
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Geometries of edge and mixed dislocations in bcc Fe from
first-principles calculations

Michael R. Fellinger, Anne Marie Z. Tan, Louis G. Hector, Jr., and Dallas R. Trinkle
Phys. Rev. Materials 2, 113605 — Published 26 November 2018

DOI: 10.1103/PhysRevMaterials.2.113605

http://dx.doi.org/10.1103/PhysRevMaterials.2.113605


Geometries of edge and mixed dislocations in bcc Fe from first principles

calculations

Michael R. Fellinger,1, ∗ Anne Marie Z. Tan,1, 2 Louis G. Hector Jr.,3 and Dallas R. Trinkle1

1Department of Materials Science and Engineering,

University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
2Department of Materials Science and Engineering,

University of Florida, Gainesville, Florida 32611, USA
3General Motors Global R&D Center,

30500 Mound Road, Warren, MI 48092, USA

(Dated: November 4, 2018)

1



Abstract

We use density functional theory (DFT) to compute the core structures of a0[100](010) edge,

a0[100](011) edge, a0/2[1̄1̄1](11̄0) edge, and a0/2[111](11̄0) 71◦ mixed dislocations in body-centered cu-

bic (bcc) Fe. The calculations are performed using flexible boundary conditions (FBC), which effectively

allow the dislocations to relax as isolated defects by coupling the DFT core to an infinite harmonic lattice

through the lattice Green function (LGF). We use the LGFs of the dislocated geometries in contrast to most

previous FBC-based dislocation calculations that use the LGF of the bulk crystal. The dislocation LGFs

account for changes in the topology of the crystal in the core as well as local strain throughout the crystal lat-

tice. A simple bulk-like approximation for the force constants in a dislocated geometry leads to dislocation

LGFs that optimize the core structures of the a0[100](010) edge, a0[100](011) edge, and a0/2[111](11̄0)

71◦ mixed dislocations. This approximation fails for the a0/2[1̄1̄1](11̄0) dislocation however, so in this case

we derive the LGF from more accurate force constants computed using a Gaussian approximation potential.

The standard deviations of the dislocation Nye tensor distributions quantify the widths of the dislocation

cores. The relaxed cores are compact, and the local magnetic moments on the Fe atoms closely follow the

volumetric strain distributions in the cores. We also compute the core structures of these dislocations using

eight different classical interatomic potentials, and quantify symmetry differences between the cores using

the Fourier coefficients of their Nye tensor distributions. Most of the core structures computed using the

classical potentials agree well with the DFT results. The DFT core geometries provide benchmarking for

classical potential studies of work-hardening, as well as substitutional and interstitial sites for computing

solute-dislocation interactions that serve as inputs for mesoscale models of solute strengthening and solute

diffusion near dislocations.

Keywords: dislocation; edge, mixed; bcc Fe; iron; first principles; DFT
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I. INTRODUCTION

Steel alloys are used in a wide variety of structural applications due to their low cost and the

relative ease of tuning their mechanical properties via alloying and processing compared to many

other structural materials1,2. The ferrite phase found in many steels is body-centered cubic (bcc)

Fe containing C and other solute atoms1–3. As in other bcc metals, dislocation slip is one of the

most important plastic deformation mechanisms in bcc Fe4,5. Therefore, accurate modeling of dis-

location structures in Fe and their response to stress is key to understanding deformation behavior,

improving microstructure-based models of plasticity and fracture, and ultimately developing new

steels with improved mechanical properties. The a0/2〈111〉-type screw dislocations in bcc met-

als have been widely studied since these dislocations largely control the low-temperature plastic

deformation of bcc metals and alloys4–6. The details of the screw dislocation core structure are

known to affect the Peierls stress and therefore the mobility of these dislocations7–9, and den-

sity functional theory (DFT) calculations first revealed that the core is compact and symmetric

compared to the degenerate core structure predicted by many classical interatomic potentials10–13.

The questionable reliability of classical potentials and the lack of experimental measurements of

dislocation core structures in Fe highlights the need for electronic structure methods to compute

detailed atomic-level structural features in dislocation cores.

While a0/2〈111〉 screw dislocations predominantly govern the plastic response of bcc metals

at low temperatures, dislocations of edge or mixed character may also play important roles in

controlling plastic deformation in bcc metals. For example, edge dislocations in bcc metals can

form from reactions of dislocations with a0/2〈111〉-type Burgers vectors. As screw dislocations

move through the material, they can react with other dislocations intersecting their glide plane and

form stable binary junctions with Burgers vector a0〈100〉 via a reaction of type14,15

a0/2[111] + a0/2[11̄1̄]→ a0[100]. (1)

These binary junctions may themselves be mobile, or further react with other dislocations to form

ternary junctions which contribute to work hardening. These junction reactions are of interest and

have been studied by dislocation dynamics simulations16,17. Here, we consider two possible edge

dislocations with a0〈100〉-type Burgers vectors—a0〈100〉{010} and a0〈100〉{011}—along with a

a0/2〈111〉{011} edge dislocation, as this is the most commonly observed type of edge dislocation

in bcc Fe18. Edge dislocations are also of interest for understanding the influence of dislocation
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loops19,20 and cell structures21 on deformation processes in Fe. Experimentally observed edge dis-

locations in nanocrystalline samples of bcc W22 and Ta23 are believed to be the primary reason for

the reported lower strain rate sensitivity of nanocrystalline bcc metals and alloys compared to their

coarse-grained counterparts, and may play an important role in controlling the plastic response of

nanocrystalline bcc Fe. Finally, dislocations in bcc Fe can play a part in other interesting phenom-

ena as well. For example, pipe diffusion (i.e. accelerated diffusion along the dislocation line) of C

interstitials has been predicted to occur in the a0/2[111](11̄0) 71◦ mixed dislocation in bcc Fe24.

However, straightforward pipe diffusion was not predicted for other types of dislocations—the mi-

gration of C interstitials was found to be accelerated not along the dislocation line direction but

in a conjugate diffusion direction formed by a pathway of octahedral interstitial sites adjacent to

the dislocation core. In order to better understand the complex mechanisms that are likely to be at

play here, accurate and detailed descriptions of the dislocation cores are necessary.

In this study, we use DFT combined with flexible boundary conditions (FBC)25–27 to opti-

mize the core structures of the a0[100](010) edge, a0[100](011) edge, a0/2[1̄1̄1](11̄0) edge, and

a0/2[111](11̄0) 71◦ mixed dislocations in bcc Fe. Previous simulations of edge and mixed disloca-

tions in bcc Fe have relied on classical interatomic potentials due to the large supercells needed to

contain the long-ranged strain fields generated by dislocations18,19,21,24,28–36. Yan et al.37 and Chen

et al.38 used first-principles calculations to study the electronic effects of C solutes and kinks on

edge dislocations in bcc Fe, respectively. However, both of these studies used a Finnis-Sinclair

classical potential to generate the initial dislocation geometries for the first-principles calcula-

tions. The accuracy of results from classical simulations strongly depends on the fidelity of the

interatomic potential, and there are no experimental measurements or first-principles calculations

of edge and mixed dislocation core structures in bcc Fe to benchmark the core structures from

classical potentials. We therefore present the first fully ab initio calculations of the core struc-

tures of edge and mixed dislocations in bcc Fe. Our DFT-based FBC calculations allow a single

dislocation to effectively relax as an isolated defect in a supercell size tractable for DFT calcula-

tions by coupling the DFT core to an infinite harmonic lattice through the lattice Green function

(LGF)25–27,39. In contrast to most previous DFT-based FBC calculations of dislocation cores that

used the LGF of the bulk crystal to approximate the LGF of dislocated geometries, here we use

LGFs specifically computed for each dislocation40. The dislocation LGFs account for changes in

both the topology of the crystal lattice in the highly-distorted core region and local strain through-

out the lattice. The FBC method removes any reliance on dislocation multipole arrangements often
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used in DFT simulations to cancel the long-ranged strain fields generated by dislocations, but that

may generate artifacts in the dislocation core structures due to dislocation-dislocation interactions.

Our DFT core structures serve to benchmark the predictions of existing potentials, provide fitting

data for generating new classical potentials, serve as a basis of comparison for future experimental

investigations of dislocation cores in bcc Fe, and also serve as the starting point for first-principles

calculations of solution strengthening41 and solute transport near edge and mixed dislocations in

bcc Fe42.

The rest of this paper is organized as follows. Section II presents our computational geome-

tries, discusses the FBC method, and gives the details of our DFT calculations. Here we discuss

how we visualize the dislocation cores using a combination of differential displacement maps43,

Nye tensor distributions44,45, volumetric strain, and changes in the magnetic moments on the Fe

atoms. This section also presents how we quantify the widths of the dislocation cores using the

second moments of the Nye tensor distributions, and how we distinguish symmetry differences

between the core structures from DFT and classical potentials using the Fourier coefficients of the

Nye tensor distributions. Section III presents our DFT-optimized dislocation cores, and compares

the results to core structures optimized using eight different interatomic potentials. Section IV

summarizes our results and provides further discussion.

II. COMPUTATIONAL METHODS

A. First principles calculations with flexible boundary conditions

Figure 1 shows the initial dislocation geometries that we optimize using first-principles cal-

culations with FBC. We construct cylindrical slab geometries and introduce the dislocations by

displacing all the atoms in the slabs according to the displacement fields predicted by anisotropic

elasticity theory46. The magenta “+” symbols in the figure show the center of the elastic dis-

placement field for each dislocation. The displacement fields of edge and mixed dislocations are

incompatible with periodic boundary conditions perpendicular to the dislocation threading direc-

tion (pointing out of the page), so we surround each slab by a vacuum region. We divide each slab

into region 1 (blue), region 2 (red), and region 3 (yellow) for applying FBC which we discuss in

the next paragraph. The supercell dimensions perpendicular to the threading directions are equal

for all the dislocations, with dimensions of 50.46 Å × 50.46 Å. Each supercell is periodic along
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the threading direction which requires that the slabs have different thicknesses along this direction.

The radial thickness of region 2 is determined by the interaction range of atoms in bcc Fe, and the

radial thickness of region 3 is chosen large enough to isolate regions 1 and 2 from the effects of the

vacuum. We chose the radial thickness of region 1 large enough to ensure that the highly-distorted

dislocation cores are confined to region 1, which is confirmed by the differential displacement

maps and Nye tensor distributions in Figs. 3-6. Table I gives the radii and numbers of atoms for

each region.
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FIG. 1. (color online). Initial supercell geometries for the a0[100](010) edge, a0[100](011) edge,

a0/2[1̄1̄1](11̄0) edge, and a0/2[111](11̄0) 71◦ mixed dislocations in bcc Fe. The lattice parameter a0 =

2.832 Å, and the supercell dimensions perpendicular to the dislocation threading direction are 50.46 Å. The

atoms are displaced according to anisotropic elasticity theory and divided into three regions to apply FBC.

The magenta “+” marks the center of the elastic displacement field. The atoms are surrounded by a vacuum

region in all four cases since the dislocation displacement fields are incompatible with periodic boundary

conditions. Each supercell is subject to periodic boundary conditions along the threading direction. Table I

provides more details about the dislocation geometries.

The FBC approach25,27 couples the highly distorted dislocation core to an infinite harmonic bulk

which effectively allows a dislocation to relax as an isolated defect. The FBC approach consists of

two steps: in the first step we use a conjugate gradient optimization scheme with DFT-computed

forces to relax the defect core (region 1), while holding the rest of the atoms fixed. This reduces
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TABLE I. Geometry information for the a0[100](010) edge, a0[100](011) edge, a0/2[1̄1̄1](11̄0) edge, and

a0/2[111](11̄0) 71◦ mixed dislocations in bcc Fe. The table lists the number of atoms and the radius in Å

of region 1 (blue atoms in Fig. 1), region 2 (red atoms in Fig. 1), and region 3 (yellow atoms in Fig. 1). The

radius of each region is nearly equal for each dislocation, but the number of atoms in each region varies

between the dislocations due to the different slab thicknesses along the dislocation threading direction.

region 1 region 2 region 3

dislocation atoms radius atoms radius atoms radius

a0[100](010) edge 60 8.8 110 14.7 216 22.4

a0[100](011) edge 82 8.7 150 14.6 300 22.9

a0/2[1̄1̄1](11̄0) edge 142 8.7 261 14.5 514 21.8

a0/2[111](11̄0) 71◦ mixed 52 8.8 96 14.8 190 22.4

the forces in region 1 but induces forces in region 2. In the second step, we apply displacements

on all atoms in regions 1, 2 and 3 in response to the forces in region 2, as prescribed by the LGF

G,

u(R′) =
∑

R

G(R − R′)f(R), (2)

where u(R′) is the displacement vector of the atom at R′ and f is the Hellmann-Feynman force on

the atom at R. The LGF is the pseudoinverse of the force constant matrix D39,

∑
R′′

D(R − R′′)G(R′′ − R′) = 1δ(R − R′), (3)

where the force constant matrix element Dab between the atoms at R and R′ is

Dab(R − R′) =
∂2U total

∂ua(R)∂ub(R′)

∣∣∣∣∣∣
u=0

. (4)

Here U total is the total potential energy of the crystal, and ua and ub are Cartesian components

of the displacement vectors. The displacements given by the LGF describe the response of an

infinite harmonic system; since our system deviates from this harmonic approximation particularly

in the dislocation core, this generates forces in region 1. Therefore, we alternate between these

two steps until all forces in regions 1 and 2 are smaller than a defined tolerance. We use an

efficient numerical method developed in Ref.40 to compute the LGFs from the force constants in
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the dislocated geometries. The force constant and LGF calculations are discussed in the following

paragraphs, and the details of the DFT calculations are discussed in Section II B.

We compute the force constants for the a0[100](010) edge, a0[100](011) edge, and a0/2[111](11̄0)

71◦ mixed dislocations using the bulk-like approximation described in Ref.40. We use the small

displacement method47–49 to compute the force constants of perfect bulk bcc Fe (see Sec. II B

for details). We then approximate the force constants between pairs of atoms in the dislocation

geometries by assigning to them the force constants from the pair of atoms in the bulk which have

the closest equivalent pair vector. We have found that this simple approximation works well for

most dislocations in simple crystal structures since the force constants are short-ranged and the

local environment of atoms appears bulk-like even close to the core40.

We use a Gaussian approximation potential (GAP) for bcc Fe50 to compute the force constants

for the a0/2[1̄1̄1](11̄0) edge dislocation. For this dislocation, the bulk-like approximation failed

to produce adequate force constants. This appears to be due to atoms in the initial dislocation core

geometry being too close, making it difficult to correctly determine the appropriate pairs of atoms

in the bulk corresponding to pairs of atoms in the dislocation. Therefore, we compute the force

constant matrix for this dislocation using a finite-difference scheme on each atom in the dislocation

geometry to compute derivatives in forces. Since it is prohibitively expensive to do so with DFT,

we instead use the Fe GAP to compute the dislocation force constants. The GAP method51 gen-

erates classical interatomic potentials that accurately interpolate the potential energy surface of a

material using highly flexible basis functions called “smooth overlap of atomic positions” (SOAP)

kernels. The SOAP kernels can represent a large range of different local atomic environements

that can be encountered during atomistic simulations, and the accuracy and transferability of GAP

steps from fitting the SOAP coefficients to a large set of DFT energies, forces, and virials that cap-

ture the potential energy surface. We chose the GAP potential for computing the large number of

force constants in the a0/2[1̄1̄1](11̄0) edge dislocation geometry since it provides a good balance

between accuracy and speed—while orders of magnitude slower than EAM or MEAM, GAP is

still much faster than DFT and can provide accuracy comparable to DFT for computing the prop-

erties of bcc Fe50. We check that the GAP accurately reproduces the lattice and elastic properties

from DFT, which is important to ensure consistency between the DFT and LGF relaxations. The

GAP lattice constant for bcc Fe is a0 = 2.834 Å and the elastic constants are C11 = 285.9 GPa,

C12 = 154.3 GPa and C44 = 103.8 GPa, which agree well with our DFT-computed lattice constant

of a0 = 2.832 Å and elastic constants C11 = 277.5 GPa, C12 = 147.7 GPa and C44 = 98.1 GPa52.
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In addition, we check that the force constants from the GAP agree well with the force constants

from DFT. Figure 2 compares the DFT and GAP force constants computed for bulk bcc Fe under

different volumetric strains eV . The maximum absolute errors between the GAP and DFT force

constants occur for the on-site term (r = 0), which correspond to relative errors of less than 3%

for all three strain values, eV = −5%, eV = 0% and eV = +5%. Therefore, we expect the GAP to

predict force constants in the strained dislocation geometries which are consistent with DFT.
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FIG. 2. (color online). Difference between the DFT and GAP force constants versus distance r between

pairs of atoms for different volumetric strains eV . For each value of r we take the Frobenius norm of the

difference between the DFT and GAP force constant matrices D. The dashed lines show ||DDFT|| for each

value of strain. The force constants decay as r increases and the differences show similar behavior. The

maximum difference for each strain occurs at r = 0 (i.e., the on-site term), where ||DDFT|| = 19.273 eV/Å2

and ||DGAP|| = 19.713 eV/Å2 for eV = 0. The corresponding relative error is 2.28%, with similar maximum

errors for eV = −5% (2.69% error) and eV = +5% (1.42% error).

We numerically invert the dislocation force constant matrices following the method developed

in Ref.40. This method requires setting up a large system divided into five regions: regions 1, 2,

and 3 which make up the DFT supercell, a buffer region, and a far-field region. The far-field region

contains atoms far away from the core whose displacements we approximate using the bulk elastic

Green function (EGF) which is the known large distance limit of the LGF39,53, while the buffer

region contains the remaining atoms between region 3 and the far-field. For all the dislocations

studied here, we used a buffer size of at least 20a0, for which the errors in the LGF computation
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due to the far-field approximation are on the order of 10−3Å
2
/eV or less. We compute the LGF

for forces in region 2 by applying a unit force on an atom in region 2, evaluating the resulting far-

field displacements based on the EGF, determining the forces these displacements generate in the

buffer region, and finally solving for the displacement field corresponding to the effective forces in

the system by using a conjugate gradient method to numerically invert the force constant matrix.

This gives one column of the LGF; by systematically looping through every atom in region 2, we

compute the LGF matrix that gives displacements on atoms in regions 1, 2, and 3 due to forces in

region 2. For more details on this method, the reader is referred to Ref.40.

B. Density functional theory calculation details

We use the plane-wave basis DFT code vasp54 to generate data for computing bulk force con-

stants and to optimize the geometries of the edge and mixed dislocations in bcc Fe. The Perdew-

Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional55 accounts for elec-

tron exchange and correlation energy, and a projector augmented wave (PAW) potential56 with

electronic configuration [Ar]3d74s1 generated by Kresse and Joubert57 models the Fe nuclei and

core electrons. The calculations require a plane-wave energy cutoff of 400 eV to converge the

energies to less than 1 meV/atom. We ensure accurate forces for force constant calculations and

atomic relaxation using Methfessel-Paxton smearing58 with an energy smearing width of 0.25 eV.

We chose this smearing width to ensure close agreement between the smeared electronic density

of states (DOS) of bulk bcc Fe near the Fermi energy and the DOS computed using the linear tetra-

hedron method with Blöchl corrections59. The energy tolerance for the electronic self-consistency

cycle is 10−8 eV. All of the calculations are spin polarized to model the ferromagnetism of bcc Fe.

We use the small displacement method47–49 to compute the force constants of bulk bcc Fe used

in the bulk-like approximation of the dislocation force constants (see Sec. II A). To ensure that the

LGFs computed from the force constants match the elastic Green function in the limit R → ∞,

the elastic constants Ci jkl computed from the bulk force constant matrix Di j(R) must match the

elastic constants computed using standard stress-strain calculations39. The elastic constants Ci jkl

of a crystal with a single basis atom can be computed from the force constant matrix Di j(R) using

the method of long waves39,60,

−
∑

R

Di j(R)RkRl = V0

(
Cik jl + Cil jk

)
, (5)
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where V0 is the volume of the primitive cell. However, numerical errors in the DFT forces between

pairs of atoms with large R can compound to produce large errors in the Ci jkl. We examine the

effect of supercell size on the errors in the force constants and the corresponding computed Ci jkl by

performing small displacement method calculations using 3×3×3, 4×4×4, 5×5×5, and 6×6×6

supercells with 10× 10× 10, 8× 8× 8, 6× 6× 6, and 6× 6× 6 Γ-centered Monkhorst-Pack k-point

meshes61, respectively. In all these calculations, the atom at the origin of the supercell was given

a displacement of 0.02 Å along a supercell lattice vector and the resulting forces were input into

the code phon49 to compute the force constants. We find that the force constants computed using

the 4 × 4 × 4 supercell produce Ci jkl values closest to the Ci jkl from stress-strain calculations52,

but the values differ by up to 25 GPa. We therefore computed the force constants of bulk bcc Fe

using the force data from the 4 × 4 × 4 supercell calculation under the constraint that the sum

in Eqn. 5 gives Ci jkl values that exactly match the Ci jkl from our stress-strain calculations. These

constrained force constants are used in the bulk-like approximation of the force constants for

the a0[100](010) edge, a0[100](011) edge, and a0/2[111](11̄0) 71◦ mixed dislocations. Figure 2

compares the unconstrained force constants under volumetric strain computed with GAP and DFT

using 6 × 6 × 6 supercells. Force constants computed using classical potentials like GAP are not

subject to the same types of numerical error as the DFT force constants, so we do not constrain the

GAP force constants computed directly for the a0/2[1̄1̄1](11̄0) edge dislocation (see Sec. II A).

We use DFT with FBC to relax the atoms in regions 1 and 2 of the edge and mixed dislocation

geometries. We sample the Brillouin zones of the dislocation supercells using 1×1×18, 1×1×14,

1×1×8, and 1×1×20 Γ-centered Monkhorst-Pack meshes for the a0[100](010) edge, a0[100](011)

edge, a0/2[1̄1̄1](11̄0) edge, and a0/2[111](11̄0) 71◦ mixed dislocations, respectively. We relax

the atoms in regions 1 and 2 of the a0[100](010) edge, a0[100](011) edge, and a0/2[111](11̄0)

71◦ mixed dislocation geometries until the forces on the ions are less than 5 meV/Å. Due to the

larger computational cost of relaxing the a0/2[1̄1̄1](11̄0) edge dislocation, we relax the atoms in

regions 1 and 2 of this dislocation until all of the forces on the ions are less than 18 meV/Å. We

compared the final relaxed core structures of the other dislocations to their core structures earlier

in their relaxation when the largest forces were ∼ 18 meV/Å, and found negligible differences

in the geometries; therefore, we consider the a0/2[1̄1̄1](11̄0) edge dislocation core structure to

effectively be fully optimized by that point in the relaxation.

11



C. Dislocation core visualization

We visualize the relaxed core structures of the dislocations using a combination of differen-

tial displacement (DD) maps43, Nye tensor components α jk
44,45, volumetric strain eV , and changes

in the local magnetic moments m on the Fe atoms. The DD maps display the core structure of a

dislocation as arrows that indicate the relative displacements between pairs of atoms. The Nye ten-

sor components α jk represent the local Burgers vector density at each site in the dislocation core,

where the first index j corresponds to the dislocation threading direction and the second index k

specifies the Cartesian component of the local Burgers vector at each site. For the dislocations in

this study, the only non-zero Nye tensor components are α3k since the threading direction of each

dislocation is chosen along the z-axis. We visualize the Nye tensor distributions as linearly inter-

polated contour plots. The dislocations strain the lattice, and magnetostrictive materials such as

Fe show changes in magnetism under strain62. The dislocation strain fields and the corresponding

local changes in the magnetic moments on the Fe atoms give a complementary view of the core

structures.

We define the centers and widths of the dislocation cores as the first and second moments of

the Nye tensor distributions. We define the normalized Nye tensor components α̃3k as

α̃3k(x, y) :=
|α3k(x, y)|∑

x′,y′ |α3k(x′, y′)|
, (6)

where (x, y) is the coordinates of a site in the plane normal to the dislocation threading direction.

The first moments x3k and y3k of the normalized Nye tensor components,

x3k :=
∑
x,y

x α̃3k(x, y),

y3k :=
∑
x,y

y α̃3k(x, y),
(7)

define the center of each α3k distribution. The second moments σ3k,x and σ3k,y of the normalized

Nye tensor components,

σ2
3k,x :=

∑
x,y

(x − x3k)
2 α̃3k(x, y),

σ2
3k,y :=

∑
x,y

(
y − y3k

)2 α̃3k(x, y),
(8)

give the widths of a Nye tensor distribution.
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We compute Fourier coefficients of the Nye tensor distributions to quantify the symmetry differ-

ences between the dislocation core structures computed using DFT and the core structures com-

puted using different classical potentials. The pth Fourier coefficient c3k,p of each α3k about the

center (x3k, y3k) is

c3k,p :=
∑
x,y

α3k(x, y)e−ipθ(x,y), (9)

where θ(x, y) := arctan
[
(y − y3k)/(x − x3k)

]
is the angular coordinate of a site (x, y). The c3k,p

quantify the p-fold rotational symmetry content of the Nye tensor distributions.

Lastly, we compute the local volumetric strain at each site near the dislocation cores using41

eV :=
det

{∑
v′ v′jv

′
k

}
det

{∑
v v jvk

} 1/2

− 1, (10)

where v′ are the nearest neighbor vectors of an atom in the dislocation geometry, v are the cor-

responding nearest neighbor vectors in bulk, and j and k denote Cartesian components. Since

the strain is computed at discrete sites like the Nye tensor components, we visualize the strain

distributions as linearly interpolated contour plots.

III. RESULTS

A. Dislocation core structures: First-principles calculations

Figures 3–5 show that the DFT-optimized core structures of the edge dislocations are compact

and the magnetic moments on the atoms above (below) the slip planes decrease (increase) due to

the volumetric strain fields around the dislocation cores. The α32 and α33 distributions are nearly

zero for the a0[100](011) and a0/2[1̄1̄1](11̄0) edge dislocations, but unexpectedly we find that α32

is about one-half as large as α31 for the a[100](010) edge dislocation. The x- and y-directions

for the a[100](010) dislocation are both 〈100〉-type directions, and we surmise that it is more

energetically favorable to displace in the y-direction compared to the other two edge dislocations.

Separately, we have optimized the core structure of the a0/2[111] screw dislocation in bcc Fe using

FBC63. The relaxed core structure is symmetric and compact like in other bcc metals10–13,64,65, and

we compute the widths of the core as 2σ33,x = 3.20 Å and 2σ33,y = 3.25 Å. Table II shows

that the widths of the edge dislocation cores are similar to the widths of the screw dislocation

core, confirming that the edge dislocation cores remain compact after relaxation. The α31 and α32

distributions of the a0[100](010) edge dislocation go to zero at similar distances from their centers,
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but α32 has a larger x width since it is antisymmetric. The fourth panels in Figures 3–5 illustrates

the magnetostrictive effect in the dislocation cores—compressive strain reduces magnetization and

tensile strain increases magnetization. We initialize the magnetic moments for all four dislocations

in this study in a ferromagnetic state with equal moment values. The relaxed moment values

decrease or increase based on the local strain distribution, but the ordering remains ferromagnetic

throughout all four geometries. We further explore the changes in magnetic moments later in this

section (see Figure 7).

m (μB)α3i (Å–1)

0 0.06–0.06 2.20 2.821.58 0 23–23

eV (%)

α31 α32 α33 eV

FIG. 3. (color online). Core structure of the a0[100](010) edge dislocation in bcc Fe. The first three panels

show the differential displacement maps using black arrows and the Nye tensor components α3i as contour

plots (blue to red color scale). The α31 and α32 distributions reflect the edge character of the dislocation,

and the α33 distribution reflects the screw character. The fourth panel shows the volumetric strain eV as a

contour plot (cyan to magenta color scale). The atoms in all four panels are colored based on their magnetic

moments m (orange to purple color scale). The core has edge character in both the x- and y-directions and

it remains compact after relaxation. The screw component α33 of the dislocation is zero. The magnetic

moments on the Fe atoms decrease in the compressive region above the slip plane and increase in the tensile

region below the slip plane.

Figure 6 shows that the DFT-optimized core structure of the a0/2[111](11̄0) 71◦ mixed dislo-

cation is compact and the changes in the magnetic moments on the atoms near the core reflect the

volumetric strain field of the edge component. The Burgers vector and threading direction for the

mixed dislocation are along two different body-diagonals of the cubic unit cell, separated by an

angle of ≈ 71◦. Hence, the edge component α31 of the dislocation is larger than the screw com-

ponent α33 as shown in Figure 6. The edge component perpendicular to the Burgers vector (α32)

is nearly zero. Similar to the edge dislocations, the magnetic moments on atoms above the slip
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TABLE II. Widths of the Nye tensor distributions α3k for the edge and mixed dislocations in bcc Fe. We

define the widths of α3k in the x- and y-directions as two times the corresponding second moment computed

using Eqn. 8. The edge and mixed cores are compact since their widths are comparable to the widths of α33

for the a0/2[111] screw dislocation in bcc Fe (x width = 3.20 Å and y width = 3.25 Å).

dislocation, α3k x width (Å) y width (Å)

a0[100](010) edge, α31 3.78 3.92

a0[100](010) edge, α32 4.69 3.04

a0[100](011) edge, α31 4.31 3.38

a0/2[1̄1̄1](11̄0) edge, α31 4.33 3.00

a0/2[111](11̄0) 71◦ mixed, α31 3.97 3.28

a0/2[111](11̄0) 71◦ mixed, α33 4.41 3.30

m (μB)α3i (Å–1)

0 0.19–0.19 2.20 2.761.64 0 24–24

eV (%)

eVα31 α32 α33

FIG. 4. (color online). Core structure of the a0[100](011) edge dislocation in bcc Fe. Similar to the

a0[100](010) edge dislocation, the core is compact, the screw component is zero, and the magnetic moments

decrease(increase) if the atoms are above(below) the slip plane due to the dislocation strain field. The edge

component of this dislocation in the y-direction is nearly zero.

plane are reduced from their bulk values due to compressive strain and the moments on the atoms

below the slip plane are enhanced due to tensile strain. This is primarily due to the volumetric

strain field generated by the edge component of the dislocation (see Fig. 7), since the volumetric

strain induced by the screw component is small.

Figure 7 shows that the magnetic moments around the dislocation cores closely follow the

magnetic moments in bulk bcc Fe for small volumetric strains but deviate for the larger strains

found in the cores. We use the average nearest-neighbor distance as an alternative measure of
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m (μB)α3i (Å–1)

0 0.14–0.14 2.20 2.601.80 0–13

eV (%)

eVα31 α32 α33

FIG. 5. (color online). Core structure of the a0/2[1̄1̄1](11̄0) edge dislocation in bcc Fe. Similar to the

a0[100](010) and a0[100](011) edge dislocations, the relaxed core is compact, the screw component is zero,

and the magnetic moments increase(decrease) in response to compressive(tensile) strains in the core. The

edge component of this dislocation in the y-direction is nearly zero.

9
m (μB)α3i (Å–1)

0 0.10–0.10 2.20 2.531.87 0–9

eV (%)

eVα31 α32 α33

FIG. 6. (color online). Core structure of the a0/2[111](11̄0) 71◦ mixed dislocation in bcc Fe. In this

case, the dislocation has both edge (α31) and screw (α33) components due to its mixed character. Since

the volumetric strain due to the screw component is small, the changes in the magnetic moments of the

Fe atoms are largely due to the edge component of the dislocation. The dislocation core is compact after

relaxation like the edge dislocation cores.

local volumetric strain since it better correlates the magnetic moments near the dislocations with

the moments in strained bulk. For reference, the average nearest-neighbor distance in unstrained

bulk bcc Fe is
√

3a0/2 = 2.453 Å. We compute the bulk magnetic moments by applying differ-

ent volumetric strains to the bcc unit cell. However, each dislocation is under a different strain

condition since the normal strain along their different threading directions is zero. We have also

computed the variation in magnetization of bulk bcc Fe under the different strain conditions cor-
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responding to each dislocation and found that the behavior is nearly identical to the volumetric

strain dependence for the strain range shown in the figure. We find that the magnetic moments on

the atoms in the dislocations closely follow the magnetic moments in strained bulk for sites with

about −2% to +5% local volumetric strain. The outlying data points correspond to atoms right in

the dislocation cores where the local strains are larger and non-volumetric contributions to strain

may become important.

bulk

a0[100](010) edge

a0[100](011) edge

a0/2[111](110) edge

a0/2[111](110) 71° mixed

2.35 2.45 2.55 2.65

1.6

1.8

2.0

2.2

2.4

2.6

2.8

dNN
avg

(Å)

m
(μ
B
)

FIG. 7. (color online). Local magnetic moments m near the dislocation cores versus average nearest-

neighbor distance davg
NN. The discrete points are the values for the magnetic moments near the dislocation

cores and the solid line show the variation of the magnetic moment of bulk bcc Fe versus nearest-neighbor

distance. The average nearest-neighbor distance is an alternative measure of local volumetric strain which

better correlates the magnetic moments near the dislocations with the moments in strained bulk, especially

for the large strains found in the dislocation cores. The average nearest-neighbor distance in unstrained bulk

bcc Fe is davg
NN = 2.453 Å.

B. Dislocation core structures: Comparison of interatomic potentials to DFT

Figure 8 compares the DFT core structures of the edge and mixed dislocations to the cores

from GAP50, MEAM66, and EAM67–73 potentials using the Fourier coefficients c3k,p of the Nye

tensor distributions. The classical potential calculations are performed using the code lammps74,

with potential parameters downloaded from the NIST Interatomic Potential Repository75 with the
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exception of Ref.68 EAM, which used the recommended PotentialB.fs file downloaded from

Ref.76. The supercells in the classical potential calculations contain cylindrical slab geometries

with approximately 20,000 atoms surrounded by vacuum. We use fixed boundary conditions where

the atoms at a distance less than the potential cutoff radii from the vacuum are held at their positions

from anisotropic elasticity theory while all the other atoms are relaxed using a conjugate gradient

method. The c3k,p (see Eqn. 9) quantify the differences in the p-fold symmetry content between

the dislocation cores computed using different methods. For example, the core of the a0[100](011)

edge dislocation relaxes to a different structure than the DFT core using the GAP and there are

large difference between the GAP and DFT c31,p for p > 1. In contrast, the EAM and MEAM

c31,p for this dislocation agree well with the DFT values. Figure 9 shows that the core computed

using the EAM potential from Ref.71 is similar to the DFT core, but the GAP core relaxes to a more

open structure. We find the largest differences from the DFT core structures when the a0[100](010)

edge dislocation is relaxed using the EAM potentials from Refs.68,73, when the a0[100](011) edge

dislocation is relaxed using GAP50, when the a0/2[1̄1̄1](11̄0) edge dislocation is relaxed using the

EAM potential from Ref.73, and when the a0/2[111](11̄0) 71◦ mixed dislocation is relaxed using

the MEAM potential66. The study in Ref.21 found that the EAM potential from Ref.71 produces a

different core structure for a0/2〈111〉{110} edge dislocations compared to the EAM potentials in

Refs.67,69,70, whereas we find that all of these potentials produce core structures similar to our DFT

core. We are able to reproduce the core structures in Ref.21 by choosing different elastic centers for

the initial dislocation geometry, but these cores transform to the other core after annealing from

300K. We also find that the two types of cores are nearly degenerate in energy which is consistent

with the nudged elastic band calculations in Ref.21, so it is likely that the core we found is the

ground state structure and the other core is a transition state as the dislocation moves in its slip

plane.

The alternate structure of the a0/2[1̄1̄1](11̄0) edge dislocation for the EAM potential from

Ref.71 discussed in the last paragraph raises the question about the existence of metastable states

for the other dislocation cores considered in this study. Metastable core structures are most likely

for dislocations with large spreading in the slip plane or that dissociate into partial dislocations

separated by stacking fault since multiple energy minimia are present in the slip plane. We do

not expect metastable core structures to exist for the dislocations in this study since all the DFT

cores are compact. We invesitagate this idea further by annealing the cores from the EAM and

MEAM potentials that are most similar to the DFT cores to examine if these structures are stable.
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We anneal the a0[100](010) edge dislocation cores for the EAM potentials from Refs.67,71 and

the MEAM potential, the a0[100](011) edge cores for the EAM potentials from Refs.67–72 and

the MEAM potential, the a0/2[1̄1̄1](11̄0) edge cores for the EAM potentials from Refs.67–72 and

the MEAM potential, and the mixed cores for the EAM potentials from Refs.67–72. In each case,

the initial geometry for the annealing simulation is the conjugate gradient-optimized geometry

with Fourier coefficients shown in Figure 8. We anneal the cores from a starting temperature

of 300K and then perform a subsequent conjugate gradient geometry optimization. All of the

annealed core structures remain unchanged except for the a0[100](010) edge dislocation from the

EAM potential in Ref.71 which remains compact but becomes asymmetric in the slip direction, the

a0[100](011) edge dislocation from the MEAM potential which has a larger spreading in the slip

plane than the initial structure, and the mixed dislocation from the EAM potential in Ref.67 which

transforms to a structure similar to the MEAM structure. The GAP cores of the a0[100](010) edge,

a0/2[1̄1̄1](11̄0) edge, and a0/2[111](11̄0) 71◦ mixed dislocations are similar to the DFT cores.

GAP calculations are more computationally expensive than EAM and MEAM calculations, so we

only annealed the GAP mixed dislocation core. For the two GAP edge dislocations that are similar

to DFT we applied small random displacements to the atoms in the core region and then relaxed

the geometry using a conjugate gradient method. All three GAP dislocation cores relax back

to their starting geometries. Finally, we investigated the stability of the DFT mixed dislocation

geometry by performing restoring force calculations. We added small displacements along the

slip direction to the four atoms directly above the slip plane that are closest to the center of the

dislocation core, and computed the resulting forces using DFT. The forces primarily point opposite

to the displacement direction, indicating that the core will relax back to the original geometry. All

of these test calculations strongly suggest that the DFT core structures reported in this study are

stable groundstate structures, and that the core transformations we find after annealing are due to

artifacts in the interatomic potentials. None of the potentials is able to produce core geometries

similar to DFT for all of the dislocations, but the EAM potential from Ref.71 has the best overall

performance. All of the core geometries optimized with this potential using a conjugate gradient

method are similar to DFT, and they all remain stable under annealing except for the a0[100](010)

edge dislocation which breaks symmetry but remains compact. This EAM potential also produces

a compact and symmetric core structure for a0/2〈111〉 screw dislocations similar to DFT69.
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FIG. 8. (color online). Fourier coefficients of the Nye tensors computed using DFT and GAP50, MEAM66,

and EAM67–73 potentials. The coefficients with even indices are real and the coefficients with odd indices

are imaginary. We show only the coefficient values for positive indices since the negative even coefficients

equal the positive even coefficients, and the negative odd coefficients have equal magnitudes and opposite

signs as the positive odd coefficients. The scaled coefficients in the figure are defined as c̃3k,p = c3k,p/c31,0.

The plots reveal the differences in symmetry between the cores, and can be used to quickly judge if a given

potential produces a core structure similar to DFT. For example, the GAP cores of the a0[100](010) edge,

a0/2[1̄1̄1](11̄0) edge, and a0/2[111](11̄0) 71◦ mixed dislocation agree well with DFT, but the GAP core of

the a0[100](011) edge dislocation relaxes to a more open structure (see Fig. 9 for a direct comparison of the

cores).

IV. SUMMARY AND DISCUSSION

We use density functional theory (DFT) with lattice flexible boundary conditions (FBC) to

optimize the core structures of a0[100](010) edge, a0[100](011) edge, a0/2[1̄1̄1](11̄0) edge, and

a0/2[111](11̄0) 71◦ mixed dislocations in bcc Fe. The FBC approach couples the highly-distorted
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α31 (Å–1)

0 0.19–0.19

GAPEAMDFT

FIG. 9. (color online). Comparison of DFT, EAM71, and GAP50 results for the core structure of the

a0[100](011) edge dislocation. The figures show the α31 edge component of the Nye tensor, and the atoms

in this DFT figure are not colored based on their magnetic moments. The EAM potential produces a core

structure similar to DFT, but the GAP core is different. This is reflected by the large differences between

the DFT and GAP Fourier coefficients in Fig. 8

.

dislocation core which is treated with DFT to an infinite harmonic lattice via the lattice Green

function (LGF), which allows the dislocation to effectively relax as an isolated defect. In contrast

to most previous first-principles FBC calculations of dislocation cores that use the bulk LGF to

relax the harmonic region outside the core, we use LGFs specifically computed for each disloca-

tion geometry. The simple bulk-like approximation we used for generating the force constants and

corresponding LGFs for the a0[100](010) edge, a0[100](011) edge, and a0/2[111](11̄0) 71◦ mixed

dislocations fails to produce an adequate LGF for the a0/2[1̄1̄1](11̄0) edge dislocation. For this

case, we found that a Gaussian approximation potential (GAP) for bcc Fe produces accurate force

constants under strain which lead to a dislocation LGF capable of optimizing the core geometry.

We find that the cores of all the dislocations in this study are compact and the magnetic moments

on the atoms in the cores increase in the tensile region below the slip planes and decrease in the

compressive region above the slip planes. Except for highly distorted sites nearest to the cores,

the strain response of the magnetic moments on the atoms in the dislocated geometries closely

follows the volumetric-strain response of the magnetic moment in bulk bcc Fe. We find that the

initial ferromagnetic ordering we impose on the magnetic moments in each geometry remains after
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relaxation, showing that ferromagnetic ordering in the cores is at least metastable. Future studies

could investigate the impact of different initial magnetic configurations in the dislocation cores on

their relaxed magnetic states and geometries. We find that most of the core structures computed

using the GAP, MEAM, and EAM interatomic potentials compare well with the DFT core struc-

tures, with a few notable exceptions where the cores relax to different structures. While none of the

potentials is able to produce core geometries similar to DFT for all of the dislocations, the EAM

potential from Ref.71 has the best overall performance. All of the core geometries optimized with

this potential using a conjugate gradient method are similar to DFT, and they all remain stable un-

der annealing except for the a0[100](010) edge dislocation which remains compact but becomes

asymmetric along the slip direction. Additionally, this EAM potential produces a compact and

symmetric core structure for a0/2〈111〉 screw dislocations similar to DFT69. Relaxed dislocation

core structures are of fundamental importance for understanding plasticity in bcc Fe, provide the

geometries required for first principles-based studies of solid-solution strengthening41 and solute

diffusion near dislocations42, provide data for parameterizing and benchmarking more computa-

tionally efficient models such as classical interatomic potentials, and serve as a comparison point

for future experimental measurement of edge and mixed dislocation core structures in bcc Fe.

V. DATA AVAILABILITY

The vasp and lammps input files used to perform the calculations along with the relaxed dislo-

cation core geometries are available to download from http://hdl.handle.net/11256/978.
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