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First-principles density-functional theory is used to study the phase stability/instability and
anomalies in the formation of the high-temperature bcc phases of XZn (X = Cu, Ag, and Au)
alloys. Although, from perhaps a naive point of view, their properties are expected to monoton-
ically depend on the noble-metal (X) column position in the periodic table, this is not the case.
For example, the middle column AgZn alloy has a lower bcc order-disorder (critical) temperature
than the CuZn and AuZn alloys above and below in the column. It is shown that this and other
non-monotonic behavior can be explained in terms of a competition between atomic-size effects and
X-atom d-orbital spatial extent. For example, charge-density studies and pair-potential modeling
of XZn alloys show that the effective Ag-Zn bond is significantly weaker than either the Cu-Zn or
Au-Zn bond at their respective equilibrium lattice constants. We find that an increased atomic-core
size effect initially weakens the X-Zn bonding as one goes from CuZn to AgZn, but then the larger
d-orbital spatial extent for higher principal quantum numbers becomes a more dominant effect and
increases the bonding from AgZn to AuZn. This study is focused on the highly symmetric cubic
high-temperature phases, where relative bond-strength magnitudes should be far more important
than any bond-directionality effects; the lattice parameters, bulk moduli, elastic constants, Debye
temperatures, heats of formation, and order-disorder temperatures for the bcc phases of the three
XZn alloys are calculated and compared with experiment.

PACS numbers:

I. INTRODUCTION

The properties of CuZn (brass) alloys such as re-
sistance to corrosion, excellent ductility, cold working,
machinability, and relative ease of production, give them
wide applicability.1 AgZn alloys, when used as battery
cell materials, have low internal resistance, high energy
density, low weight, and very reliable operation in dif-
ferent (harsh) environments,2,3 and have therefore been
long used in military, aerospace, and medical industries.
AuZn alloys have been the subject of experimental and
theoretical studies4,5 due to their shape memory effect
and the nature of their phase transformation. Because of
their wide range of usage and application, the phase dia-
gram of alloys constituted from the noble metals Cu, Ag,
Au and the divalent metal Zn have been the subject of in-
vestigations that include the nature of the phases under
cooling and/or pressure, and studies of their electronic
structures and physical properties.6–25

We characterize these three materials as XZn alloys,
where X = Cu, Ag, and Au, respectively a 3d, 4d, and
5d noble metal from the same column of the periodic ta-
ble. Since the periodic table is supposed to organize and
order various properties, one might naively expect the
XZn phase diagrams and properties to be monotonic as
one goes down the column. But they are not. In this
paper we explore the reason why they are not, which
allows a deeper understanding into the interrelationship
between the electronic structure and bonding and other
material properties of all three of these important mate-
rials, in a way that could not be achieved by looking at
each material individually.
Near the equiatomic concentration at high temper-

atures the majority of these materials form in body-
centered cubic (β) phases that are disordered, except for
AuZn. After lowering the temperature or quenching from
high temperatures, most of the disordered alloys in the β-
phase are retained at room temperature as a metastable
ordered body-centered cubic (β1) phase. Upon fur-
ther cooling and cold working, the β1 phases usually
transform structurally through a martensitic transfor-
mation into new phases. For example, the CuZn alloy
transforms from a bcc disordered phase (A2) into the
CsCl ordered (B2) structure. After further cooling, the
B2 phase transforms martensitically to an orthorhombic
structure.6–8 The AuZn alloy also transforms martensiti-
cally to an orthorhombic structure known as the R-phase,
but retains its ordered B2 phase all the way up to its
melting point.6,9,10

Slow cooling of the disordered A2 AgZn alloy causes a
structural phase transformation at 540 K. This structure
is a complex hexagonal structure (η-phase) closely related
to the bcc structure, but with nine atoms per unit cell
in partially ordered arrangements.11–14 However, when
quenched to room temperature the A2 phase changes to
a metastable B2 phase. No structural phase transforma-
tion has been observed with further cooling of the B2
phase. Furthermore, by heating the B2 phase to about
440 K it transforms to an η-phase.14

It might be expected that an isoelectronic system,
where X = Cu, Ag, and Au belong to the same column
of the periodic table, would all have similar electronic
properties. This is confirmed for the densities of states
and d bond energy calculated in this work (Sec. VII).
However, cohesive energy and related properties should
be different. By moving down the periodic table column
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and changing the d orbital from 3d (Cu) to 4d (Ag) to
5d (Au), the main electronic effect is a more extended d
orbital. The atomic wavefunction of each higher princi-
pal quantum number needs an additional node in order
to be orthogonal to the wave functions of lower principal
quantum number. This makes the wavefunctions bend
more to include this node, increasing the curvature (and
hence the ∇

2 or Laplacian operator). This increase in
the kinetic energy of the orbital can increasingly com-
pensate for the attractive electromagnetic force of the
positive nucleus making the wavefunction of the orbitals
extend further away from the nucleus. As this occurs,
the bonding between the X and Zn atoms is expected
to become monotonically stronger for a fixed X-Zn in-
teratomic distance, since the X-atom d orbitals hybridize
more strongly with the Zn orbitals. Therefore, the bcc
phase (ordered and disordered) of XZn system might be
assumed to follow the same trend with AuZn being the
most stable (lowest formation-energy) phase and CuZn
the least stable.

However, the phase diagram of these alloys does not
show such a trend. Instead, the critical temperatures for
the order-disorder transition of the B2 phase in CuZn,
AgZn, and AuZn are significantly different. Estimated
values for XZn (X= Cu, Ag, and Au) alloys are 763, 518,
and 1240 K, respectively.6,10 Also, only the CuZn sys-
tem has stable ordered and disordered bcc structures. By
comparison, the disordered bcc phase of AgZn is stable
at high temperatures while the B2 phase is metastable.
In the case of the AuZn alloys, the site disorder seems to
be absent and the ordered bcc (B2) phase extends all the
way up to the melting temperature.

More generally, if the underlying physical properties
only depended on a single variable like the spatial ex-
tent of the noble-metal d orbital, the properties might
be expected to be monotonic. To explain properties that
have either a maximum or a minimum as a function of
the principal quantum number of the noble element that
alloys with Zn, as is seen in much of the data (see below),
requires a competition between two different underlying
causes that push the property in opposite directions. In
the present case, we will show that this competition is
between: (1) effects caused by the increasing size of the
atomic cores of the noble metals, and (2) the spatial ex-
tent of the noble-metal d orbitals. With increasing prin-
cipal quantum number, the larger atomic cores push the
noble-metal atoms farther away from the Zn atoms reduc-
ing the effective hybridization (and hence the bonding)
between the noble-metal d orbitals and the Zn orbitals,
and counteracting the effect of the greater spatial extent
of the d orbitals with higher principal quantum number
that causes increased hybridization and bonding. Only
the type of quantitative calculations that we perform here
can determine which effect is stronger or more dominant
at smaller or larger principal quantum number.

To study this, we used first-principles methods to in-
vestigate the formation energies of the ordered and dis-
ordered bcc phases of XZn (X= Cu, Ag, and Au) alloys,

which can provide a quantitative measure of the effec-
tive X-Zn hybridization overlaps (bond strengths). The
stability of each structure was carefully studied by an-
alyzing their chemical and elastic formation energies; a
fit of the band-structure calculations to a Morse pair-
potential model26 allowed us to make a direct comparison
of the relative X-Zn bonding strengths. In addition, the
charge-density distribution and partial density of states
were also examined in detail to improve our understand-
ing of the nature of the X-Zn interactions. We find that
the increased atomic size effect initially weakens the X-Zn
bonding as one goes from CuZn to AgZn, but then the
larger d-orbital size effect overcomes this and increases
the bonding as one goes from AgZn to AuZn.
This paper is organized as follows: Sec. II describes the

details of calculations. Section III discusses the atomic
size effects by calculating the chemical and elastic forma-
tion energies. In Sec. IV the pair potential modeling and
its results are discussed. Section V contains the charge
and partial density of states analysis. Section VI contains
the results of stability of B2 versus A2 structures at fi-
nite temperature. A summary of our results is presented
in the last section.

II. DETAILS OF CALCULATIONS

In the present work we use the first-principles density-
functional package VASP27–29 with the generalized-
gradient approximation (GGA) to the exchange-
correlation potential, and the parameters recommended
by Perdew, Burke, and Ernzerhof30. The VASP code is
a projector augmented-wave technique; our plane-wave
cutoff kinetic energy is 400 eV.31,32 The solution of the
generalized self-consistent Kohn-Sham equation employs
efficient matrix-diagonalization routines based on the se-
quential band-by-band residual minimization technique
and a Pulay-like charge-density mixing33. The pseudopo-
tentials of Cu, Ag, Au, and Zn were provided by the
VASP package.
In this calculation, the electronic degrees of freedom

were optimized with a conjugate-gradient algorithm, and
the lattice constants and ionic atomic positions of the
unit cell were totally relaxed. A two-atom periodic cell
was used for most of the calculations. The k -point in-
tegration in the Brillouin zone was done via a modified
tetrahedron method (24×24×24 mesh).34

The elastic constants were calculated by monitoring
relative changes in the total energy as the lattice was
strained. For a symmetric cubic structure there are three
independent elastic constants C11, C12, and C44, two of
which (C11 and C12) can be calculated from the bulk

modulus and the tetragonal shear constant C
′

. Moreover,
the equilibrium volume (lattice constant) is obtained by
fitting the total energy-volume data with Murnaghan’s
equation of state35. The bulk modulus (B) for a cubic
crystal is equal to B = (C11 + 2C12)/3 and can be ob-
tained from the second derivative of the energy-volume
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curve. The remaining elastic constant C44 can be calcu-
lated by a monoclinic volume-conserving distortion.36–40

ǫ =





0 δ/2 0
δ/2 0 0
0 0 δ2/(4− δ2)



 , (1)

where the energy is given by:

E(δ) = 1/2C44δ
2 +O(δ4) . (2)

The tetragonal shear constant C
′

is

C
′

=
C11 − C12

2
, (3)

and the strain matrix is given by

ǫ =





δ 0 0
0 −δ 0
0 0 δ2/(1− δ2)



 . (4)

The equation for the energy with the distortion can be
written as:

E(δ) = 2C
′

δ2 +O(δ4) . (5)

The bulk modulus is calculated from the volume-pressure
relation

B(V ) = −V
∂P

∂V
=

∂2E(V )

∂V 2
. (6)

The calculated elastic constants can be used to estimate
the melting temperature of cubic metals and compounds
through the empirical (linear) relationship between C11

and the melting temperature of cubic solids,41 given by

Tm = 553 +
5.91K

GPa
C11 ± 300K. (7)

The typical error bar of this relationship (± 300 K) is
also indicated in the table.

III. STABILITY OF B2 CRYSTAL STRUCTURE

The B2 phase is a CsCl type structure with Pm3m
group symmetry. The ground-state properties and elas-
tic parameters for the B2 phases of XZn (X = Cu, Ag,
and Au) have been calculated and are presented in Ta-
ble I. The theoretical results are generally in good agree-
ment with the available experimental data. The calcu-
lated melting temperatures seem consistently high by a
couple of hundred degrees but track the experimental
trend relative to the Cu, Ag, and Au compounds.
The Zener anisotropy factor A is defined as the ra-

tio of the C44 and C
′

elastic constants. According to
Zener42, the elastic anisotropy of the lattice and the ten-
dency for a material to display a structural phase trans-
formation are interrelated. He proposed that there is a

mechanical instability in the bcc phase caused by a high
elastic anisotropy. More specifically, it was found that
a bcc phase with small elastic constant C

′

(weak shear
resistance) promotes elastic anisotropy, while alloys for
which A > 6 are unstable and often display a structural
(martensitic) phase transformation.42

TABLE I: Calculated zero-temperature values of the B2 phase
for the equilibrium lattice parameters (a), elastic constants

(C11, C12, C44, and C
′

), bulk modulus (B), Zener anisotropy
(A), and melting temperatures (Tm) of XZn (X = Cu, Ag,
and Au) along with available experimental values.

Alloys CuZn AgZn AuZn

a(Å) 2.970(2.954)a 3.192(3.159)d 3.195(3.149)e

C11(GPa) 126.3(129.1)b 92.1(101.9)d 121.3(147.4)e

C12(GPa) 110.5(109.7)b 85.0 109.3(133.9)e

C44(GPa) 89.3(82.4)b 52.5(54.8)d 62.0(62.26)e

C
′

(GPa) 7.9(9.70)b 3.55 6.0(6.72)e

B(GPa) 115.7(116.2)b 87.3 113.3(138.4)e

A 11.30(8.50)b 14.80 10.33(9.26)e

Tm(K) 1299± 300 1097 ± 300 1270± 300

(1162)c (944)c (1058)c

aRef.43 bRef.44 cRef.45 dGraphical extrapolation of data in
Ref.14 eRef.46

The calculated anisotropy factors A for CuZn, AgZn,
and AuZn are non-monotonic, 11.3, 14.8, and 10.4, re-
spectively. As these values are much greater than 6, ac-
cording to Zener the B2 phase of these alloys should not
be stable and should have a tendency towards a struc-
tural phase transformation.10,16,47

AgZn, which has the highest anisotropy factor among
these alloys, also has the smallest elastic parameters and
hence suggests that the B2 phase for this system is highly
unstable relative to the other systems.10 In fact, this
phase can only form during a quench from the disordered
bcc phase.11,13 In order to understand the importance of
chemical bonds and atomic size effect on stability or in-
stability of XZn systems, we calculated their chemical
and elastic formation energies.

IV. CHEMICAL AND ELASTIC FORMATION

ENERGIES

The separation of the formation energy of alloys into
the chemical and elastic formation energies directly shows
the competition between the strength of the X-Zn inter-
atomic bonding and the size effect (strain) between con-
stituent atoms. The chemical formation energy ∆Hchem

of a binary alloy is the difference between the total energy
of the compound in equilibrium, E(AxB1−x), and the
component energies, E(Ax) and E(B1−x) (cf. Refs. 48–
50). The chemical formation energy of a binary com-
pound with concentration x is thus given by:
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FIG. 1: (Color online) Calculated chemical and elastic forma-
tion energies for the XZn (X = Cu, Ag, Au) B2 phase. The
solid circles are the calculated energies at the equilibrium vol-
ume of each system, while the solid squares are the energies
of AgZn and AuZn at the CuZn equilibrium volume. The
dashed lines are guides for the eye.

∆Hchem = E(AxB1−x; (a))−xEA(a)−(1−x)EB(a). (8)

The elastic formation energy ∆Helast is the necessary
energy needed to distort pure components A and B from
their respective equilibrium lattice constants a0A and a0B,
to the lattice constant a of the combined system, and is
given by48–50

∆Helast = x[EA(a)−EA(a
0
A)]+(1−x)[EB(a)−EB(a

0
B)].
(9)

Although the zero-temperature crystal structures of X
and Zn atoms are different from bcc (viz., face-centered
cubic or fcc for the noble metals and hexagonal close-
packed or hcp for Zn), in order to minimize the effect
of directional bonding between atoms, we used the bcc
phase as the reference state for all of the elements studied
here. To better understand effects of the atomic size on
the stability of the XZn systems, the chemical and elas-
tic energies of AgZn and AuZn were calculated at both
their calculated equilibrium volumes (lattice constants)
as well as at the CuZn equilibrium volume (i.e, using
the same fixed CuZn lattice constants for the formation
energy calculations for all three compounds).
Calculated chemical and elastic formation energies for

different alloys are depicted in Fig. 1. As shown, if all
three compounds used the same fixed CuZn equilibrium
lattice constant, the chemical energy of the systems fol-
low a monotonic trend. That is, CuZn has the highest
chemical energy and AuZn the lowest while the energy
of AgZn will be in between. This chemical energy trend
shows that the increased spatial extent of the d orbital
systematically increases the Cu-Zn bond strength, when
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FIG. 2: (Color online) Morse potential model for XZn (X =
Cu, Ag, Au) bonds in the B2 phase which is fitted up to the
fourth-nearest neighbors.

the distance between the X and Zn atoms is fixed. How-
ever, this causes the elastic energies of AgZn and AuZn to
become very large due to the increasing atom size of Cu,
Ag, and Zn (which manifests as a larger and larger core-
core repulsion term when modeled with pair potentials—
see below). The result is to expand the lattice constants
when the AgZn and AuZn equilibrium volumes are cal-
culated. This reduces the elastic energies of all three
systems at their equilibrium volumes, which have com-
parably small values. The competition between these two
opposing formation-energy trends gives rise to the max-
imum in the chemical formation energy for AgZn in the
curve calculated for equilibrium volumes of each com-
pound (solid circles in Fig. 1). We next examine this ef-
fect in a more detailed manner by using a pair-potential
model to estimate the interaction between the neighbor-
ing atoms.

V. PAIR POTENTIAL MODEL

The Morse potential has been widely used to model
and estimate chemical bonds or the bond strength be-
tween atoms in solids51,52, and in diatomic molecules.26

This potential has competing attractive and repulsive
terms that give rise to a minimum separation between
the atoms that corresponds to their equilibrium distance.
The potential is given by

Φ(rij) = D[e−2α(rij−r0) − 2e−α(rij−r0)] , (10)

where Φ(rij) is the potential energy (interaction) between
two atoms separated by a distance rij , D and α are po-
tential parameters and r0 is the distance where the po-
tential is a minimum.
When we use a Morse potential, we ignore any explicit

directional dependence of the bonding (no dependence
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CuZn AgZn AuZn

FIG. 3: (Color online) The charge density distribution of XZn alloys in [110] plane where the Zn atom is at the center and the
X atoms are at the corners.

on bond angles is included in the parameters). This is
suitable for our situation since all of the structures of in-
terest have B2 symmetry, viz., the bcc and B2 crystal
structures. The high symmetry of the cubic structures
should minimize any directional bonding effects, and en-
ables us to focus on the magnitude of the relative bond
strength, which is the main quantity of interest for us.
For other less symmetric crystal structures, it may be
important to include directional effects in the modeling.
Our fits for the Morse potential were extended up

to fourth-nearest-shell interactions with improved agree-
ment when including more shells of interactions.53 The
first-principles calculations of the total energy for dif-
ferent volumes of the pure elements were used to deter-
mine the bcc X-X and Zn-Zn potential parameters. Then,
these same calculated X-X and Zn-Zn parameters were
used in the energy versus volume curves of the XZn al-
loys to obtain the X-Zn potential parameters. A similar
approach has been successfully used for modeling the in-
teractions in Ni-Al systems.54

The calculated Morse potentials for different X-Zn
atoms are shown in Fig. 2. The relative bond-strength
trend is in complete agreement with the predicted
chemical-energy formation of the system (Fig. 1). Since
our analysis shows that the nearest-neighbor interactions
are the major contribution to the XZn phase stability,
this indicates Ag-Zn is the weakest bond in XZn (X =
Cu, Ag, Au). What essentially is happening is that the
X-Zn bond becomes stronger and stronger for fixed atom
distance as one goes down the column of the periodic ta-
ble, since 5d orbitals are more extended than 4d orbitals
which are more extended than 3d orbitals, increasing hy-
bridization with the Zn orbitals. However, opposing this
effect is an increased X-Zn atomic distance from the lat-
tice expansion caused by the core-core repulsion (of the

larger atomic cores as one goes down the column), which
reduces the overlap of these wavefunctions. Initially, the
distance effect dominates and the AgZn bond is weaker
than the CuZn bond, but then the increased d-wave or-
bital spatial extent of Au wins out, and the AuZn bond
becomes strongest of all. The dominance of this effect
is that the lattice constant is almost identical between
AgZn and AuZn. The larger Au core wants to push the
atoms further apart, but is not able to accomplish this
due to the increased AuZn bond strength. This result
can also explain the small elastic parameters of the AgZn
system relative to the CuZn and AuZn alloys.

VI. CHARGE DENSITY DISTRIBUTION AND

DENSITY OF STATES

The charge density distribution for the B2 XZn phases
in the [110] plane is depicted in Fig. 3, for each system,
respectively. In each figure, the atoms in the center rep-
resent Zn, with X (either Cu, Ag, or Au) shown at the
corners.55 A closer examination of the contour map of
the electron charge density plot suggests that the elec-
tron charge density between Ag and Zn is the lowest of
all the XZn alloys, in agreement with the chemical po-
tential formation energies and the Morse potential fits.
To better understand the nature of the bonding be-

tween the atoms in different systems the electronic par-
tial densities of states have been calculated and analyzed.
Figures 4, 5, 6, and Table II show the Zn s and p and X d
symmetry decompositions and their integrated values of
the densities of states for the B2 CuZn, AgZn, and AuZn
alloys.
To study the role of size effects on the stability of

the structures, the AgZn and AuZn partial densities of
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TABLE II: Integrated number of electrons for Zn s and p and
X d symmetry decompositions.

Alloy Zn(s) Zn(p) X(d)

CuZn 0.573 0.521 9.174

AgZn 0.588 0.582 8.899

AgZn (relaxed) 0.552 0.404 8.900

AuZn 0.565 0.615 8.731

AuZn (relaxed) 0.514 0.414 8.676
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FIG. 4: (Color online) Partial densities of states (Fermi level
at 0) for the Cu d states (upper panel), and for the Zn s and
p states, lower panel.

states (PDOS) are calculated at the CuZn lattice con-

stant (a=2.970 Å) as well as at their relaxed or equi-

librium lattice constants (a=3.192 and 3.195 Å, respec-
tively). As shown in Fig. 4, the Cu d band in CuZn is
more localized (narrower, with sharper features) than for
the Ag and Au d bands. However, the Zn s-p bands in
CuZn are broader than is the case for AgZn and AuZn,
indicating better bonding between Cu d and Zn s-p
bands. The hybridization between the Zn s-p bands
and the Cu d band has also been verified independently
with the KKR-CPA method.56 In AgZn (Fig. 5), the Ag
d band and Zn s-p bands at the CuZn lattice constant
are wider than at its equilibrium lattice constant, as an
expected band narrowing for expanded lattice constants
(larger distance between the atoms and hence reduced
hybridizations). The broader bands indicate better hy-
bridization between the Ag and Zn atoms in agreement
with the chemical formation energy trends (Fig. 1). How-
ever, due to the much bigger atomic radius of Ag with re-
spect to Cu, the AgZn alloy has a very high strain energy,
resulting in an expanded equilibrium lattice constant for
AgZn relative to that of CuZn. As a consequence, the hy-
bridization between Ag and Zn drops significantly (nar-
rower bands) resulting in a weaker bonding between Ag
and Zn atoms (Fig. 5).
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FIG. 5: (Color online) A comparison of the partial densities
of states (Fermi level at 0) for the Ag d states, upper panel,
and for the Zn s and p states, lower panel, both at the AgZn
relaxed (equilibrium) lattice constant of 3.192 Å and at that

for CuZn, 2.970 Å.
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FIG. 6: (Color online) A comparison of the partial densities
of states (Fermi level at 0) for the Au d states, upper panel,
and for the Zn s and p states, lower panel, both at the AuZn
relaxed (equilibrium) lattice constant of 3.195 Å and at that

for CuZn, 2.970 Å.

AuZn is similar to AgZn, with stronger Au-Zn bonds
at smaller lattice constants (Fig. 6). However, despite
this, Fig. 6 shows that the relaxed Au 5d orbital is still
more extended than for Cu or Ag , causing the strongest
bonding among all of these compounds.
In order to estimate the order and relative size of the

bond energies in these alloys for the d orbitals of Cu, Ag,
and Au atoms, this was calculated at different lattice
constants using the equation:

Ebond =

∫ Ef

(E − Ec)n(E)dE. (11)
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FIG. 7: (Color online) d-bond energies of Cu, Ag, and Au at
lattice constant of CuZn (solid circles) and their relaxed (equi-
librium) lattice constants (solid squres). The dashed lines are
guides for the eye.

In this equation, n(E) is the density of states, Ef the
Fermi energy, and Ec the energy of the center of band.
For the case of d-band, Ec is the energy when orbital is
half filled (5 electrons). The results of the bond energies
are depicted in Fig. 7. As discussed in the introduction,
in the XZn system, when all three calculations are done
at the same CuZn lattice constant, the d-bond energy of
the X atoms decrease monotonically (Fig. 7). However,
at their relaxed or equilibrium lattice constants the bond-
energies are non-monotonic, with the Ag d-bond having
the highest energy, and Au the lowest. This shows the
role played by repulsive atomic cores in changing the lat-
tice constant, which in turn modifies the relative d-bond
energies.
Based on the chemical-strain formation energies, pair-

potential modeling, charge density distributions, band-
structure analysis, and d-bond energies, one can explain
the nature of the weak bonding between Ag-Zn atoms as
a consequence of the competition between the effect of
the d orbital spatial extent on the X-Zn hybridizations
and the atomic size effect (core-core repulsion expanding
the lattices). In the next section, calculations are ex-
tended to finite temperature and it is shown that bond
strength also influences the stability of the B2 structure
at high temperatures.

VII. STABILITY OF B2 VERSUS A2

STRUCTURES AT FINITE TEMPERATURE

A. The Heat of Formation of Ordered and

Disordered bcc Phases

The heat of formation (or formation energy) is the
amount of energy added or released when a compound is
formed from the separate elements; it indicates whether

TABLE III: Calculated values at 0 K, of Cu, Ag, Au, Zn
elements for equilibrium lattice parameter (a), (c/a) ratio and
bulk modulus (B), with some available experimental values.

Elements Phase a(Å) c/a B(GPa)

Cu fcc 3.63(3.61)a - 136.18(142.03)b

Ag fcc 4.16(4.09)a - 88.84(108.72)c

Au fcc 4.17(4.08)a - 132.08(180.32)c

Zn hcp 2.66(2.66)a 1.867(1.856)a 79(84.70)d

aRef.43 bRef.58 cRef.59 dRef.60

it is favorable to create the material or not. It also is
a measure of the relative stability of the different com-
pounds, providing an estimate of the effective bonding
strength. The heat of formation, ∆H , of a binary alloy
A1−xBx can be calculated from

∆H(A1−xBx) = E(A1−xBx)− (1− x)E(A) − xE(B),
(12)

where E(A1−xBx) is the total energy of the binary struc-
ture, E(A) and E(B) are the energies of the elements
with xmole concentration, each in its equilibrium state.57

In this work, formation energies are calculated at zero
Kelvin, and free energy contributions to the formation
energy are neglected.
To calculate the formation energies of the XZn com-

pounds, the ground-state energies of the X and Zn ele-
ments are required. Cu, Ag, and Au have face-centered
cubic (fcc) crystal structures at zero temperature and
pressure, while Zn has a stable hexagonal close-packed
(hcp) crystal structure. All calculations were performed
on relaxed lattices at their equilibrium volumes and
atomic positions, with all structural parameters chosen
to minimize the total energy. The calculated ground-
state properties, such as the equilibrium lattice constants
a, and the bulk moduli B are given in Table III, where
their values are compared to the corresponding available
experimental data, indicating good agreement. It should
be noted that including the spin-orbit interaction for Au
increased the calculated bulk modulus by 20 GPa, in bet-
ter agreement with experimental measurement.
To study the disordered bcc phases, in principle we

should do ensemble averages of the energy of the sys-
tem over many different disordered configurations. This
would require a huge number of calculations and would be
extremely difficult. To get around this, we employ a com-
mon trick in alloy calculations of replacing the ensemble
average with a single approximate surrogate structure
whose total energy is expected to be an excellent ap-
proximation to the average energy that would have been
found by performing the ensemble average. For our sur-
rogate structure we have used a particular Special Quasi-
random Structure (SQS structure, in our case, with a 32-
atom periodic cell) to represent our effective disordered
system.61 The B2 and SQS heats of formations that we
have calculated using this structure are summarized in
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Table IV and Fig 8.

TABLE IV: Calculated values of the B2 and SQS phases for
the heat of formation of XZn (X=Cu, Ag, and Au) alloys,
calculated at 0 K.

Alloys Phase ∆H(meV/atom)

CuZn B2 -90.4

SQS -50.8

AgZn B2 -47.9

SQS -22.8

AuZn B2 -211.5

SQS -146.0

Three points are apparent when examining this data:
First, the negative heat of formation demonstrates that
the bcc ordered and disordered XZn structures are stable
materials relative to their pure elements. In addition, it
is shown that the B2 heat of formation is lower (more
stable) than that of SQS for all three materials. Second,
when comparing the relative energy differences between
the B2 and SQS phases, that of AgZn is much smaller
than CuZn or AuZn, and, in fact, AuZn has an especially
large difference. Since the entropy at high temperatures
tends to favor disorder, in the absence of any other infor-
mation, these results immediately suggest that at lower
temperatures there is likely to be ordered B2 phases for
CuZn and AuZn, with the case of AgZn less clear. In fact,
this is consistent with the experimental phase diagram.
For example, the B2 AuZn structure is so stable that
it is retained all the way to melting and the disordered
bcc phase never forms at all (hence the energy phase sta-
bility difference is stronger than the entropy effects of
configuration mixing). CuZn has a disordered phase at
high temperature that then transforms to an ordered B2
phase at lower tempertures. AgZn is also disordered at
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FIG. 8: Calculated heat of formation for the XZn B2 and
SQS phases. The dashed lines are guides for the eye.

high temperatures but can form the B2 phase only by
quenching. The final and third point that can be sur-
mised from the data is that the relative order of bonding
strength is AuZn (highest), CuZn, and AgZn (lowest) in
the disordered phase, just as we found previously in our
calculations for the ordered B2 phase.

B. Bcc Order-Disorder Transition Temperature

As expected and shown in previous studies,62 a good
transition temperature for the order-disorder transfor-
mation can be obtained by only including the configu-
rational entropy contribution to the free energy. The
configurational entropy of a binary alloy is given by57

Sideal = −kb[xlnx+ (1− x)ln(1− x)] , (13)

where kb is the Boltzmann constant, x is the concentra-
tion of the atom and has a value of Sideal = −0.69kb for
50% concentration. The order-disorder transition tem-
perature can then be obtained from the following equa-
tion:

T ≈
∆HSQS −∆HXZn

Sideal

. (14)

The calculated transition temperatures and their mea-
sured values and the melting temperatures of each system
are shown in Fig. 9.
For all the alloys, the predicted order-disorder tran-

sition temperatures are systematically about 100 K too
low, which can be caused by either the neglect of contri-
butions from the vibrational and electronic entropies, or
also perhaps from systematic errors arising from the use
of the SQS structure as a surrogate for the ensemble av-
erage of the disordered system. However, the predicted
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FIG. 9: Calculated order-disorder transition temperatures for
XZn and their comparison with experimental values10 and
melting temperatures.45 The dashed lines are guides for the
eye.
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transition temperatures follow the same trend seen in
the experiments (which is a justification for our use of
the SQS structure); they also follow a similar pattern to
that observed in the differences in the heat of formation
between the ordered and disordered structures (B2 and
SQS) shown in Fig. 8. This is reasonable because these
differences indicate how much energy it takes to disorder
the material. As mentioned above, these differences in
turn appear to track the relative value of the magnitude
of the heats of formation for the ordered structures, sug-
gesting that the effective bond strength is actually the
ultimate controlling factor setting the energy (or tem-
perature) scale for all of these processes.
More specifically, with respect to Fig. 9, AuZn had

the most stable B2 structure relative to SQS and has
a theoretically predicted transition temperature slightly
above melting, consistent with no order-disorder transi-
tion (experimentally, AuZn remains in the B2 structure
all the way to melting63). CuZn has a larger difference
than AgZn, which is consistent with the higher transition
temperature for CuZn relative to AgZn (i.e., the more
stable the B2 structure is relative to the disordered SQS,
the higher the temperature it takes to provide enough
entropy to disorder the material).

Summary

In this study, first-principles calculations were per-
formed to investigate the formation and stability of the
ordered and disordered bcc phases in CuZn, AgZn, and
AuZn alloys. We demonstrated that the non-monotonic
behavior of many of the properties of these materials, as
one goes down the noble-metal column of the periodic
table, results from a competition between atomic-core
size and the spatial extent of the noble-metal d orbitals
for different principal quantum numbers. The first effect
pushes the atoms apart reducing hybridization, whereas
the second increases hybridization, leading to a minimum
in the X-Zn bonding strength for AgZn relative to CuZn

and AuZn. These results were confirmed in detail by us-
ing pair-potential modeling, charge-density analysis, and
studies of the partial density of states. It was specifically
shown that the Ag-Zn bond is indeed the weakest of the
XZn systems, while the AuZn is the strongest. The weak
Ag-Zn bond is responsible for the structural instability
of the B2 phase and the lower order-disorder transition
temperature. Moreover, the strong Au-Zn bond is re-
sponsible for the stability of the ordered phase all the
way up to the melting temperature, unlike for CuZn and
AgZn which disorder before melting.
Pair-potential modeling confirmed this result, which

explains chemical and elastic formation energy trends in
these materials. In addition, in agreement with experi-
mental observations, calculations of the anisotropy factor
of the XZn systems confirm that the B2 AgZn alloy is
structurally unstable relative to the other systems. Fur-
thermore, while AgZn has the lowest critical tempera-
ture, the disordered bcc phase for AuZn does not exist.
The Special Quasi-random Structure (SQS) was used

to estimate the energy of the disordered bcc phase of
the XZn materials. Calculated formation energies of or-
dered and disordered bcc phases were used to estimate the
bcc order-disorder transition temperature in all systems,
which were found to be in good agreement with the ex-
perimental measurements. In addition, the AuZn order-
disorder transition temperature is higher than its melting
temperature, confirming that the disordered phase can-
not form in this system.
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