This is the accepted manuscript made available via CHORUS. The article has been published as:

Temperature dependence of phonons in FeGe_{2}\right\}

Hillary L. Smith, Yang Shen, Dennis S. Kim, Fred C. Yang, C. P. Adams, Chen W. Li, D. L. Abernathy, M. B. Stone, and B. Fultz

Phys. Rev. Materials 2, 103602 — Published 9 October 2018

DOI: 10.1103/PhysRevMaterials.2.103602
The temperature dependence of phonons in FeGe$_2$

Hillary L. Smith,1,* Yang Shen,1,* Dennis S. Kim,1 Fred C. Yang,1 C.P. Adams,2 Chen W. Li,3 D.L. Abernathy,4 M.B. Stone,4 and B. Fultz1

1California Institute of Technology, Department of Applied Physics and Materials Science, Pasadena, California 91125, USA
2St. Francis Xavier University, Department of Physics, Antigonish, NS, Canada B2G 2W5
3University of California Riverside, Department of Mechanical Engineering and Materials Science and Engineering, Riverside, California 92521, USA
4Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

Inelastic neutron scattering (INS) was used to measure phonon dispersions in a single crystal of FeGe$_2$ with the C16-structure at 300, 500, and 635 K. Phonon density of states (DOS) were also measured on polycrystalline FeGe$_2$ from 325 K to 1050 K, and the Fe partial DOS obtained from polycrystalline 57FeGe$_2$ at 300 K using nuclear resonant inelastic x-ray scattering (NRIXS). The dominant feature in the temperature dependence of the phonon spectrum is thermal broadening of high-energy modes. The energy shifts of the low- and high-energy parts of the spectrum were almost the same. DFT calculations performed with the quasiharmonic approximation gave results in moderate agreement with the experimental thermal energy shifts, although the isobaric Grüneisen parameter calculated from the quasiharmonic model was smaller than that from measurements. The thermal broadening of the phonon spectrum and dispersions, especially at high energies, indicates a cubic anharmonicity to second order that should also induce phonon shifts. We show that different anharmonic contributions cancel out, giving average phonon shifts in moderate agreement to calculations with the quasiharmonic approximation. The different parts of the large phonon contribution to the entropy are separated for FeGe$_2$, showing modest but interpretable anharmonic contributions.

PACS numbers: 61.05.F-, 63.20.D-, 63.20.kg, 63.20.dd

I. INTRODUCTION

Germanium-based alloys are of interest for applications in spin-based electronic devices. Beginning in 1961,2 FeGe$_2$ has been the focus of numerous experimental and theoretical studies to describe its magnetic properties.$^3-9$ This material exhibits two zero-field magnetic phase transitions at temperatures of $T_N = 289$ K and $T_c = 263$ K. The first transition corresponds to a second-order Néel transition from a paramagnetic high-temperature phase to an incommensurate spin-density-wave state (intermediate-temperature phase, ITP). The second transition corresponds to a first-order transition to the anti-ferromagnetic low-temperature phase.8 The phonon properties of FeGe$_2$ have received less attention, but provide an excellent opportunity to determine how well the thermodynamic functions of anharmonic materials can be understood.

FeGe$_2$ has the same body-centered tetragonal C16 crystal structure10 (see Fig. 1) as θ-phase Al$_2$Cu in which an anomalously large vibrational entropy was reported by Wolverton and Ozoliš.11 The calculated electronic energy of the equilibrium θ-phase (C16 structure) was found to be 15 meV/atom larger than that of the θ'-phase (C1 fluorite structure). The authors concluded that the θ-phase is stabilized at finite temperature by vibrational entropy, and this entropic stabilization of the θ-phase may originate with features of its low-symmetry structure.9

FeGe$_2$ is also a likely candidate for large phonon anharmonicity related to phonon-phonon interactions because of the absence of inversion symmetry at Ge atoms.12

FIG. 1. Crystal structure of FeGe$_2$. It is a tetragonal C16 structure with alternating layers of Fe and Ge atoms. The positions of atoms are: Fe (orange) at (0,0,0), (0,0,1/2) and Ge (blue) at (x, 1/2 + x, 1/2), (1/2 + x, 1/2, 1/2), (1/2 − x, x, 1/2), where $x = 0.1547$ is the atomic parameter for Ge positions. Bonds are only drawn between first nearest-neighborhoods (1NN). Plus and minus signs identify the collinear spin structure of the anti-ferromagnetic low-temperature phase.$^3-9$.

The phonon energies can have a temperature dependence from a number of competing mechanisms beyond the harmonic or quasiharmonic approximations, as observed in other transition-metal systems.13

Here we report results from a combined experimental and computational study on the phonon dynamics of FeGe$_2$. Phonon dispersions and phonon density of states (DOS) were measured by inelastic neu-
tron scattering (INS), and Fe partial DOS were measured\(^{37}\) by nuclear resonant inelastic x-ray scattering (NRIXS).\(^{58}\) First-principles calculations based on density functional\(^{49}\) theory (DFT) with the quasiharmonic approximation\(^{46}\) (QHA) were performed between 325-1050 K, and small-

4-dimensional \(S(Q,E)\). Single crystal data analysis was performed with DAVE.\(^{17}\)

Nuclear resonant inelastic x-ray scattering (NRIXS) measurements were performed on \(^{57}\)FeGe\(_2\) at beamline 16ID-D at the Advanced Photon Source at Argonne National Laboratory.\(^{18,19}\) The powder sample was secured in Kapton tape and placed at a grazing angle to the incident x-ray beam. Incoherently reradiated photons were measured by two avalanche photodiode detectors (APD) positioned normal to the incident beam. The energy was scanned from -160 to +160 meV around the nuclear resonance energy of \(^{57}\)Fe 14.413 keV. Several scans were combined for final analysis. The energy resolution of all NRIXS measurements was measured to be 2.1858 meV (FWHM) at the elastic line. NRIXS data was reduced using the PHOENIX code.\(^{20}\)

II. EXPERIMENT

The sample of FeGe\(_2\) was a semi-cylindrical crystal 10 mm in radius and 40 mm in length with a mass of 110 g. This crystal was loaned from Oak Ridge National Laboratory and previously measured by Adams, et al.\(^{9}\) Polycrystalline samples of FeGe\(_2\) were prepared from a mixture of the elements of 99.99% purity by arc-melting in a Ti-gettered argon atmosphere, followed by annealing under vacuum. Samples at isotopically-enriched \(^{57}\)FeGe\(_2\) were prepared similarly.

Inelastic neutron scattering (INS) measurements were performed on both single crystal and powder samples with the time-of-flight Wide Angular-Range Chopper Spectrometer, ARCS, at the Spallation Neutron Source at Oak Ridge National Laboratory. An incident energy of 70 meV was used for all measurements. The powder sample was placed in a Nb foil sachet and mounted in a low-background electrical resistance vacuum furnace for measurements at temperatures of 325, 476, 650, 850 and 1050 K. The lattice constants were obtained from elastic scattering, acquired simultaneously, and integrated over a range of ±1 meV. The single crystal was mounted inside the same furnace with the [HK0] crystallographic plane, horizontal, and measurements were performed at 300, 500, and 635 K.

Data reduction was performed with DGS reduction in Mantid.\(^{15}\) The single crystal and powder data were normalized by the proton current on target. Bad detector pixels were identified and masked, and the data were corrected for detector efficiency using a measurement from vanadium. The phonon DOS curves from powder data\(^{16}\) were obtained after corrections for multiphonon and multiple scattering using the \textit{getdos} package.\(^{16}\) The single crystal neutron data from 240 rotations in increments of 0.5° about the vertical axis were reduced to create the

III. COMPUTATION

The \textit{ab initio} DFT calculations were performed with the VASP package\(^{21–23}\) on a plane-wave basis set, using the projector augmented wave (PAW) pseudopotentials with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional.\(^{25}\) The energy cutoff was 600 eV for all calculations. The phonon DOS with QHA was calculated on a supercell of 216 atoms with a \(2 \times 2 \times 2\) k-point mesh using the small-displacement method as implemented in the PHONOPY code. Except for the ground states discussed in Sect. VA, all the phonon-related calculations are non-spin-polarized.

The QHA for phonon behavior was obtained from the thermal expansion at elevated temperatures, using lattice parameters obtained from the neutron scattering experiments. The neutron-weighting arising from the efficiency for phonon scattering of neutrons by different modes was taken into consideration when comparing the computations with the experimental results. For FeGe\(_2\), the neutron-weighted DOS is

\[
g_{\text{NW}}(\epsilon) = A^{-1} \sum_i g_i(\epsilon) \frac{\sigma_{\text{sc},i}}{m_i} x_i \\
\approx 0.47g_{\text{Fe}}(\epsilon) + 0.53g_{\text{Ge}}(\epsilon) ,
\]

where \(g_i(\epsilon)\) is the phonon partial DOS of atom \(i\) (i.e. Fe pDOS or Ge pDOS), \(\sigma_{\text{sc},i}\) is the total scattering cross section, \(m_i\) is the atomic mass, \(x_i\) is the mole fraction, and \(A\) is a normalization factor.

Beyond the QHA, the finite temperature phonons at 635 K were calculated with the s-TDEP method. In this procedure, the Born-Oppenheimer surface of FeGe\(_2\) at 635 K was sampled by a Monte Carlo sampling of atomic positions and momentum near equilibrium positions. By using DFT with various configurations of displaced atoms by a stochastic sampling of a canonical ensemble, with Cartesian displacements \(u_i\) normally distributed around the mean thermal displacement, the
forces on atoms were fitted to a model Hamiltonian
\[\hat{H} = U_0 + \frac{1}{2m_i} \sum_i p_i^2 + \frac{1}{2} \sum_{ij} \sum_{\alpha\beta} \Phi_{ij}^{\alpha\beta} u_i^\alpha u_j^\beta + \frac{1}{3!} \sum_{ijk} \sum_{\alpha\beta\gamma\delta} \Phi_{ijk}^{\alpha\beta\gamma\delta} u_i^\alpha u_j^\beta u_k^\gamma \ldots , \] (2)

Here, \(U_0 \) is a fit parameter for the baseline of the potential energy surface. The quadratic force constants \(\Phi_{ij} \) from properties but also temperature-dependent nonharmonic effects, and are used to calculate phonon frequencies. The cubic force constants \(\Phi_{ijk} \) capture phonon-phonon interactions (PPI) that contribute to the broadening and additional shifts of phonon modes. For first-principle force constants calculations, the supercell of \(2 \times 2 \times 3 \) conventional unitcell with 144 atoms were used with a \(3 \times 3 \times 2 \) Monkhorst-Pack \(k \)-point grid and a plane wave energy cutoff 650 eV. The exchange-correlation energy was also calculated with the Perdew-Burke-Ernzerhof (PBE) functional.

From many-body interactions, the temperature-dependent renormalized phonon frequencies were corrected by calculated the linewidths \(\Gamma_\lambda \) and shifts \(\Delta_\lambda \) arising from anharmonicity, or phonon-phonon interactions. This required the calculation of the real and imaginary parts of the phonon self-energy
\[\Sigma(\Omega) = \Delta(\Omega) + i \Gamma(\Omega), \] (3)
where \(\Omega (= E/h) \) is the probing energy. Phonon lifetimes \(\tau \) are related to the imaginary part of the self-energy by
\[1/\tau = 2 \Gamma_\lambda, \] (4)
for mode \(\lambda \) evaluated at the harmonic frequency. Given the third order force constants, the imaginary part of the phonon self-energy can be calculated,
\[\Gamma_\lambda(\Omega) = \frac{\hbar \pi}{16} \sum_{\lambda'\lambda''} |\Phi_{\lambda\lambda'\lambda''}|^2 \left\{ (n_{\lambda'} + n_{\lambda''} + 1) \right. \]
\[\times \delta(\Omega - \omega_{\lambda'} - \omega_{\lambda''}) + (n_{\lambda'} - n_{\lambda''}) \right. \]
\[\times \left[\delta(\Omega - \omega_{\lambda'} + \omega_{\lambda''}) - \delta(\Omega + \omega_{\lambda'} - \omega_{\lambda''}) \right\} \], (5)
and the real component is obtained by a Kramers-Kronig transformation
\[\Delta(\Omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\Gamma(\omega)}{\omega - \Omega} d\omega . \] (6)

The imaginary component of the self-energy is a sum over all possible three-phonon interactions, where \(\Phi_{\lambda\lambda'\lambda''} \) is the three-phonon matrix element determined from the cubic force constants \(\Phi_{ijk} \) by the Fourier transform, \(n \) is the Bose-Einstein thermal occupation factors counting the number of phonons in each mode, and the delta functions conserve energy and momentum. \(\Gamma_\lambda \) and \(\Delta_\lambda \) were calculated with a \(16 \times 16 \times 16 q \)-grid.

Compared with the QH model, this s-TDEP method includes higher-order phonon-phonon interactions at elevated temperatures by renormalizing terms in the model Hamiltonian, adding shifts \((\Delta_\lambda) \) of the frequencies perturbatively to the harmonic frequencies. It also reveals the phonon broadening from the imaginary part of the phonon self-energy, which is purely an anharmonic effect.

IV. RESULTS

Phonon DOS curves measured with INS are shown in Fig. 2 (black symbols). By fitting the two main DOS peaks to Lorentzian functions, the temperature dependence of the positions and linewidths of these peaks are shown in Fig. 3. They were fitted to linear functions, but the phonon broadening of the high-energy modes included a quadratic term. The low-energy and high-energy modes both soften similarly with temperature. However, the width of the low-energy modes shows little change with temperature, whereas the high-energy modes broaden superlinearly with temperature, indicating shorter phonon lifetimes.

Neutron powder diffraction patterns, obtained from integration of the elastic scattering from the powder samples, were analyzed to obtain lattice constants as function of temperature. Linear thermal expansion of the lattice constants is observed, in agreement with previously reported room temperature data. Lattice parameters and coefficients of thermal expansion are reported in the Supplemental Material.

Using the experimental lattice constants, the phonon DOS of FeGe\(_2\) was calculated with the quasiharmonic approximation as described in Sect. III. By applying the proper weights on the calculated pDOS using Eq. 1, and by the convolution with a Gaussian function approximating the instrument resolution, the simulated neutron-weighted phonon DOS was obtained as shown in Fig. 2(b,
Figure 3. Temperature dependence of phonon modes. (a) Phonon shifts and (b) phonon broadenings are shown as functions of temperature. The low- and high-energy modes refer to the two main peaks in the phonon DOS curves shown in Fig. 2. They are all linear with temperature, except for the phonon broadening of the high-energy modes. Error bars are from the fitting procedure.

The Fe partial DOS from NRIXS measurements at 325 K is shown in Fig. 4. Normalized NRIXS and INS data were used with Eq. 1 to obtain the Ge pDOS. The neutron-weight corrected phonon DOS was then obtained at 325 K as shown in Fig. 4. It is found that neutron weighting has a negligible influence on the shapes of phonon DOS curves of FeGe₂, simplifying interpretations from the neutron-weighted phonon DOS curves at other temperatures.

Figure 5 shows phonon dispersions along the [100] direction at 300, 500, and 635 K (a-c). The gray stripe indicates the region at 4 r.l.u. where a cut of intensity as a function of E is taken and shown in (d). Fits to the experimental data with Gaussian functions give the peak positions in (e). The shaded regions in (e) represent the FWHM of the fitted peak. The energy of the high energy mode calculated with the QH approximation is also plotted in (e) in black. Figure 6 shows phonon dispersions along the [110] direction at 300, 500, and 635 K (a-c). Again the gray strips indicate the positions of cuts along E that are shown in (d) and (f). The peak energies from Gaussian fits are shown in (e) and (g), with the peak energy from the QH approximation plotted in (g) in black. As is clear from the quasiharmonic DFT calculation overlaying the data in Fig. 7, there are many modes present. Acoustic modes can be identified, but their steep slope makes it difficult to see changes in them. As a result, Fig. 5(e) and Fig. 6(g) show a comparison between the data and the model for only the higher-energy optical modes.

The phonon dispersions are particularly informative for understanding the dynamic behavior of specific modes as a function of temperature. The phonon dispersions are analyzed at r.l.u. > 2 to avoid spectral weight from magnon scattering. A closer inspection of the phonons along the [110] direction, shown in Fig. 6, shows several modes between 2 and 4.5 r.l.u. with the highest energy mode near 31 meV. Both high-energy and low-energy modes show similar shifts with temperature, but the high-energy mode broadens more rapidly with temperature than the lower energy mode, becoming more difficult to discern at 635 K. The phonons along the [100] direction (Fig. 5) show similar behavior. A distinctive low energy-band does not appear to broaden significantly with temperature, but exhibits a similar thermal shift as the high-energy modes.

V. DISCUSSION

A. Stabilization of the ground state

The electronic energies of FeGe₂ were calculated for C16 and C1 (fluorite) crystal structures with non-magnetic, ferromagnetic and anti-ferromagnetic states. The minimum energies for each structure are listed in Table I. The ground state of FeGe₂ is found to be the C16 structure in the anti-ferromagnetic state. Magnetism decreases the ground-state energy of the C16 structure significantly compared to the non-magnetic states – the energy of the anti-ferromagnetic state is about 9 meV/atom lower than the ferromagnetic state in the C16 structure, consistent with the calculations by Grechnev, et al.
B. Quasiharmonic approximation

The mode Grüneisen parameter is defined as

$$\gamma_i \equiv -\frac{V}{\epsilon_i} \frac{\partial \epsilon_i}{\partial V},$$

(7)

where ϵ_i is the energy of phonon mode i, and a mean Grüneisen parameter $\bar{\gamma}$ averages the thermal behavior of all phonons in the Brillouin zone \cite{33}

$$\bar{\gamma} \equiv -\left\langle \frac{V}{\epsilon} \frac{\partial \epsilon}{\partial V} \right\rangle = -\left\langle \frac{\partial \ln \epsilon}{\partial \ln V} \right\rangle .$$

(8)

These two conventional Grüneisen parameters are used to describe the phonon energy shifts with respect to volume, while the isobaric Grüneisen parameter $\bar{\gamma}_P(T)$ quantifies the temperature dependence of the phonon energy shifts,

$$\bar{\gamma}_P(T) \equiv -\frac{1}{3\alpha(T)} \left\langle \frac{\partial \ln \epsilon}{\partial T} \right\rangle_p ,$$

(9)

A weighted average of the contributions from the low- and high-energy phonon modes (Eq. 10) can be used to evaluate $\bar{\gamma}_P(T)$. The positions of the fitted peak centers were used to approximate the phonon mode energies in the low- and high-energy regions as

$$\bar{\gamma}^{\text{Exp.}}_P(T) \simeq -\frac{1}{3\alpha(T)} \left\langle \sum_{i \in \text{low}} \frac{1}{\epsilon_i} \frac{\partial \epsilon_i}{\partial T} + \sum_{i \in \text{high}} \frac{1}{\epsilon_i} \frac{\partial \epsilon_i}{\partial T} \right\rangle_p ,$$

(10)

where the weights, n_{low} and n_{high}, were from the areas under the two fitted Lorentzian functions as described at the beginning of Sect. IV.

The $\bar{\gamma}^{\text{Exp.}}_P$ was also obtained from the first moment of the phonon DOS curves,

$$\bar{\gamma}^{\text{Exp.}}_P = -\frac{1}{3\alpha(T)} \frac{1}{\bar{\epsilon}} \frac{\partial \bar{\epsilon}}{\partial T} \bigg|_p ,$$

(11)

where $\bar{\epsilon}$ is defined as

$$\bar{\epsilon} = \frac{\int \epsilon g(\epsilon) d\epsilon}{\int g(\epsilon) d\epsilon} .$$

(12)

Table II lists the Grüneisen parameters at 650 K from experiment and calculations with the quasiharmonic approximation. There is a non-trivial discrepancy between the experimental and calculated $\bar{\gamma}_P$, implying that the measured isobaric Grüneisen parameter of FeGe contains contributions not only from the quasiharmonic model, which is a static volume-dependent approximation, but also from anharmonicity beyond the quasiharmonic model.

Measured phonon dispersion curves are shown along two crystallographic directions in Fig. 7, overlaid with dispersions calculated with the quasiharmonic approximation. The quasiharmonic predictions for the highest

<table>
<thead>
<tr>
<th>Crystal structure</th>
<th>Energy [eV/atom]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>non-magnetic</td>
</tr>
<tr>
<td>C16</td>
<td>-5.756</td>
</tr>
<tr>
<td>fluorite</td>
<td>-5.680</td>
</tr>
</tbody>
</table>
FIG. 5. Single crystal FeGe$_2$ along the [H00] direction. (a.)-(c.) The [H00] direction at 300, 500, and 635K, respectively. The gray stripe indicates the region of the cut shown in (d.) (d.) Cut of data at 4.0 r.l.u. is shown for 300K (dark blue), 500K (blue), and 635K (light blue), offset for clarity, with error bars represented by the width of the curve. (e.) Positions of low and high energy modes from fits to the experimental data in d. are in red with the shaded region showing the line width approximated by the peak FWHM. The position of the high energy mode predicted by the quasiharmonic model is shown in black.

TABLE II. Measured and calculated Grüneisen parameter of FeGe$_2$ at 650 K. The calculation used the quasiharmonic approximation. The experimental results were obtained from peak positions and the first moment of the measured phonon DOS curves respectively.

<table>
<thead>
<tr>
<th>T = 650 K</th>
<th>Calculation</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QHA model</td>
<td>From peak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>positions</td>
</tr>
<tr>
<td>$\tilde{\gamma}_P$</td>
<td>2.37</td>
<td>2.69</td>
</tr>
</tbody>
</table>

energy phonon branches differ from the experimental results, perhaps owing to anharmonic effects or magnetic short-range order. The temperature dependences predicted by the quasiharmonic approximation are of the
FIG. 6. Single crystal FeGe$_2$ along the [HH0] direction. (a)-(c) The [HH0] direction at 300, 500, and 635K, respectively. White spaces indicate regions without detector coverage. The gray stripes indicates the region of the cuts shown in (d) and (f). (d) and (f) Cuts of data at 2.95 and 3.25 r.l.u., respectively, at 300K (dark blue), 500K (blue), and 635K (light blue), offset for clarity, with error bars represented by the width of the curve. (e) and (g) Positions of low and high energy modes from fits to the experimental data in (d) and (f), respectively, are shown in red. The shaded regions show the line width approximated by the peak FWHM. The position of the high energy mode predicted by the QH model is shown in black.

Correct magnitude, but not accurate in detail. Similar discrepancies with the quasiharmonic approximation are found for high-energy phonon peaks in the energy cuts shown in Fig. 6(e) and Fig. 5(g). The quasiharmonic model predicts many low-energy phonon branches, some of which are in agreement with the experiment result. The large number of low-energy modes in FeGe$_2$ impedes the identification of the low-energy modes in Fig. 6(e) and Fig. 5(e), however. More analyses of phonon dispersions along additional crystallographic directions are given in the Supplemental Material.
FIG. 7. Single crystal FeGe$_2$ overlaid with QH calculation. Phonon dispersion curves from the QH calculation are mapped over the measured $S(Q,E)$. The calculated dispersions are truncated for clarity, but extend further in reciprocal lattice units with the same periodicity. (a) and (b) show the [HH0] and [H00] direction at 300 K, respectively. (c) and (d) show the [HH0] and [H00] direction at 635 K, respectively.

C. Anharmonic behavior

To assess the importance of different contributions to phonon anharmonicity, consider their order with respect to the harmonic contribution $\Phi^{(2)}u^2$ (where Φ is a potential and u is a displacement)

\[\mathcal{O}(\Sigma) = \frac{\Phi^{(3)}}{\Phi^{(2)}} u + \frac{\Phi^{(4)}}{\Phi^{(2)}} u^2 + \left(\frac{\Phi^{(3)}}{\Phi^{(2)}}\right)^2 u^2 + \ldots, \quad (13) \]

which shows the well-known result that the cubic term to second order (with $(\Phi^{(3)})^2$) is comparable to the quartic term. Equation 13 shows that the cubic term to first order (with $\Phi^{(3)}$) could dominate at small displacements. If the phonon potential is an even function of amplitude, this cubic term to first order is forbidden. In a lower-symmetry C16 structure of FeGe$_2$, however, this first-order cubic term is allowed for some phonon modes. Its contribution to the phonon self energy is real, and therefore contributes only to the energy shift and not to the broadening.

The experimental phonon DOS shows distinctly more broadening of the high-energy part of the spectrum. This could be caused by either lifetime broadenings of individual phonons, or to a distribution of phonon frequency shifts. Examinations of dispersions shown in this text, the Supplemental Material, and many others showed that the dominant thermal effect is the energy broadening of the high-energy phonon modes, although there is also a greater distribution of phonon frequency shifts at high energies than low. The lowest-order term in the phonon self energy having an imaginary part is the cubic to second order, and this term is expected to dominate the lifetime broadening.

For a crystallographic site without inversion symmetry,
FIG. 8. Displacement pattern for LO phonons in the [110] direction. The Fe-Ge bonds undergo asymmetrical stretching when Fe (orange) and Ge (blue) atoms move towards (a, green arrows) and away from (b, red arrows) each other.

A first-order cubic anharmonicity is possible, and may be important for small displacements. Such a contribution is possible for the LO modes shown in Fig. 8 for the C16 structure. The phonon potential is not symmetric under inversion. For first-neighbor Fe-Ge bonds, the Fe-Ge bond length is different if Fe and Ge atoms are moving towards or away from each other, and the change in Fe-Ge bond length differs for the same displacements in the two directions. Anharmonicity of the Fe-Ge bonds is suggested by the measured partial phonon DOS curves. At 325 K, the discrepancy between the phonon modes in experiment and in the quasiharmonic model is greatest around 29 meV (Fig. 2). Around 29 meV, both Fe and Ge have a significant contribution to the total phonon DOS (Fig. 4).

For further study of the anharmonic behavior, the phonon spectrum function along [HH0] and [H00] directions at 635 K was investigated by ab initio DFT calculations with the stochastic temperature-dependent effective potential technique (sTDEP). Third-order force constants were used to calculate the imaginary and real part of the phonon self-energy. As shown in Fig. 9, they do not vary much. The imaginary part shows that the high-energy phonon modes (above ∼21 meV) have much shorter phonon lifetimes than the low-energy modes ($\Gamma_{\text{high}}/\Gamma_{\text{low}} \simeq 4$), while the softening in the high- and low-energy phonon modes are almost the same ($|\Delta_{\text{high}} - \Delta_{\text{low}}|/\Delta_{\text{high}} \simeq 7.5\%$).

D. Heat capacity and entropy

Figure 10 shows the temperature dependence of the thermal properties of FeGe$_2$. The phonon entropy S_{ph} was obtained from the phonon DOS $g(E)$ by

$$S_{\text{ph}} = 3k_B \int dE g(E) \left[(n+1)\ln(n+1) - n\ln n\right].$$

Figure 9. Phonon self-energy of FeGe$_2$ along [HH0] and [H00] directions at 635 K. (a) Imaginary part of the phonon self-energy which gives the spectral linewidth. (b) Real part of the phonon self-energy which accounts for the phonon energy shifts. It is shown that the high-energy phonon modes (above 21 meV) have much shorter phonon lifetimes than the low-energy modes ($\Gamma_{\text{high}}/\Gamma_{\text{low}} \simeq 4$), while the softening in the high- and low-energy phonon modes are almost the same ($|\Delta_{\text{high}} - \Delta_{\text{low}}|/\Delta_{\text{high}} \simeq 7.5\%$).
Phonon Heat Capacity, C_p (J/(mol·K)), and Entropy, S (kB/atom) at 300 K, much larger than the estimated electronic contribution.

At 325 K, the phonon contribution to the heat capacity is 25.0 J/(mol·K), while the magnetic and electronic contributions are 7.3 J/(mol·K) and 1.4 J/(mol·K) respectively. The majority of the heat capacity comes from the phonons, but the magnetic and electronic parts are not negligible. As the temperature increases, however, the static magnetic order in FeGe$_2$ will disappear and the magnetic heat capacity will decrease to near zero. For example, at 1020 K, the magnetic contribution is almost zero, while the estimated electronic heat capacity is 4.4 J/(mol·K) and the phonon heat capacity is 31.6 J/(mol·K) as shown in Fig. 10. As a result, phonons contribute a growing fraction of the heat capacity of FeGe$_2$ as the temperature increases (from 74% at 325 K to 87% at 1020 K).

Phonons were also divided into the low- and high-energy parts such that their numbers of states were in the ratio 2:1, approximated by the weights used in Eq. 10. The phonon heat capacities calculated from these two parts are shown separately in Fig. 10(b). The QH model fails to predict the heat capacity for both energy regions, although the gap of the low-energy part is narrowing with temperature.

VI. CONCLUSION

Phonon anharmonicity was studied in paramagnetic FeGe$_2$ between 300 and 1050 K. Inelastic neutron scattering was used to measure the phonon spectrum from a powdered sample from 300 to 1050 K, and 57Fe nuclear resonant inelastic x-ray scattering was used to measure the partial phonon DOS of 57Fe to correct for differences in the neutron weights for phonon scattering by...
Fe and Ge. Comparisons with phonon calculations by DFT in the quasiharmonic approximation were successful for the low-energy part of the vibrational spectrum, but the high-energy part showed obvious discrepancies. Thermal shifts of the phonon DOS were measured, and agreed in part with the DFT calculations in the quasiharmonic approximation. There was a modest difference in the average isobaric Grüneisen parameters from computation and experiment, however.

Phonon dispersions were measured by inelastic neutron scattering on a single crystal of FeGe$_2$ at 300, 500, and 635 K. The large number of dispersions made detailed analysis challenging, but some thermal shifts and broadenings of individual phonons were identified. The high-energy phonon dispersions showed more broadening and variations in their thermal shifts than the low-energy modes. Some of this energy shift of high-energy modes could be caused by a cubic harmonicity to first order, for which the Fe-Ge first neighbor bond can have an asymmetrical potential in the C16 structure. Nevertheless, the average thermal trends of phonons in FeGe$_2$ do not differ dramatically from the predictions of the quasi-harmonic approximation, and this approximation may be useful for understanding some thermophysical properties even though it does not predict correctly the individual phonon frequency shifts, and of course, the lifetime broadening of the phonon energies. Below 700 K FeGe$_2$ is modestly anharmonic, but the anharmonic contributions were interpretable.

VII. ACKNOWLEDGEMENT

This work was supported by DOE BES under contract DE-FG02-03ER46055. A portion of this research at Oak Ridge National Laboratory’s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This work benefited from DANSE software developed under NSF Grant No. DMR-0520547. Part of the calculations performed herein were made possible by resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.