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We demonstrate a heuristic optimization algorithm based on the game tree search for multi-
component materials design. The algorithm searches for the largest spin polarization of seven-
component Heusler alloys. The algorithm can find the peaks quickly and is more robust against
local optima than Bayesian optimization approaches using the expected improvement or upper
confidence bound approaches. We also investigate Heusler alloys including anti-site disorder and
show that [Feg.9Co00.1]2Cro.95 Mno.055i0.3Geo.7 has the potential to be a high spin polarized material

with robustness against anti-site disorder.

The complexity of industrial materials is increasing as
a result of technological progress in materials process-
ing. However, optimization of materials is affected by
the curse of dimensionality; the difficulty increases expo-
nentially with the number of parameters (e.g., number
of components and heat treatment conditions)®. For this
reason, efficient search algorithms that find optimum pa-
rameters by operating on only a few sampling points are
in great demand to decrease costs.

A well-known search strategy is to determine the next
sampling point according to the previous results. One
popular algorithm adopting this strategy is the genetic
algorithm (GA)>™*. Previous studies have shown that
the GA can optimize castings®® and magnetic alloys*?.
However, it is also reported that controlling the genes’
diversity is so difficult that the algorithm usually con-
verges prematurely and induces wasteful duplication of
sampling points'®!!. To decrease the number of redun-
dant sampling points, not only the expected result but
also the expected uncertainty should be considered prior
to selecting the sampling points.

Fig. 1(a) shows an example of Gaussian process regres-
sion, which is a useful way to take into account both the
expected result and uncertainty. In this plot, the black
crosses are sampling points and the green dashed line
shows the exact value. The blue solid line and yellow-
shaded area are, respectively, the expected result and
range of uncertainty estimated from the previous results.
The next sampling point (indicated by the black arrow)
is determined in accordance with the priority P(x), e.g.,
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P(z) = f(z) + Co(x), (2)

where f(z) is the expected value, o is the expected er-
TOr, fimaz is the best (maximum) result obtained by the
previous results, and C' is a hyperparameter indicating
the weight of ambiguity. Equation 1 is referred to as
the expected improvement (EI) algorithm!?, and Eq. 2
is called the upper confidence bound (UCB) strategy!'3.
The EI algorithm and UCB strategy are simple and have

been used in materials modeling of low-degree-of-freedom
systems!415.

However, the EI algorithm and UCB strategy are
hardly applicable to multi-dimensional optimization for
two reasons. The first is that the cost of calculating the
expected values and errors in the entire search space ex-
ponentially increase with the number of parameters and
resolution. The second is that these approaches are vul-
nerable to incorrect predictions. This vulnerability can
be seen in the example of Gaussian process regression
for the two-dimensional function shown in Figs. 1 (b-d).
Figure 1 (b) is the exact value, (c) is the expected er-
ror (the red crosses are sampling points), and (d) is the
expected value. One can see that Gaussian process re-
gression makes incorrect predictions around (0, 4.5), (0,
2.5), and (4, 2.5) [Fig. 1 (d)] and most of the search space
has a large error, unlike the one-dimensional case [Fig. 1
(c)]. Figures 1 (e) and (f) show the priorities obtained
by Eq. 1 and Eq. 2, respectively. One can see that P(x)
around the overlooked peaks is too low for any of them to
be selected as the next sampling point. In this case, P(x)
around the overlooked peaks can be raised by tuning C;
however, the appropriate value of C depends strongly on
the target function and the previous results, and it varies
during the optimization. Therefore, it is difficult for the
EI algorithm and UCB strategy to avoid local optima.

We addressed these problems by using a game tree
search. The game tree search can manage the spatial
resolution of the expectation by varying the depth of the
tree. It maintains a balance between a dense search (op-
timization around a peak) and a sparse search (explo-
ration for unknown peaks), and we found that it is about
nine times faster than previous methods at optimizing
the spin polarization of multi-component Heusler alloys.

Figure 2 shows a virtual sampling in which a game tree
search was used to optimize the composition of Fe,Pt;_,
alloy with regard to a certain physical value, i.e., the
magnetic moment. The game tree search limits the can-
didates for the next sampling points such that they are
only in the vicinity of the current sampling point and sets
the spatial resolution in accordance with the depth of the
tree. The distance between the candidates and the sam-
pling point takes two kinds of value; dy and 2= Pdy, where
do is the initial spatial resolution and D is the depth
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FIG. 1. Example of Gaussian process regression in one-
dimensional (a) and two-dimensional (b-f) cases. In (a), the
green dashed line is the exact value (sine function), the black
crosses are sampling points, the blue solid line is the expected
result, and the yellow area is the expected error. The next
sampling point is indicated by the black arrow. (b) is the
exact value, (c) is the expected error, where the crosses are
sampling points and the number of the data is 30, (d) is the
expected result, and (e) and (f) are the priorities P(x) ob-
tained by Eq. 1 and Eq. 2, respectively, at C' = 1.0.

of the point. In the upper panel of Fig. 2, Fey 3Ptg 7,
Feg 7Ptg.3, Feg.gPto.4, and Feg 4Ptg ¢ are generated from
Feg 5Ptg.5, where dj is set to be 0.2. The next sampling
point is determined by comparing the priorities of the
candidates by using Eq. 1 or 2 (Fep4Pto¢ is selected
in the example). After the measurement, the game tree
generates the candidates from the current set of mea-
surement points (lower panel of Fig. 2). If the estimated
uncertainty is lower than e,,;, or the estimated result
is lower than 7.,;,Vpest, we can exclude this point from
the set of candidates (error pruning); e€m,in and 7, are
parameters set by the user, while vpest is the best value
among the previous measurements. Error pruning helps
to avoid redundant measurements and accelerates con-
vergence. The pseudo code of the game tree search is
shown in Listing 1.

Listing 1. Pseudo code of the game tree search.
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FIG. 2. Schematic image of game tree search.

class Leaf :
depth /x depth of leaf x/
comp /* composition */

Function Mutation(parent, add_depth):
if add_depth == true:
leaf.depth = parent.depth + 1
else:
leaf.depth = 0
/* norm of random_vector is set to be 1 x/
leaf.comp = parent.comp + d0 * (0.5"leaf.depth) x
random_vector
12 return leaf

= O © 00Uk WwWN -~

14 Function GameTree :

15 Table <Leaf> gametree
16 ucbtree.add(startpoint)
17 best = —INF

18 do loop:

19 maxp = —INF

20 for each leaf in leafs:

21 v = Priority(leaf) /x UCB or EI x/

22 if maxp < v:

23 maxleaf = leaf

24 maxp = v

25 result = Measurement(maxleaf)

26 gametree.delete(maxleaf)

27 if result > best :

28 best = result

29 rb = result / best

30 leafl = Mutation(maxleaf, false)

31 leaf2 = Mutation(maxleaf, true)

32 /% error pruning x/

33 if result/best > rmin and Error(leafl) > emin:
34 gametree.add(leafl)

35 if result/best > rmin and Error(leaf2) > emin:
36 gametree.add(leaf2)

Now we demonstrate a four-dimensional case of com-
position optimization of Heulser alloys, materials that
are potentially useful in random access memories and
spin transfer devices!'®!7. To find promising compo-
sitions, first-principles simulations have been used be-
cause of their low cost'®?*. However, Heusler al-
loys have too many combinations to examine them
all. Here, we optimized the spin polarization p of
CoyCryMnyFe;_;_,Al,Si,Gei_q—p by using a game tree



search, the EI algorithm, and the UCB strategy. The
spin polarization was defined as (nf-nl)/(nf+nl), where
nT and n| are the respective density-of-state values of
up and down spin electrons at the Fermi energy. The
density of states was calculated using the Korringa Kohn
Rostoker (KKR) band structure and coherent potential
approximation (KKR-CPA method)?*25 with the AKAI-
KKR package?*. The crystal structure was assumed to
be full-Heusler [inset of Fig. 3], and the lattice constant
was made to minimize the total energy in every itera-
tion. The priority of the candidates in the game tree
search was evaluated using Eq. 2. The importance of
the ambiguity C' was set to be the same as in'® for the
UCB strategy and 1.0 for the game tree search. The pa-
rameters of the game tree were dg = 0.8, 7 = 0.1,
and €5, = 0.1. The first sampling composition was
r =y =a=0b=0.33. Weregarded the distance between
components D(x,y,a,b;a’,y’,a’,b') as the Euclidean dis-
tance of the normalized components,

D(x7ya a abv xlvylvalvbl)g -
(-2’ +(y—y)°
+ (a o al)2 + (b* b/)2

+(@+y—a’ —y)
+(a+b—d —b)% (3)

We used the spin ratio nt/nl as the result of each mea-
surement instead of the spin polarization. The spin ratio
monotonically increases with respect to the spin polariza-
tion, and it is useful for accelerating convergence around
p ~ 1. Figure 3(a,b) shows the calculated spin ratio
(y-axis) and the measurement number (x-axis) when us-
ing the game tree search (a) and EI algorithm and UCB
strategy (b). In this case, the game tree search reached
the expectation that CoyCrggMng oAl has the largest
spin ratio. This expectation does not contradict previ-
ous theoretical studies?®27. On the other hand, the EI
algorithm and UCB strategy both get trapped in local
optima around CoyCrg sMng 5Al, despite requiring nine
times more sampling points than the game tree search
needed. In particular, the EI algorithm and UCB strat-
egy spent a lot of time escaping from local optima, e.g.,
COQMnAlo,QgSiO.QGG0.0Q and 002 Cr0.4Fe0,6Al. This prob—
lem stems from that Gaussian process regression made in-
correct predictions during the first several steps because
of the few sampling points that were available to it. On
the other hand, the game tree search escaped from local
optima quickly. It limited the resolution of the sampling
by using the tree depth. This limitation forced it to mea-
sure compositions outside the local maximums. Once a
higher peak was found, the candidates around the local
optima were pruned.

We also examined a more practical case. Anti-site dis-
order is inevitable in actual Heusler alloys. Therefore,
the effect of anti-site disorder should be considered in or-
der to predict actual materials. It can be estimated by
calculating the band gap around the Fermi energy?®2?
and by calculating the change in spin polarization as a
result of swapping atoms30 34
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FIG. 3. Results of optimization of spin polarization of

Co2CryMnyFei 5 yAl,SipGer—q—p. The x-axis shows the
number of sampling points, thin lines show the spin ratio of
the x-th sampling point, and the bold lines show the maxi-
mum spin ratio of the first to x-th sampling points. (a) Re-
sults of game tree search. (b) Results of EI (green solid line)
algorithm and UCB strategy (red solid line).
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FIG. 4. Comparison of spin polarizations determined in3°
(x-axis) and from a KKR-CPA calculation (y-axis), where
0(blue)/10(red) percent of Y atoms are swapped with X atoms
for X2YZ Heusler alloys.



Figure 4 compares the spin polarizations of X,YZ
Heusler alloys determined by the method of3® and a
KKR-CPA calculation. One can see that swapping atoms
can eliminate the effect of anti-site disorder.
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FIG. 5. Results of optimizing the spin polariza-
tion of [[FezCoi—z]o.975 [CryMni_ylo.025]2 [[CryMni_ylo.os
[FezCo1-z]0.05] [AlaSisGe1—q—sp] by using (a) game tree search
where the priorities of the candidates is defined by Eq. 2 (red
solid line) and Eq. 1 (green solid line), (b) EI (green solid
line) algorithm and UCB strategy (red solid line). The x-axis
shows the number of sampling points, the thin line shows the
spin ratio of the x-th sampling point, and the bold line shows
the maximum spin ratio of the first to x-th sampling points.

We optimized the spin polarization of [[Fe,Coi_.]o.975
[CryMni_yloo2slz  [CryMni—y]i a2 [FeyCoi_gla]
[Al,SipGei_q—p), where o percent of the [CryMn;_,]
was swapped with [Fe,Co;_.]. We fixed the percentage
of anti-site disorder (o = 0.05) and allowed the dopant
to fill both the (0,0,0) and (1/2, 1/2, 1/2) positions
equally, because optimizing the disorder conditions
would have required a huge amount of computational
resources. The game tree search can also be used to
optimize the disorder; this issue will be addressed in
the future. Figure 5 shows the results. We found that
z =0.9,y =095 a =0, b= 0.3 had the largest spin
ratio.

We examined the robustness of the spin polarization of
this composition by changing « to 0.4. The spin ratio was
6.6 (spin polarization of 0.74), which is higher than that
of CooMnSi3!. The origin of the reduction in spin polar-
ization is thought to be the minority energy gap arising
from the anti-site disorder.31:36. Modulation of the en-
ergy gap by doping is theoretically possible, but practi-
cally difficult, because how doping affects the energy gap
is difficult to predict. Our implementation will open the

way to boosting practical optimizations like this.

In conclusion, we developed a game tree search algo-
rithm for multi-dimensional optimization. Unlike pre-
vious methods, the game tree search is robust against
local optima because the resolution of the search can be
controlled in accordance with the depth of the tree and
local optima can be pruned. We demonstrated that it
is about nine times faster at optimizing the spin polar-
ization of multi-component Heusler alloys than the EI
algorithm or the UCB strategy. We also found that
[FGO.QCOO_1]2CI"()'951\'[Ilo<05Sio.3Geo'7 has the potential to
be a high spin polarized material with robustness against
anti-site disorder. The algorithm is applicable not only
to composition optimization, but also to a wide range of
topics where regression usually fails due to unexpected
characteristics inside real materials. The present imple-
mentation will open the way to boosting materials devel-
opment with Al algorithms.
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I. APPENDIX

We repeated the simulations and summarized the re-
sults in Fig. 6. The efficiency varied depending on the
conditions, e.g., the shape of the function, initial sam-
pling point, and hyper-parameters, but overall, the game
tree search performed better than EI and UCB.
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FIG. 6. Summary of statistics of the optimization of
CozCernyFel_m_yAlaSibGelfa,b and [[FexCO1_x]0A975
[CryMni_yJo.025]2 [[CryMni_yo.05 [FezCo1—z]o.05]
[Al,SisGe1_q—p] (labeled "disorder”). The x-axis shows
the number of samplings needed to reach the maximum spin
ratio, and the y-axis shows the maximum spin ratio. The
simulation conditions are the same as those used to make the
plots in Fig. 3 and Fig. 5.
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