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Although oxide glasses have many unique properties, their range of applications remains limited 

by their brittleness. By mimicking the microstructure of composite materials, the presence of 

controlled nanoscale phase separation in glass could overcome this limitation. However, the 

nature of the toughening mechanism induced by such nanostructuring remains poorly 

understood. Here, based on peridynamic simulations, we investigate the effect of nanoscale 
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phase separation on the crack propagation mechanism. We show that phase separation can 

significantly increase glass’ toughness (with up to a 90% increase in the fracture energy for the 

range of conditions investigated herein). The extent of toughening is found to arise from a 

balance between the overall cohesion of the phase-separated glass and the propensity for crack 

deflection. This suggests that controlled nanoscale phase separation is a promising route toward 

the development of tough, yet optically transparent glasses. 
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I. INTRODUCTION  

Thanks to their unique optical, chemical, and mechanical properties, glasses have been key 

enablers for modern human civilization (e.g., windows, lenses, containers, etc.)  [1]. This societal 

impact has only increased as the use of glasses for liquid crystal display panels, optical fibers, 

and damage-resistant protective covers has transformed the way in which humans interact with 

computing devices and with each other [2]. However, despite recent advances in the mechanical 

performance of glass [3], it still achieves only a fraction of its theoretical strength and remains 

mechanically brittle. In contrast to crystals, glasses lack a stable shearing mechanism and, hence, 

show very poor ductility and high brittleness [4]. As such, the fracture toughness (KIc, the 

resistance to fracture) of most inorganic, non-metallic glasses remains between 0.2-1.4 

MPa·m1/2 [5]. 

The brittleness of glass is the main limitation of its use in many applications, since impacts, 

scratching, or fatigue can result in undesirable or even dangerous fracture [2,3]. This is a serious 

safety concern, as the number of injuries related to glass breakage (e.g., during car crashes) is 
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significant. Furthermore, improving the mechanical properties of glasses is crucial to address 

major challenges in energy, communications, and infrastructure—brittleness is a major 

bottleneck for further development in short-haul high-capacity telecommunication, fiber-to-the-

home technologies, flexible substrates and roll-to-roll processing of displays, solar modules, 

planar lighting devices, next-generation touch-screen devices, large scale and high altitude 

architectural glazing, etc [3]. Increasing the strength and fracture toughness of glass would also 

lead to a significant reduction of material investment and energy and production costs for 

existing applications while achieving comparable or improved performance. Among other 

applications, this could enable the design of tough, yet light car windshields that would reduce 

fuel consumption.  

Much effort has been made to enhance the toughness of glass by means of intrinsic and extrinsic 

toughening strategies [5,6]. On the one hand, extrinsic techniques rely on the use of 

reinforcements to control the driving force behind the crack tip, e.g., through crack-tip shielding 

or crack-bridging [6–9]. However, such reinforcements usually significantly hinder the 

transparency of glass [3]. On the other hand, intrinsic techniques rely on the optimization of the 

inherent fracture resistance of the matrix by tuning their atomic structure or microstructure—

with some partial success [10,11]. 

As an alternative route, phase separation—which arises from liquid–liquid immiscibility in the 

melt [12,13]— has been suggested to potentially enhance the fracture toughness of glasses [14–

17]. Depending on the glass composition, phase separation can occur via (i) a nucleation-growth 

mechanism, which results in the formation of spherical droplets within a glassy matrix or (ii) 

spinodal decomposition, which yields two interconnected glassy phases [18]. By inducing the 

appearance of a microstructure within an initially homogeneous material,  phase separation 
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mimics the toughening strategy that has been successfully used in composite materials [7,9,19–

25]. Indeed, the insertion of particles in brittle phases has been shown to induce various 

toughening mechanisms, including crack deflection [26,27], trapping [28–30], pinning [31] or 

bridging [32,33]. Although the formation of large phases (with droplets larger 500 nm or 

resulting from spinodal decomposition) typically induces a loss of transparency in the glass [34], 

it has recently been shown that the dimensions of the droplets forming upon phase separation in 

calcium aluminosilicate glasses can be finely controlled (from 20 to 500 nm)  [35], which makes 

it possible for phase-separated glasses to retain their transparency in the visible spectrum. 

However, the toughening mechanism of such nanoscale phase separation in glasses remains 

unknown. 

Here, we investigate the effect of nanoscale phase separation on the fracture behavior of glass 

using peridynamic simulations. We demonstrate that nanoscale phase separation can 

significantly increase the fracture toughness of glasses (by up to 90% based on the range of 

parameters explored here). The increase in the fracture toughness is found to be controlled by a 

competition between the overall cohesion of the phase separated glass and the propensity for 

crack deflection at the droplet-matrix interfaces. This suggests that, when properly controlled and 

optimized, phase separation can yield tough, yet optically transparent glasses. 

II. METHODS 

A. Peridynamic theory 

Although many studies have focused on investigating the fracture of composite materials, they 

typically rely on the finite element method (FEM), which, in turn, relies on a differential 

formulation of mechanics (i.e., based on partial differential equations) [43,44]. As such, this 

approach may yield unrealistic results—due to numerical difficulties arising from the existence 
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of discontinuities within the simulated system, e.g., stress discontinuities during crack 

propagation or in composite materials [40], which are not well handled by methods relying on 

partial differential equations. In turn, the peridynamic method is based on a non-local 

formulation of mechanics [36–38]. Rather than relying on partial differential equations (as 

usually considered in FEM [39]), the peridynamic formalism involves integral equations. This 

integral formulation allows one to avoid the numerical difficulties arising from the use of FEM 

in composite materials and makes peridynamics an attractive method to simulate crack 

propagation. 

In peridynamics,  the material domain is discretized into points with a finite volume. Each 

material point x interacts with the other points x’ that are located within a specific region ࣢x, 

which is called the family of x. For convenience, this region is often assumed to be a sphere 

centered around x with a radius δ, which is known as the horizon. The relative position between 

two interacting points is defined as a bond  ξ, which can be expressed as: 

 ′= −x xξ   (1) 

The relative displacement between two points is defined as η and can be expressed as: 

 ( ) ( ), ,t t′= −u x u xη   (2) 

where u is the displacement vector field. Within the peridynamic formalism, the equation of 

motion , based on the conservation of linear momentum, can then be expressed as: 

 ( ) ( ) [ ] [ ]{ } ( )
x

, , , ,t t t dV tρ ′′ ′ ′= − − − +∫ xx u x T x x x T x x x b x&&
H

  (3) 

where t is the time, ߩ is the local density, b(x, t) is the external body force density, dVx’ is an 

infinitesimal volume around x’, and T is called the force vector state that describes the 
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interaction force between points. Note that T depends on the constitutive model used in the 

peridynamics simulation, e.g., linear elastic, elasto-plastic etc., governing the mechanical 

response of the material. For the ordinary state-based model, the constitutive model can be 

expressed as: 

 
0

0 0

C⎧ ≠⎪
⎨
⎪ =⎩

      
T =

                   

ξ + η ξ + η
ξ + η

ξ + η
  (4) 

where C  is the scalar state, which is determined by the elastic parameters of material. 

In this study, we adopt the linear peridynamics solid (LPS) constitutive model introduced by 

Silling [41], which assumes that the force is proportional to the deformation following the linear 

elastic response until the fracture point is reached. The scalar state is then given by: 

 3 15 dK GC x e
m m

θ ω ω= +   (5) 

where ω  is an influence function, ݉ is a weighted volume, de is the deviatoric part the extension 

scalar state e , θ  is the dilatation (a measure of the volumetric strain at small deformation), and 

K and G are the bulk and shear moduli, respectively. 

In peridynamics, the formation and propagation of cracks are modeled via the breaking the bonds, 

ξ, that initially exist between each material points and its family. A given bond is considered 

broken if the bond stretching η exceeds a threshold value sc, which depends on the constitutive 

model. At this point, the interaction between these points cease to exist. For three-dimensional 

systems, sc can be determined as [42]: 
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where cG  is the fracture energy of the material. 

B. Generation of the phase-separated microstructures 

To assess the effect of nanoscale phase separation on the mechanical response of glasses, two 

initial configurations are considered: (i) a homogeneous glass (see Fig. 1(a)) and (ii) a phase-

separated glass containing some spherical nanoinclusions (see Fig. 1(b)). Note that, here, we do 

not attempt to simulate the type of microstructure that would result from spinodal decomposition 

as such microstructure would likely compromise glass transparency. The nanoinclusion diameter 

is fixed at 200 nm, which is small enough for the glass to retain its transparency [35]. Both 

systems have a cubic geometry, free surface boundary conditions, and comprise an initial notch 

of 200 nm to induce some stress concentration and initiate the crack in the middle plane. In 

addition, a series of simulations using systems of varying lengths L (from 500 nm to 3000 nm) 

are performed to investigate the influence of the system size. We find that the computed fracture 

energy shows a fair convergence for L >1000 nm. This is consistent with previous results 

suggesting that, for composite materials, the simulated system should at least 5 times larger than 

the diameter of the inclusions  [43,44]. In the following, the length of the system is chosen to be 

constant and equal to 1000 nm. In the case of the phase-separated glass, the nanoinclusions are 

initially placed within the glass via the taking-placing procedure [45], by randomly inserting a 

given number of spheres within the cubic matrix while ensuring the absence of any overlap. The 

number of nanoinclusions is fixed so that their volume fraction is 30%—a realistic value based 

on experimental observations [35].  
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The peridynamic domain is then discretized into lattice points with a simple cubic lattice 

structure of constant grid spacing. Previous studies suggested that peridynamic models can 

properly describe the fracture behavior of composite systems when the grid spacing is equal to or 

smaller than a tenth of the particle diameter [46,47]. In this study, a grid spacing of 16.7 nm is 

found to yield a convergence of the computed stress-strain curve. The horizon is defined as three 

times the grid spacing. The mechanical properties of each point are then assigned based on the 

phase it belongs to (i.e., matrix or nanoinclusion). The Young’s modulus Emat and fracture energy 

Gmat 
c  of the glass matrix are fixed as 93 GPa and 4.5 J/m2, i.e., to mimic the mechanical properties 

of a calcium aluminosilicate glass [48].  The effect of the stiffness and toughness of the 

nanoinclusions is then investigated by considering varying values of nanoinclusion Young’s 

modulus Epart (from 0.5Emat to 2Emat) and fracture energy Gpart 
c  (from 0.5Gmat 

c  to 2.5Gmat 
c ). Note that, 

in practice, the phase separation of calcium aluminosilicate glasses can result in the formation of 

stiff/weak or soft/tough nanoinclusions consisting of Ca- or Si-rich droplets, respectively [35]. 

The Poisson's ratios of all phases are fixed as 0.3. These inputs are used to define the constitutive 

model of each phase (see Eqs. 4 and 5). Based in the fact that experiments suggest the existence 

of a strong interface between the nanoinclusions and matrix (which arises from strong Van der 

Waals forces)  [35], the constitutive model governing the bonds across the interface are here 

assumed to be the same as those of the matrix. 
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Figure 1. Schematic describing the geometry of a (a) homogeneous and (b) “droplet phase-separated” glass 

subjected to uniaxial tension. 

 

C. Simulations of mode I fracture 

The mode I fracture of the phase-separated glasses is then investigated by subjecting each 

configuration to a displacement-controlled tensile load. This is achieved by assigning some 

constant velocities to the top and bottom boundaries of the sample. A boundary thickness of 3 

grid spacings is used to avoid any spurious effect arising from non-local interactions close to the 

free surface [42].  To ensure the stability of the simulation, the integration timestep is selected 

based on a von Neumann stability analysis [37]. The simulations are performed by using the 

open-source Peridigm package [49]. The fracture energy of the phase-separated glasses is 

obtained by integrating the stress-strain curve as follows: 

 glass
c 0 z zG s dlσ= ∫   (7) 
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where zσ  and zl  are the stress and displacement in the loading direction (z-axis), respectively. 

The term s଴ is a unitless correction factor (equal to 1.25 herein) that accounts for the existence of 

the initial notch in the glass. 

III. RESULTS AND DISCUSSION 

A. Effect of the strain rate 

We first assess the effect of the strain rate on the fracture behavior of phase-separated glasses. 

Fig. 2 shows the computed stress-strain curve and fracture energy for select strain rates for a 

phase-separated glass with Epart = 72.5 GPa, Emat = 93 GPa, Gmat 
c  = 9.2 J/m2, and Gpart 

c  = 4.5 J/m2. 

Overall, we observe that the system exhibits a fairly elastic response, wherein stress linearly 

increases with strain until the fracture point is reached (see Fig. 2(a)). We note that the elastic 

regime remains unaffected by the strain rate. However, at high strain rate (> 106 s-1), we observe 

the appearance of some ductility, which manifests itself as an increase in the fracture energy of 

the system (see Fig. 2(b)). This can be explained by the fact that, when the strain rate increases, 

inertia effects around the crack tip becomes noticeable, which can result in crack branching or 

zig-zag crack path [50]. In turn, we observe that both the stress–strain curve and resulting 

fracture energy converge when the strain rate becomes lower than of 105 s-1. This suggests that, 

although such strain rate remains high as compared to those achieved experimentally, the 

fracture response of phase-separated glasses only weakly depends on the strain rate in this 

regime. This likely arises from the fact that the simulated system is relatively small so that the 

inertia effects can be neglected for this range of strain rates. Note that, the same convergence can 

also be observed when the mechanical properties are varied (for the range of values considered 

herein). In the following, for the sake of balance between computational efficiency and accuracy, 

we keep a fixed strain rate of 8×104 s-1. 
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Figure 2. Computed (a) stress–strain curve and (b) fracture energy of the phase-separted glass under different strain 

rates. The solid line in panel (b) is shown to guide the eye. 

 

B. Effect of the stiffness of the nanoinclusions 

We now assess the effect of a dissimilarity in stiffness between the matrix and nanoinclusions. 

Fig. 3(a) shows the stress-strain curves of phase-separated glasses for selected Young's modulus 

values for the nanoinclusions while keeping their fracture energy fixed. As expected, we observe 

that the overall stiffness (i.e., the slope of the stress–strain curve) of the phase-separated glasses 

increases with increasing Young’s modulus of the nanoinclusions. However, the presence of 

softer inclusions results in an increase in the ultimate strain before fracture. This arises from the 

fact that soft particles locally reduce the stress experienced by the glass and, thereby, postpone 

the yielding of the system. 

Fig. 3(b) shows the evolution of the resulting fracture energy of the phase-separated glasses as a 

function of the Young’s modulus of the nanoinclusions (for selected nanoinclusion fracture 
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energies). At fixed fracture energy for each phase, we observe that the fracture energy of the 

phase-separated glass is minimum when the stiffness of the matrix and nanoinclusions is similar. 

In turn, the fracture energy of the system increases as the nanoinclusions become softer or stiffer 

than the glass matrix. This minimum results from the competition between the two effects 

previously mentioned, that is, the variations in the stiffness and ultimate strain of the phase-

separated glass. However, we note that the effect of a dissimilarity of stiffness between the 

matrix and nanoinclusions is not symmetric. In particular, the increase in the fracture energy is 

found to be more pronounced (i) for stiffer nanoinclusions when those are weaker than the 

matrix (i.e., with lower fracture energy) and (ii) for softer nanoinclusions when those are tougher 

than the matrix. The origin of these distinct effects will be discussed in Sec. 3.4. 

 

 

Figure 3. (a) Computed stress–strain curves for selected values of Young’s modulus (Epart) for the nanoinclusion 

particles—the properties of the matrix (Emat, Gmat 
c ) remaining constant and with Gpart 

c  = Gmat 
c . (b) Relative variation in 

the fracture energy of the phase-separated glass (Gglass 
c ) as a function of the reduced Young’s modulus of the 

nanoinclusion particles (Epart/Emat) for selected reduced fracture energy (Gpart 
c /Gmat 

c ). 
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C. Effect of the fracture energy of the nanoinclusions 

We now assess the effect of a dissimilarity in fracture energy between the matrix and 

nanoinclusions. Fig. 4(a) shows the stress-strain curves of phase-separated glasses for selected 

fracture energy values for the nanoinclusions while keeping fixed their Young’s modulus. As 

expected, we observe that, in this case, the elastic regime (i.e., before yield and fracture) remains 

unaffected by the presence of the nanoinclusions. However, we note that the ultimate strain (and 

ultimate stress) before fracture increases with increasing nanoinclusion fracture energy. This 

arises from that fact that an increase in the fracture energy of the nanoinclusions effectively 

increases the overall cohesion of the phase-separated glass and, thereby, increases the yield stress 

of the system. In addition, we note the appearance of plastic-like behavior (manifesting itself as a 

small plateau in the stress–strain curve before fracture) for high values of nanoinclusion fracture 

energy. This suggests that, in this regime, the phase-separated glass exhibits some strain 

hardening [51] and can be irreversibly deformed while keeping the stress constant.  

Fig. 4(b) shows the evolution of the resulting fracture energy of the phase-separated glasses as a 

function of the fracture energy of the nanoinclusions (for selected nanoinclusion Young’s 

moduli). We observe that, in this case, the fracture energy of the phase-separated glass 

monotonically increases with the fracture energy of the nanoinclusions, irrespectively of their 

stiffness (see also Fig. 3(b)). However, a break of slope is observed, namely, the fracture energy 

of the phase-separated increases faster when the nanoinclusions become tougher than the matrix 

and it decreases when the nanoinclusions become weaker (i.e., less tough) than the matrix. This 

can be understood from the fact that, when the nanoinclusions are weaker than the matrix, they 

do not carry any significant load once the glass is placed under tension, so that, in this regime, 
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the overall fracture energy of the phase-separated glass only weakly depends on the mechanical 

properties of the nanoinclusions. 

 

 

Figure 4. (a) Computed stress–strain curves for select values of fracture energy (Gpart 
c ) for the nanoinclusion 

particles—the properties of the matrix (Emat, Gmat 
c ) remaining constant and with Epart = Emat. (b) Relative variation in 

the fracture energy of the phase-separated glass (Gglass 
c ) as a function of the reduced fracture energy of the 

nanoinclusion particles (Gpart 
c /Gmat 

c ) for selected reduced Young’s moduli (Epart/Emat). 

 

Fig. 5 presents the combined effects on the overall fracture energy of the phase-separated glass 

of a dissymmetry between the Young’s modulus and fracture energy of the matrix and 

nanoinclusions. Overall, we note that, at the exception of the case where the nanoinclusions have 

a lower fracture energy but the same stiffness as the matrix, the fracture toughness of the glass 

systematically increases upon the presence of phase separation. Based on these results, we find 

that the most significant increase in the fracture energy is achieved when the nanoinclusions 
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exhibit high fracture energy, but low stiffness (i.e., lower right corner of Fig. 5). The origin of 

this observation is discussed in Sec. 3.4. 

 

Figure 5. Contour plot summarizing the combined effects of the stiffness and toughness of the nanoinclusions on 

the overall fracture energy of the phase-separated glass. 

 

D. Nature of the toughening mechanism 

We now discuss the origin of the enhancement of fracture energy for each of the regimes 

previously mentioned (see Secs. 3.2 and 3.3). To this end, we analyze the different contributions 

to the fracture energy of the phase-separated glass ( glass
cG ), as described in the following. We first 

decompose the fracture energy of the phase-eparated glass as: 

 glass coh other
cG G G= +   (8) 

where cohG  is the effective cohesive energy of the phase-separated glass (which accounts for the 

effective surface energy and real crack area) and otherG  captures all other types of energy 
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contributions that are dissipated through plastic events (e.g., energy dissipated during crack 

deflection, crack pinning, crack trapping and bridging, etc. [19]). The effective cohesive energy 

of the phase-separated glass ( cohG ) can be further expressed as: 

 coh glass2G kγ= ⋅   (9) 

where glassγ  is the effective surface energy of the phase-separated glass (as experienced by the 

crack during its propagation) and glass
0/k A A=  is a geometrical factor that captures the fact that 

the real crack surface area glassA  is larger than the cross-section of the sample 0A . The geometry 

and area of the crack geometry are here extracted post-mortem by following the procedure 

provided in a previous work [52]. The effective surface energy of the phase-separated glass is 

then defined as: 

 ( )glass mat part1γ ϕ γ ϕγ= − +   (10) 

where matγ  and partγ  are the surface energy of the matrix and nanoinclusion particles, 

respectively, and ϕ  is the fraction of the final crack surface that crosses the nanoinclusions 

(1 ϕ− being the fraction of the crack surface that crosses the matrix). As such, the effective 

cohesive energy of the phase-separated glass ( cohG ) captures the real overall cohesion energy that 

is experienced by the crack as it propagates. Note that this term differs from the average 

cohesion of the phase-separated glass as it depends on the propensity of the crack to be deflected 

either toward or around the nanoinclusions. Based on this formalism, one can define a brittleness 

index as: 

 
coh

glass
c

GB
G

=   (11) 
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wherein B = 1 corresponds to a perfectly brittle fracture, that is, where other 0G = . In the 

following, we investigate to what extent each of these energy contributions contributes to 

increasing the fracture energy of the phase-separated glass.   

We first investigate how the mechanical properties of the nanoinclusions control where the crack 

eventually propagates. Indeed, the existence of local stress heterogeneity can force the crack to 

propagate in the non-planar direction, which can result in some crack deflection. [26] Fig. 6(a) 

shows the fraction ϕ  of the final crack surface that crosses the nanoinclusions (i.e., rather than 

the matrix) as a function of the Young’s modulus of the nanoinclusions (for selected 

nanoinclusion fracture energy). Note that, in the absence of any crack deflection, one gets 

30%ϕ ≈ i.e., the volume fraction of the nanoinclusions. As such, 30%ϕ >  indicates that the 

crack is attracted toward the nanoinclusions whereas 30%ϕ < indicates that the crack tends to go 

around the nanoinclusions (see the schematics in Fig. 6(a)). Overall, we observe that ϕ  

systematically increases with decreasing values of nanoinclusion fracture energy. As expected, 

this indicates that the crack preferentially propagates through the weak regions (i.e., low local 

fracture energy) and tend to avoid the tough regions. In addition, we observe that ϕ  also 

increases with decreasing values of nanoinclusion stiffness (see Fig. 6(a)). This can be explained 

by that fact that the local stress intensity factor near the crack tip is affected by the local stiffness. 

According to Eshelby equivalent inclusion approach and finite element analysis, the mode I 

stress intensity factor increases with Epart/Emat when the inclusion lies on the crack front [53]. As 

a result, the crack is more likely to deflect within the matrix with stiff inclusions. On the contrary, 

soft inclusions can effectively attract the crack. Moreover, the crack deflection is observed in the 

stiff nanoinclusion reinforced glass by recent molecular dynamics simulation [54]. Overall, we 

find that the propensity for crack deflection is controlled by a balance between the stiffness and 
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toughness of the nanoinclusions. We note that stiffness and toughness have a fairly similar 

influence on the propensity for crack deflection. Indeed, for instance, no propensity for crack 

deflection is observed in a phase-separated glass wherein the fracture energy and Young’s 

modulus of the nanoinclusions are two times lower and larger than those of the matrix, 

respectively (see Fig. 6(a)). Crack deflection has multiple effects on the fracture energy of the 

phase separated glass by: (i) changing the effective surface energy experienced by the crack upon 

propagation (which is captured by glassγ , see Eq. 10), (ii) affecting the roughness of the crack 

surface (i.e., its final surface, as captured by the coefficient glass
0/k A A=  in Eq. 9), and (iii) 

resulting in plastic energy dissipation (as captured by otherG , see Eq. 8). Each of these energy 

contributions is described in the following.  

We first focus on the effective surface energy experienced by the crack during propagation, 

which solely depends on the fraction ϕ  of the final crack surface that crosses the nanoinclusions 

and the surface energies of each phase (see Eq. 10). As shown in Fig. 6(b), we observe that the 

effective surface energy of the phase-separated glass remains constant when the fracture energies 

(and, hence, surface energies) of the matrix and nanoinclusions are equal to each other. Indeed, 

in this case, the specific path of the crack is relevant. We then observe that the effective surface 

energy increases with increasing values of the nanoinclusion fracture energy. This is expected as 

an increase in the fracture energy (and, hence, surface energy) of the nanoinclusions increases 

the overall average cohesion of the phase-separated glass. However, we note that, at fixed high 

values of nanoinclusion fracture energy, the effective surface energy decreases with increasing 

values of nanoinclusion stiffness (see red series in Fig. 6(b)). This arises from the fact that the 

crack tends to avoid stiff particles (see Fig. 6(a)). In contrast, we note that, at fixed low values of 

nanoinclusion fracture energy, the effective surface energy increases with increasing values of 
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nanoinclusion stiffness (see blue series in Fig. 6(b)). Again, this arises from the fact that the 

crack tends to avoid stiff particles (see Fig. 6(a)), which, in this case, is beneficial as the 

nanoinclusions exhibit a lower toughness than the matrix. Altogether, we find that the effective 

surface energy experienced by the crack during propagation is controlled by a balance between 

the fracture energy of each phase and the propensity for the crack to avoid or go toward the 

nanoinclusions. Overall, these results show that an optimal increase in the effective surface 

energy of the phase-separated glass is achieved in the presence of soft, yet tough 

nanoinclusions—as such nanoinclusions favor the deflection of the crack toward the high-

fracture-energy regions of the glass. In contrast, minimum effective surface energy is obtained in 

the presence of soft and weak nanoinclusions—as such nanoinclusions favor the deflection of the 

crack toward the low-fracture-energy regions of the glass. 

 

 

Figure 6. (a) Fraction of the final crack surface that crosses the nanoinclusions as a function of the reduced Young’s 

modulus of the nanoinclusion particles (Epart/Emat) for selected reduced fracture energy (Gpart 
c /Gmat 

c ). The dotted line 

indicates the average surface fraction covered by particles (about 30%), that is, the fraction of the crack surface 
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crossing the particles if no deflections are observed. (b) Effective surface energy (γglass, see Eq. (10)) experienced by 

crack during propagation in the phase-separated glass as a function of the reduced Young’s modulus of the 

nanoinclusion particles (Epart/Emat) for selected reduced fracture energy (Gpart 
c /Gmat 

c ). The dotted line indicates the 

surface energy of the matrix, that is, in the absence of any phase separation. 

 

We now investigate the energy contribution of the roughness of the final crack surface that 

results from the presence of some crack deflection. Such rough crack surface have been observed 

in nanoparticle-reinforced epoxy nanocomposites [56,57]. Fig. 7(a)  shows the area of the final 

crack surface glassA , normalized by the cross-section of the sample 0A (i.e., a metric that captures 

the roughness of the crack surface). Overall, we observe that, at the exception of the case where 

the glass is fully homogeneous (i.e., with no phase separation), the real area of the crack surface 

is systematically larger than the cross-section of the sample. This is expected as the cross-section 

represents the minimum theoretical value of the crack surface, i.e., the shortest path from the 

crack to reach the right end of the sample. We observe that the area of the crack surface increases 

with increasing dissimilarity in the mechanical properties of the matrix and nanoinclusions, that 

is, when the crack has a propensity to avoid or be attracted by the nanoinclusions (see Fig. 6(a) ). 

Overall, we find that the maximum increase in the roughness of the crack is achieved in the 

presence of tough and stiff nanoinclusions (see Fig. 7(a) ), that is, when the crack presents the 

highest propensity to avoid the nanoinclusions (see Fig. 6(a) ). Experimental observations also 

support these conclusions—as scanning electron microscopy (SEM) micrographs obtained on 

fractured nano-particle-modified epoxy phases suggest that particle debonding/pullout is the 

main mode of fracture in the presence of nano-silica particles (i.e., stiff inclusions), whereas 

nanocavitation is observed in the presence of rubber particles (i.e., soft inclusions) [55]. 
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However, we note that, in all cases, the increase in the crack surface remains limited (7.5% at 

most for the range of parameters explored herein). This suggests that the geometrical roughness 

of the crack surface has a low contribution to the overall cohesion of the phase-separated glasses. 

Indeed, as shown in Fig. 7(b) , the effective cohesive energy of the phase-separated glass ( otherG , 

see Eq. 9) closely follows the value of the effective surface energy ( glassγ , with a factor of 2, see 

Eq. 9). Crack roughness only results in a small increase in the effective cohesion energy of the 

glass in the case of tough and stiff nanoinclusions.  

 

 

Figure 7. (a) Area of the final crack (normalized by the cross-section of the sample) as a function of the reduced 

Young’s modulus of the nanoinclusion particles (Epart/Emat) for selected reduced fracture energy (Gpart 
c /Gmat 

c ). (b) 

Effective cohesion energy (see Eq. (9)) of the phase-separated glass. The dotted line indicates the cohesion energy of 

the matrix, that is, in the absence of any phase separation. 
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Finally, we investigate the energy contribution that is dissipated through some plastic events. Fig. 

8(a)  shows the plastic component of the fracture energy of the phase-separated glasses ( otherG ), 

which is calculated by subtracting the effective cohesive energy from the total fracture energy 

(see Eq. 8). We observe that the dissipated energy increases with higher degree of dissymmetry 

between the mechanical properties of the matrix and nanoinclusions. We observe that the amount 

of dissipated energy is significantly higher in the case of tough nanoinclusions than for weak 

nanoinclusions. Overall, the dissipated energy exhibits a trend that is fairly similar to that of the 

area of the crack surface (see Fig. 7(a) ). This suggests that such dissipated energy primarily 

arises from some variations in the direction of the crack propagation. In the case of stiff 

nanoinclusions, the dissipated energy is expected to mostly arise from crack deflections [26]. In 

the case of soft nanoinclusions, the dissipated energy is expected to mostly arise from crack 

trapping and bridging [28]. In both cases, phase separation results in a significant decrease in the 

degree of brittle fracture (see Fig. 8(b) ). 
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Figure 8. (a) Energy dissipated through ductile events and (b) brittleness index (see Eq. (11)) as a function of the 

Young’s modulus of the particles (Epart) for selected particle fracture energy (Gpart 
c ), wherein the particles’ 

mechanical properties are normalized by those of the matrix (Emat and Gmat 
c ). 

 

IV. DISCUSSION 

Altogether, these results allow us to identify the underlying toughening mechanism for each type 

of system (see Fig. 5). We note that the presence of phase separation systematically results in an 

increase in the fracture toughness of the glass, with the exception of the case of weak and soft 

nanoinclusions (see Fig. 3(b)  and Fig. 4(b) ). In this situation, the low stiffness of the 

nanoinclusions tend to attract the crack (see Fig. 6(a) ) toward the weak nanoinclusions, which 

results in a decrease in the effective cohesion of the phase-separated glass (see Fig. 6(b) ). In 

contrast, all the other situations cause the fracture energy to increase. First, in the case of weak 

and stiff nanoinclusions, some crack deflection is observed (see Fig. 6(a) ). Although this results 

in a decrease in the cohesion of the glass (see Fig. 6(b) ), this loss of energy is counter-balanced 

by the existence of some plastic dissipated energy arising from the crack deflection mechanism 
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(see Fig. 8(a) ). Second, in the case of tough and stiff nanoinclusions, a significant degree of 

crack deflection is observed, wherein the crack shows a high propensity to avoid the 

nanoinclusions (see Figs. 6A and 7A). Although the increase in the effective cohesion of the 

glass is limited (see Fig. 6(b) ), the crack deflection mechanism is associated with a large amount 

of plastic energy dissipation (see Fig. 8(a) ). Finally, the largest extent of toughening is achieved 

in the case of tough and soft nanoinclusions. In this situation, the low stiffness of the 

nanoinclusions tend to attract the crack (see Fig. 6(a) ) toward the tough nanoinclusions, which 

results in a large increase in the effective cohesion of the phase-separated glass (see Fig. 6(b) ). 

This is augmented by a large amount of plastic energy dissipation (see Fig. 8(a) ). Overall, our 

results suggest that the presence of soft, yet tough nanoinclusions is the most promising route 

toward the development of tougher phase-separated glasses that retain their transparency. 

In practice, depending on the composition of the glass and its position with respect to the 

immiscibility dome, the phase separation of calcium silicate glasses can result in the formation of 

Ca- or Si-rich nanoinclusions [35]. In the first case, the Ca-rich droplets are likely to be stiffer, 

but weaker than the matrix [48,58]. Our results suggest that this situation would result in only a 

minor increase in the fracture toughness of the phase-separated glass. However, in the second 

case, the Si-rich droplets are likely to be softer, but tougher than the matrix [48,58]. Based on 

previous molecular dynamics simulations, this situation would yield Epart/Emat = 0.7 and Gpart 
c /Gmat 

c  

= 2.1 [48].  Based on the present study, one can, therefore, expect the phase-separated glass 

would exhibit a 60% increase in its fracture energy with respect to that of the isochemical 

homogeneous glass (see Fig. 5). 

Note that these predictions are restricted to microstructures consisting in small spherical droplets. 

On the one hand, it is likely that the magnitude of the toughening effects identified herein would 
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increase in the presence of larger inclusions. On the other hand, spinodal decomposition (which 

occurs when the glass composition is located in the middle of the immiscibility domain) would 

result in the formation of rather large interconnected phases. The propensity for this kind of 

microstructure is likely to be superior to that of matrix–droplets microstructures, so that the 

increase in toughness resulting from spinodal decomposition is likely to be higher than that 

induced by nucleation-growth [15]. However, this kind of microstructure typically result in a loss 

of transparency, which reduces the range of potential applications for such phase-separated 

glasses. 

 

V. Conclusion 

Overall, our peridynamics simulations offer a realistic description of the effect of nanoscale 

phase separation on the fracture behavior of silicate glasses. We show that, in most cases, phase 

separation results in an increase in the fracture energy of the glass. By quantifying the various 

contributions to the fracture energy, we show that the extent of toughening is governed by a 

balance between the propensity for crack deflections, the effective cohesion of the phase-

separated glass, the existence of plastic energy dissipation, and (to a lower extent) the roughness 

of the crack surface. The largest extent of toughening is achieved in the case of soft, yet tough 

nanoinclusions. In this situation, the crack shows a high propensity for traveling through the 

softer nanoinclusions, which results in a large increase in the effective cohesion of the phase-

separated glass. In all cases, phase separation results in some significant plastic energy 

dissipation, which renders it a promising route toward the development of novel phase-separated 

glasses that exhibit some nanoductility while retaining their optical transparency.  
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