds,”

in Superconductivity in Ternary Compounds I: Structural, Electronic, and Lattice Properties,

edited by Ø. Fischer and M. B. Maple (Springer Berlin Heidelberg, Berlin, Heidelberg, 1982)

pp. 251–277.

20 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and

C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

21 M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. V. Dam, D. Wang,

J. Nieplocha, E. Apra, T. Windus, and W. de Jong, Computer Physics Communications 181,

26



1477 (2010).

22 P. J. Hay and W. R. Wadt, The Journal of Chemical Physics 82, 270 (1985).

23 G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. AlLaham, W. A. Shirley, and J. Mantzaris,

The Journal of Chemical Physics 89, 2193 (1988).

24 G. A. Petersson and M. A. AlLaham, The Journal of Chemical Physics 94, 6081 (1991).

25 K. Momma and F. Izumi, Journal of Applied Crystallography 44, 1272 (2011).

26 A. J. Millis, Phys. Rev. B 53, 8434 (1996).

27 C. A. Marianetti, D. Morgan, and G. Ceder, Phys. Rev. B 63, 224304 (2001).

28 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

29 P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car,

C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli,

P. Delugas, R. A. D. Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann,

F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Kkbenli, M. Lazzeri,

M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto,

S. Ponc, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov,

T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, Journal of Physics: Condensed Matter

29, 465901 (2017).

30 C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).

31 M. Marezio, P. Dernier, J. Remeika, E. Corenzwit, and B. Matthias, Materials Research Bulletin

8, 657 (1973).

32 Ø. Fischer, Applied physics 16, 1 (1978).

33 A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari,

Computer Physics Communications 185, 2309 (2014).

34 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

35 A. Kokalj, Computational Materials Science 28, 155 (2003), proceedings of the Symposium on

Software Development for Process and Materials Design.

36 F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schönberger, Phys. Rev. B 74, 125106 (2006).

37 J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, Computer

Physics Communications 183, 1269 (2012).

38 K. Nakamura, Y. Yoshimoto, T. Kosugi, R. Arita, and M. Imada, Journal of the Physical

Society of Japan 78, 083710 (2009).

27



39 Y. Nomura, K. Nakamura, and R. Arita, Phys. Rev. B 85, 155452 (2012).

40 S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).

41 B. P. Schweiss, B. Renker, E. Schneider, and W. Reichardt, in Superconductivity in d- and

f-Band Metals, Second Rochester Conference, edited by D. H. Douglass (Springer, Boston, MA,

1976) pp. 189–208.

42 S. D. Bader, S. K. Sinha, and R. N. Shelton, in Superconductivity in d- and f-Band Metals,

Second Rochester Conference, edited by D. H. Douglass (Springer, Boston, MA, 1976) pp. 209–

221.

43 S. D. Bader, G. S. Knapp, S. K. Sinha, P. Schweiss, and B. Renker, Phys. Rev. Lett. 37, 344

(1976).

44 S. D. Bader and S. K. Sinha, Phys. Rev. B 18, 3082 (1978).

45 F. Giustino, M. L. Cohen, and S. G. Louie, Phys. Rev. B 76, 165108 (2007).

46 F. Giustino, Rev. Mod. Phys. 89, 015003 (2017).

47 S. Ponc, E. Margine, C. Verdi, and F. Giustino, Computer Physics Communications 209, 116

(2016).

48 A. A. Golubov, J. Kortus, O. V. Dolgov, O. Jepsen, Y. Kong, O. K. Andersen, B. J. Gibson,

K. Ahn, and R. K. Kremer, Journal of Physics: Condensed Matter 14, 1353 (2002).

49 P. Allen, in Handbook of Superconductivity, edited by C. P. P. Jr. (Academic Press, San Diego,

CA, 2000) pp. 478–489.

50 G. Mahan, Many-Particle Physics (Springer; 3rd ed, 2000) Chap. 7, pp. 433–495.

51 E. J. Nicol and J. P. Carbotte, Phys. Rev. B 71, 054501 (2005).

52 G. Ummarino, R. Gonnelli, S. Massidda, and A. Bianconi, Physica C: Superconductivity 407,

121 (2004).

53 P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

54 H. J. Vidberg and J. W. Serene, Journal of Low Temperature Physics 29, 179 (1977).

55 J. Bauer, J. E. Han, and O. Gunnarsson, Journal of Physics: Condensed Matter 24, 492202

(2012).

56 J. Bauer, J. E. Han, and O. Gunnarsson, Phys. Rev. B 87, 054507 (2013).
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