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We present diffusion Monte Carlo (DMC) results for equation of state and quasiparticle gaps of
manganese binary oxides MnO and MnO2 and the ternary oxide LaMnO3. Owing to the limited
approximations made and the direct treatment of electronic correlations, our DMC-based study
correctly describes structural properties such as the lattice constant, bulk moduli, and cohesive
energies. It correctly predicts the ground-state phase of these oxides, which have different valences.
Our study demonstrates the capability of DMC methods to predict the structural properties of
highly correlated systems, which have been identified as a suitable candidates for many applications
ranging from catalysis to electronic devices. Our study also serves as a benchmark for both the
manganese pseudopotential and other methodological choices to be used in calculations of similar
oxides.

I. INTRODUCTION

Transition metal oxides (TMOs) possess a variety of
structures and exhibit a multitude of collective effects
such as metal-insulator transitions; ferro-, ferri,- and
antiferromagnetism; ferroelectricity; superconductivity;
colossal magnetoresistance; etc.1–11. The unusual elec-
tronic properties of TMOs are closely related to the
strongly correlated nature of the d -orbital electrons. In
TMOs, the localized character of the partially filled d
states and the multiplicity of their valence lead to the
competition of several physical interactions (spin, charge,
and lattice). The concurrence of strong lattice-electron,
spin-electron, and spin-orbit couplings causes fascinat-
ing phenomena, including metal-insulator transitions1–3,
superconductivity4, colossal magnetoresistance5–7, and
multiferroicity7. Their band gaps span from the infrared
to the ultraviolet8, while their surface chemical reactivity
ranges from active to inert9,10.

To understand and predict the structural, electronic,
and magnetic properties of these oxides using theoreti-
cal methods, it is necessary to have a reliable description
of the electronic structure. Because of the strong elec-
tron correlation, it is very challenging to model these
materials from first principles. Conventional methods
based on density functional theory12–14 (DFT) approx-
imations are seldom accurate enough to account for the
electronic structure of materials with localized d -orbitals
and frequently lead to unrealistic results. In particular,
for transition-metal oxides, the electronic self-interaction
error15 propagates with the treatment of the Coulomb
interaction16–29.

Since transition metals are multivalent in nature, each
valence state can result in different oxide crystal struc-
tures with a qualitative different crystalline field around
the transition metal atom. The identification of the cor-
rect lowest energy lattice structure is a strong validation
of the accuracy of the theoretical approximations used
to calculate the electronic structure. In manganese ox-

ides, it is well established experimentally that the rock
salt (RS) phase is the most stable form of MnO. How-
ever, some methods and approximations30,31 predict the
zinc blende (ZB) structure to be lower in energy. The
magnetic ground-state configuration also depends on the
approximation used32,33.

Rapid advancements in the development of electronic-
structure methods such as Quantum Monte Carlo
(QMC)34–37 and increasing computational resources have
provided a viable alternative theoretical approach for
these complex systems. Because of the few fundamen-
tal approximations made and the direct treatment of
electron correlation, QMC methods—such as fixed-node
diffusion Monte Carlo (FN-DMC)—are among the most
accurate electronic structure methods available38. The
number of published reports using DMC in elemen-
tal solids, semiconductors, metals, oxides, and transi-
tion metal-oxides 16–29,39–45 is still very small compared
with similar calculations using DFT approximations even
though DMC methods already show systematic improve-
ments compared with DFT methods. Nevertheless, since
this type of calculation is not routine, the parameters re-
quired to obtain accurate results with high-performance-
computer resources, as well as the validity of the pseu-
dopotentials and other fundamental approximations of
the approach, need to be established for every mate-
rial family before more demanding calculations are at-
tempted.

In this contribution, we assess the accuracy of the
DMC method in predicting the structural and electronic
properties of some manganese-based binary oxides (MnO
and MnO2) and the ternary oxide LaMnO3. The DMC
calculated cohesive energies and structural parameters
(equilibrium lattice constants and bulk modulus) are
within the uncertainty of the available experiments. Our
study demonstrates the capability of DMC methods to
predict the structural properties of highly correlated sys-
tems. We also find that for these manganese compounds,
the structural properties such as cohesive energy, equilib-
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rium lattice constants, and bulk modulus are not modi-
fied by the fundamental approximations in the theoretical
approach. For detailed discussion regarding the approx-
imations involved, see Section II, C-F.

The rest of the paper is organized as follows: in Sec-
tion II, we give a brief overview of the computational
details and the DMC method. In Section III, we present
and discuss our main results: DMC-calculated structural
properties of MnO, MnO2, and LaMnO3 compared with
experiments and various computational approaches. We
focus on (1) the bulk properties: cohesive energies and
equation of states and (2) quasiparticle gaps. In Section
IV, we compare the performance of exchange-correlation
functionals with DMC for various manganese-based ox-
ides. Finally, we summarize our findings in Section IV.

II. COMPUTATIONAL DETAILS

A. Diffusion Monte Carlo

QMC methods use statistical sampling to evaluate
many-body wave functions. In these methods the total
energies are directly evaluated from the first-principles
many-body Schrödinger equation, which greatly reduces
the extent of necessary approximations. In the present
work, to assess the properties of manganese-based ox-
ides we applied the FN-DMC method as implemented in
the QMCPACK code36. The entire study was managed,
monitored, and analyzed using the modular workflow au-
tomation system Nexus46. Since the details of the DMC
approach are already available in the literature,38,47–50

here we provide only a brief overview.

FN-DMC finds the lowest energy of all the wave func-
tions that share the nodes (or the phases) of an input trial
wave function. This constraint forces the wave function
to remain antisymmetric (fermionic). Within the fixed-
node approximation, the DMC algorithm projects out all
the excited state components of the wave function except
the ground state. To define the nodal surfaces, a rea-
sonable and commonly chosen starting point for the trial
wave function is to use orbitals from DFT calculations or
other mean field approaches. The ground-state energy is
only exact if the exact nodes are provided. The nodal
error is a positive contribution to the exact ground state
energy. The finite-size (FS) errors also affect the accuracy
of DMC results. Two potential sources for these errors
are (1) single-particle errors and (2) the artificial peri-
odicity of the exchange-correlation hole. The first error
arises from the discrete sampling of the Brillouin zone,
which can be minimized by using twist-averaged bound-
ary conditions51. The second error can be minimized by
increasing the size of the supercells. To minimize the FS
errors, in the present work, the DMC calculations were
performed using twist-averaged boundary conditions51

on 64-, 48-, and 40- atom supercells for MnO, MnO2,
and LaMnO3, respectively.

B. Trial wave-function construction

The Slater-Jastrow form with the single particle or-
bitals obtained from DFT was used as trial wave func-
tions. The Slater determinants50,52,53 were constructed
with DFT orbitals. Electron correlations were intro-
duced to the trial wave function via a correlating Jastrow
factor54:

ψ(R) = e−J(R)D↑(R)D↓(R), (1)

where the Slater determinants D↑(R) and D↓(R) corre-
spond to spin-up and spin-down subspaces, respectively.
Conventionally, the Jastrow factor J(R) is the sum of the
contributions from electron-ion, electron-electron, and
electron-electron-ion correlation terms. These terms are
known as one-body (e−J1(R)), two-body (e−J2(R)) and
three-body (e−J3(R)) Jastrow terms, respectively. To ac-
celerate the generation of results to the desired statistical
accuracy, we optimize parameters in the Jastrow factors
with energy and variance minimization within variational
Monte Carlo55.

In this work, we used trial wave functions of a single-
determinant Slater-Jastrow form with one- and two-body
Jastrow factors because the increasing computational
cost required for evaluation of the three-body Jastrow
did not result in a significant reduction of the error bar.

For the DMC calculations of oxides, monoatomic solids
(lanthanum and manganese), and oxygen molecules, the
single-particle orbitals used in the trial wave function
were generated with the local density approximation
(LDA)15 as implemented in the Quantum ESPRESSO
(QE) package56. Convergence tests of plane-wave cutoff
energies (Ecut), k-point meshes, and smearing parameters
were performed for all the compounds considered in the
present work. A strict convergence criterion was used: ±
1.0 mRy per formula unit in the ground-state energy. In
the case of MnO, 8-atom cells were used for both RS and
ZB in conjunction with an 8 × 8 × 8 Monkhorst-Pack
sampling of k-points in the Brillouin zone. While for
MnO2 and LaMnO3, 6-atom and 10-atom cells were used.
The QMC calculations were performed in larger super-
cells. The wave functions were constructed using transla-
tional symmetry from the wave functions of smaller cells
to save memory. For DMC calculations, the wave func-
tion was unfolded to 64-, 48-, and 40-atom supercells for
MnO, MnO2, and LaMnO3, respectively.

QE was used solely as a source of orbitals for QMC.
DFT results reported in the present work were calculated
using the Vienna ab initio software package (VASP)57,58.

C. Fixed-node error

Because the approximations in DMC can be system-
atically improved, it has produced results with excep-
tional accuracy17,21,59. However, as mentioned previ-
ously, DMC requires the following approximations. In
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FIG. 1. (Color online) (a) Minimization of fixed-node error. Calculated DMC energies for LaMnO3 (40-atom supercell)
as a function of Hubbard parameter U. (b) Time-step extrapolation. DMC energies of the RS phase of MnO as a function
of time step. Reference energies (ERef ) for Fig. (a) and (b) are -5015.82 eV and -3273.00 eV, respectively.

DMC methods, the fixed-node approximation is intro-
duced to maintain the antisymmetry of the wave function
and to overcome the fermion sign problem (the deter-
mination of the node, where the wave function changes
sign). The fixed-node approximation prevents walker
moves that cross fermion nodes and change the sign of
the trial wave function. The fixed-node approximation in
DMC gives exact results if the trial nodal surface is exact.
Although the fixed-node error is small (typically, a few
percent of the correlation energy), the error can still be
too large for some applications, particularly in important
cases of computating very small energy differences. In the
present work, we have explored the nodal surfaces arising
from the Hubbard-corrected LDA functionals to perform
a simple one-parameter optimization of the nodal surface.
As a representative case in Fig. 1, we show the DMC en-
ergy as a function of Hubbard parameter U for LaMnO3.
Our DMC calculations found that U values of 3.5, 3.5,
and 3 eV minimize the DMC energies for MnO, MnO2,
and LaMnO3, respectively. The subsequent calculations
were performed using these U values.

D. Pseudopotential generation

Pseudopotentials (PPs) are the backbone of DMC sim-
ulations, and the accuracy of the DMC results signifi-
cantly depends on the availability of high-quality PPs.
At present, generation of PPs within DMC is not practi-
cal. Before use with DMC, PPs must be carefully tested
with other theories (such as Hartree-Fock or DFT). In the
present work, we used norm-conserving PPs for the oxy-
gen, manganese, and lanthanum atoms, which are gener-
ated with OPIUM. The O-PP is based on a He-core PP.
All PPs are tested and used for DMC studies of dimers
and solids17,21,59. Our PPs have been shown to present
Jastrow sensitivities comparable or better to previously

developed Hartree Fock PPs appropriate for Gaussian ba-
sis set calculations60. The hard PPs used in the present
work require a high plane-wave cutoff energy. Therefore,
for MnO, MnO2, and LaMnO3, a plane-wave energy cut-
off was set to 350, 350, and 300 Ry, respectively. To treat
the nonlocal part of the PPs within DMC and avoid the
numerical instabilities of the locality approximation, the
T-moves61 scheme was used.

E. Time-step error

In principle, DMC provides the fixed-node solution
of the imaginary time-dependent Schrödinger equation,
where the many-body wave function is statistically sam-
pled using a Green’s function approach by propagating a
set of walkers in a 3N-dimensional space (N is the num-
ber of electrons). Since the Green’s function projector
obtained within the short time approximation is exact
only in the limit of a vanishingly small time step (τ '
0), finite time steps introduce a time-step error. It is im-
portant to show that errors in the projected energy, due
to the finite time step, are small. Note that the asso-
ciated computational cost for the same statistical error
increases as τ−1.

To understand the effect of DMC time step, in Fig. 1
(b) we have plotted the DMC energies (twist averaged
over k-points) calculated for the rocksalt phase of MnO
as a function of the DMC time step. It is evident from
Fig. 1 (b) that the DMC energies show a nearly linear
dependence with decreasing time step. In particular, for
sufficiently small time steps (smaller than 0.01 Ha−1),
the energy varies within ≈ 0.02 eV/fu of the extrapolated
value. A similar trend is observed for MnO2 and LaMnO3

(not shown here). In practice, the evaluation of energies
requires extrapolations to infinitesimal time step within
the validity of linear extrapolation.
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FIG. 2. (Color online) Time-step dependence of the cohesive energy. DMC-calculated cohesive energies (per fu) as a
function of time step for (a) RS phase of MnO, (b) β-MnO2, and (c) LaMnO3. The green regions correspond to the available
experimental cohesive energies collected from MnO73, MnO2

73–75, and LaMnO3
76–79. The height of each green area represents

the variations between different experimental values. The statistical uncertainties in the DMC data are shown with error bars.

Although the time-step correction (Fig. 1 (b)) is of the
order of the statistical error for the time steps used, it is
important to estimate the effect of DMC time step on the
calculated properties to test the systematic cancellation
of time step errors. In Fig. 2 (a-c), we have plotted the
DMC calculated cohesive energies for MnO, MnO2, and
LaMnO3 as a function of DMC time step. The DMC
energies (twist averaged) for the rocksalt phase of MnO,
MnO2, and LaMnO3 are calculated using a 32-, 48- and
40-atom supercell, respectively. It is evident from Fig. 2
(a-c) that for all three cases the DMC cohesive energies
do not show strong time-step dependence (i.e., the energy
differences benefit somewhat from a cancellation of time-
step errors). In the limit of zero time step, compared
with experimental results, the cohesive energies differ by
0.08(4) eV/fu, 0.10(6) eV/fu, and 0.10(5) eV/fu for MnO,
MnO2, and LaMnO3, respectively. Therefore a time step
of 0.01 Ha−1 is used for the DMC calculations presented
in the rest of this paper.

F. Cohesive energy and equation of state

The cohesive energy (ECoh) of a solid can be deter-
mined as

ECoh =
∑

Eig − ETots , (2)

where ETots is the total DMC or DFT energy of the
solid. The respective energies of the monoatomic gas
phase components are shown as Eig. In the case of

LaMnO3, ETots is the energy of solid LaMnO3, whereas
the monoatomic energies of lanthanum, manganese, and
oxygen would be given as ELag , EMn

g , and EOg , respec-
tively. We calculated the cohesive energies at 0 Kelvin
and compared our results to the experimental cohesive
energies in Fig. 2.73–79 We presented the statistical and
experimental uncertainties between different results us-
ing standard deviation error bars.

Structural parameters such as equilibrium lattice con-
stants (a), bulk modulus (B), and bulk modulus’s pres-
sure derivative (B′) were calculated by fitting the Mur-
naghan equation of state (EOS)80 to the total energy as
a function of volume.

The Murnaghan EOS is given as

ET (V ) = ET (V0)+
B0V

B′0

[
(V0/V )B

′
0

B′0 − 1
+ 1

]
− V0B0

B′0 − 1
, (3)

where ET (V) represents the energy at volume V and B0,
B′0, and V0 represent the bulk modulus, pressure deriva-
tive, and equilibrium volume, respectively.

The cohesive energies were calculated at the optimized
geometries within each theoretical method employed (i.e.,
at the equilibrium volume found by each respective QMC
method or DFT functional). All the DFT results re-
ported in the figures, tables, and text were calculated
using VASP57,58 with Projector Augmented Wave poten-
tials.

G. Excited-state properties

We studied the quasiparticle gaps and band dispersion
of MnO, MnO2, and LaMnO3 using the DMC method.
The quasiparticle gap, Eg, can be calculated using the
following formula:

Eg = Ea − IP, (4)

where Ea is the electron affinity and IP is the ionization
potential. The electron affinity is defined as Ea = EN+1-
EN , where N is the number of electrons in a charge neu-
tral system. Similarly, the ionization potential is defined
as IP = EN -EN−1. Performing these calculations using
DMC requires charged simulation cells. Therefore, DFT
calculations were performed with a uniform, neutralizing
background charge density to obtain trial wave functions
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FIG. 3. (Color online) An asterisk (*) denotes the results from
the present work, while the other results are from a30, b26,
c31, d62, e63, f 64, g65, h66–70, and i70–72. (a) Comparison of
the calculated and available results for phase stability (differ-
ence between total energies of ZB and RS phases) of MnO.
Standard deviation error bars (red bars) show statistical un-
certainties in the DMC data. Note that the experimental data
drawn (in yellow) for the ground-state energy difference (EZB

- ERS) for MnO is some unknown positive quantity. (b) and
(c) Comparison (relative error) of calculated and available
theoretical and experimental results for (b) lattice constants
and (c) cohesive energies of the RS phase of MnO. Statistical
uncertainties in the experimental data are shown with red de-
viation error bars. In (b), Fock-0.3565 is a hybrid functional
with PBE and 0.35 fraction of HF exchange.

for DMC calculations. This procedure has also been im-
plemented in Refs.81,82. Charged cells introduce an error
of order 1/N , which originates in a compensating den-
sity inversely proportional to the number of electrons in
the system N . Therefore, simulation cells with increas-
ing sizes were used to extrapolate quasiparticle gaps at
the infinitely large simulation cell.

To study the band dispersion, we performed excited-
state DMC calculations at relevant high-symmetry k-
points. We identified the high-symmetry k-points for
direct and indirect transitions using DFT+U83 calcula-
tions. Excited-state calculations were performed via pro-
motion of an electron from valence band to conduction
band. Therefore, charge neutral simulation cells were
used.

III. RESULTS AND DISCUSSION

A. MnO

1. Ground-state identification

Identification of the correct ground-state structure is
one of the basic results that can be expected from any
computational methodology. Before investigating other
structural properties, we benchmarked the adequacy of
the DMC methods within the aforementioned approxi-
mations by predicting the correct ground-state phase of
MnO. In the present work, DMC calculations were per-
formed for 32-atom unit cells (for both RS and ZB) in
conjunction with a 4 × 4 × 4 Monkhorst-Pack sampling
of k-points in the Brillouin zone. Experimental lattice
constant (4.43 Å)66 was used for the RS phase. For the
ZB phase, because of the unavailability of the experimen-
tal lattice constant, the lattice constant was obtained us-
ing the PBE0 functional (4.73 Å)26. In Fig. 3 (a), we
show the ground-state energy difference between the ZB
and RS MnO phases as a function of DFT functionals
(the different approximation to the exchange-correlation
energy) compared with DMC results and experiment.
DMC correctly predicts the stability order of the phases
ERS > EZB . Positive values of (EZB - ERS) in Fig. 3 (a)
denote a more stable RS phase, which is found to be con-
sistent with experiments and a previous DMC study26.
For the RS-MnO, we used the AFM-II type magnetic con-
figuration that is also found to be the magnetic ground
state using neutron diffraction experiments66,91.

2. Structural properties

The structural parameters—namely lattice constants
(a), bulk modulus (B), and bulk modulus’s pressure
derivative (B′)—are determined by fitting the Mur-
naghan EOS to the calculated data. The energy vs.
volume curves for the RS phase of MnO, β-MnO2, and
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TABLE I. The calculated equilibrium lattice parameter (a), bulk modulus (B), bulk modulus’s pressure derivative (B′), and
cohesive energies (ECoh) of the RS phase of MnO. For comparison, available computational and experimental results are also
included. The statistical uncertainty in DMC is provided in parentheses. Fock-0.3565 and Fock-0.5065 are hybrid functionals
with PBE and fraction of HF exchange 0.35 and 0.50, respectively. An asterisk (*) denotes results obtained in the present
work.

a (Å) B (GPa) B′ ECoh (eV)

UHF 4.5384 6.2084

HF 4.3864 -
LDA 4.35∗, 4.3265 18465 , 17085 8.08∗

GGA (ideal) 4.4426 196 3.985 9.7326

GGA (relaxed) 4.4626 19686 3.986 9.7426

PBE 4.37∗,64 , 4.4565 , 4.4730 141∗, 14765, 14530 3.8∗ 9.20∗

PBEsol 4.41∗ 156∗ 4.6∗ 9.00∗

Rev. PBE 4.55∗ 256∗ 4.30∗ 7.60∗

B3PW91 4.4665 15465

PBE+U 4.4864 10.77∗

LDA+U 4.4065 17465 3.285

RPA 4.4930 15830

Fock-0.35 4.4065 17465

Fock-0.50 4.4465 17065

B3LYP 4.5064,87 9.2187

PBE0 4.5165 , 4.4064 14365

HSE 4.4385 18785 3.385

DMC 4.4326 16326 9.4126

DMC 4.43∗ 158∗ 4.1∗ 9.43 (7)∗

Expt 4.4366,67, 4.44568–70 14469 ,14788 ,15088 4.8(±1.1)88,89 , 9.5070–72

4.44669 14869 , 15190 , 16289 4, 5.2869

LaMnO3 were calculated using DMC, and the various
functionals of DFT are plotted in Fig. 4 (a-c).

First, we discuss the equilibrium lattice constant. In
Fig. 3 (b), we compare the relative errors (with respect
to the experimental values) in lattice constants calcu-
lated within DMC, as well as using the different DFT
functionals as implemented in the VASP57,58. Compar-
ative analysis suggests that our DMC results agree well
with the experiments and the DMC results from Mitas et
al.63. The difference between both DMC results is small
and within the statistical error. It is well known that
Generalized Gradient Approximation (GGA)15 tends to
overestimate the lattice parameters94. However, in the
case of the RS phase of MnO, the GGA31 predicted lat-
tice constant is found to be in agreement with results
from experiments and DMC calculations. For all other
studied DFT functionals, the observed errors in the lat-
tice constant range from 1 to 2% (see Fig. 3 (b)).

The relative errors in the calculated cohesive ener-
gies (using DMC and various approximations using the
VASP57,58 package) for MnO in the RS phase with re-
spect to the experimental values are shown in Fig. 3 (c).
Our DMC-based cohesive energy is in excellent agree-
ment with experimental and available DMC-calculated
values63. Note that our cohesive energies are reported
at the theoretical optimum volume found within each
theoretical method. Although PBE provides reasonable
results for total energies across a wide range of chem-

ical compositions, it suffers from significant electronic
structure errors arising from self-interaction, as well as a
tendency to disfavor the density overlap between atoms
(making lattice constants larger). It is evident from Fig.
3 (c) that the relative error is larger for the PBE+U
than the PBE and that the deviations in cohesive energies
have negative and positive signs, respectively. Although
PBE+U is supposed to describe the localized nature of
the electrons for oxides, the relative error of 12% for co-
hesive energy using PBE+U is much higher than that for
PBE. However, PBE+U is more accurate than PBE for
the lattice constant (see Fig. 3 (b)).

In Table II, we presented our results for the optical
and quasiparticle gaps of MnO compared with DFT and
other DMC calculations. All DFT results reported in
Table II correspond to the the band gaps that are given
by the generalized Kohn-Sham eigenvalues from a band
structure calculation. Table II shows our DMC results for
both the optical gaps, along with the DFT results, and
DMC quasiparticle gap energies (DMCQP ). Our PBE+U
calculations yielded an indirect band gap EK→Γ

g ; while

the direct band gap, EΓ→Γ
g , was identified as Γ → Γ

transition. These findings were consistent within all DFT
methods we used. They are also in agreement with the
LDA+U calculations of Anisimov et al. 83 and the GW
calculations of Rodl et al. 95 .

For MnO, and in the rest of this work, we determined
the wavevectors for the direct and indirect transitions
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FIG. 4. (Color online) EOS. DFT and DMC energies (per
formula unit) versus volume (per formula unit) together with
fitted Murnaghan curves for (a) RS phase of MnO, (b) β-
MnO2, and (c) LaMnO3. Reference energy (ERef ) is the
minimum energy of the respective structure obtained from
the Murnaghan fit. The statistical uncertainty in DMC en-
ergies and experimental data is also shown. In the case of
MnO2, the statistical uncertainty in DMC energies is smaller
than the symbol size. The experimental equilibrium volumes
for MnO69, MnO2

35,92,93, and LaMnO3
76–79 are also shown

for comparison. Statistical uncertainties in the experimental
data is shown using standard deviation error bars.

from PBE+U calculations. We performed QP calcula-
tions in DMC via a two-point extrapolation using 16-
and 32-atom cells. Our DMCQP results are in good
agreement with the band gaps obtained from photoe-
mission measurements96 with Eg=3.9(4) eV and conduc-
tivity measurements97 with Eg=4.0(2) eV. Whereas, our
DMC indirect gap result, 3.74(19) eV, is similar to the
optical absorption measurements98 with Eg=3.7(1) eV.
Our results also provide an improvement over the pre-
viously performed DMC calculations in comparison with
the optical gap of 4.47(16) eV by Schiller et al. 26 and
4.8(2) eV by Mitas and Kolorenč 63 . For the quasiparti-
cle gap, our results have only minimal improvement over
the 4.55(26) eV calculated by Schiller et al. 26 . The dif-
ference in our DMC results compared with the previously
calculated DMC results can be related to the quality of
the wave functions and the finite size effects. It has been
shown that transition metal PPs that are used in this
work yield much improved first and second ionization
potentials compared with previous DMC calculations59.
Therefore, the improved results can be a direct conse-
quence of using better optimized PPs for the excited-
state properties.

TABLE II. Excited-state properties of MnO. DFT calcula-
tions are differences in Kohn-Sham eigenstates, whereas DMC
stands for the optical band gap and DMCQP is the quasipar-
ticle gap.

indirect gap (eV) direct gap (eV)

DMC
3.74(19)

4.0(2)
4.47(16)26, 4.8(2)63

PBE 0.98 1.31
PBE+U 1.12 1.28
SCAN 0.79 1.46
SCAN+U 0.86 1.53
HSE0395 2.6 3.2
HSE03+G0W0

95 3.4 4.0
DMCQP 3.98(21), 4.55(26)26

Experiment 3.9(4)96, 4.0(2)97, 3.7(1)98

B. MnO2

The various calculated quantities (equilibrium volume,
bulk modulus, bulk modulus’s pressure derivative, and
cohesive energies) for MnO2 using different computa-
tional schemes are given in Table III, along with the avail-
able computational33 and experimental results.72,92,93.
For the ground state, we used AFM-I type magnetic con-
figuration since the magnetic and crystallographic space
groups are the same. Parallel spins are aligned on the
(001) place, whereas an antiparallel orientation exists in
[111] direction. Similar to MnO, our DMC-calculated
values agree better with the experimental results com-
pared with various DFT functionals. Among all the
DFT functionals used in the present work, the bulk mod-
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FIG. 5. (Color online) Comparison (relative error) of calculated and available computational and experimental results for (a)
lattice constants and (b) cohesive energies of β-MnO2. Standard deviation error bars (red bars) show statistical uncertainties
in the DMC data. An asterisk (*) denotes results from the present work, while the available results are collected from a33,
b35,92,93, and c72.

TABLE III. The calculated equilibrium volume, bulk mod-
ulus (B), bulk modulus’s pressure derivative (B′), and co-
hesive energies (ECoh) of MnO2. For comparison, available
computational33 and experimental35,72,92,93 results are also
included. An asterisk (*) denotes results generated in the
present work. The statistical uncertainty in DMC is provided
in parentheses.

volume/f.u. B B′ ECoh

- (Å3) (GPa) (eV)

LDA 26.28∗ 424.65∗ 5.32∗ 16.76∗

PBE 28.23∗, 28.2433 344.77∗ 5.06 ∗ 13.83∗

PBEsol 27.20∗ 387.48∗ 5.27∗ 15.33∗

Rev PBE 29.03∗ 310.89∗ 4.98∗ 12.36∗

PBE+U 29.06∗, 29.6633 304.40∗ 5.55∗ 11.62∗

PBEsol+U 27.99∗ 349.77∗ 5.67∗ 12.53∗

PBE0 27.5333

HSE 27.6433

DMC 26.59∗ 289.00∗ 5.14∗ 13.54(3)
Exp 27.3892, 27.893 328(18)92 4(2)92 13.52(2)72

27.7435

ulus and cohesive energies, calculated with PBE, are
found to be closest compared with experimental results,
while PBEsol predicts the equilibrium volume with the
lowest relative error. However, both PBE and PBEsol
fail to predict the correct energy ordering of MnO2

polymorphs3.

For equilibrium volume, the relative error for PBE+U
(5.78%), revised PBE (5.67%), and LDA (4.19%), while
the DMC method gives roughly half of the relative er-
ror difference (2.97%), and the PBEsol and PBEsol+U
methods gives roughly of 0.64% and 2.19%, respectively.
Particularly noticeable are the results for calculated co-
hesive energies, where PBE+U, PBEsol+U, and revised
PBE show a tendency to overbind with a relative error
of 16.36%, 7.93%, and 9.43%, respectively.

Our DMC-calculated cohesive energy of ground-state
structure β-MnO2 (13.54 ± 0.03 eV) is in excellent agree-
ment with available experimental results (13.52 ± 0.02
eV). We also compare the relative error in calculated
equilibrium volume and cohesive energies obtained us-
ing different computational schemes as shown in Fig. 5
(a-b).

Hossain et al. 99 studied the band gap of β-MnO2

thin films using conductivity experiments, whereas Li
et al. 100 performed UV-Vis absorption spectroscopy
measurements on β-MnO2 powders that are prepared us-
ing electrodeposition. Our literature search provided no
results for optical measurements on the single crystals of
β-MnO2. Sato et al. 101 showed that even under highly
controlled environments, it is possible to have very small
nonstoichiometry β-MnO2−γ , γ = 0.0014, in the single
crystals. It was shown that even a very small nonstoi-
chiometry in β-MnO2 can lead to metalliclike properties
(e.g., conductive surface states)101,102. Since the elec-
tronic properties of β-MnO2 can be very sensitive with
respect to defects, it would be misleading to compare the
results in Ref.99 to the bulk β-MnO2. However, it must
be noted that in Ref.100 the exact crystalline structure of
the samples are not reported, but it is shown that two of
the x-ray diffraction peaks correspond to the orthorhom-
bic phase. The only orthorhombic phase available to
MnO2 is the Ramsdelite, R-MnO2, phase. Among all the
MnO2 phases, β-MnO2 has the smallest known experi-
mental formation energy103, which is only smaller than
the R-MnO2 phase by 56 ± 32 meV/MnO2. It is likely
that these two phases can coexist at room temperature
depending on the technique used to prepare the samples.
Therefore, we used the ultraviolet-visible (UV-Vis) ab-
sorption spectroscopy measurements of Li et al. 100 as the
experimental reference for the band gap of β-MnO2, 2.57
eV, although further experimental studies are needed.

In Table IV, we presented our results for the excited-
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state properties of β-MnO2. Using PBE+U calculations,
we determined that β-MnO2 is a direct band gap material
at the Γ point, EΓ→Γ

g . For β-MnO2, we performed QP
calculations in DMC via two-point extrapolation at 36-
and 48-atom cells. We found very good agreement with
the experimental band gap of β-MnO2 and the DMC cal-
culations. We found the DMC quasiparticle and optical
gaps to be close to each other; however, the DMC optical
gap is the quantity that must be compared against the
UV-Vis result in Ref.100.

TABLE IV. Excited-state properties of β-MnO2 calculated at
different levels of theory. DFT calculations are differences in
Kohn-Sham eigenstates, whereas DMC stands for the optical
band gap and DMCQP is the quasiparticle gap. All values are
given in eV.

PBE+U HSE SCAN DMC DMCQP Expt

Eg 0.23 1.753 0.433 2.27(28) 2.19(50)
0.2799

2.57100

C. LaMnO3

Now, we move to the manganese-based ternary oxide
namely, LaMnO3. In Fig. 6 (a-b), we compare the rel-
ative error (with respect to the experimental values) in
calculated lattice parameters and cohesive energies of cu-
bic LaMnO3. In this work we used the 10-atom rhom-
bohedral LaMnO3 unit cell for all calculations79. We
used the AFM-I magnetic configuration on this unit cell,
where the spins on the two cobalt atoms are in antipar-
allel alignment. In the structural analysis, shown in Fig.
6 (a), it is surprising that HF provides the best lattice
parameter among all mean field calculations. LDA un-
derestimates the lattice parameter while PBE leads to
overestimation, which is typically observed in many ma-
terials. Among all the computational approaches com-
pared in the present work, DMC-predicted lattice param-
eters are in best agreement with available experimental
results, followed by HF107, UHF106, and B3LYP104. In
our calculations, the DMC method gives the lowest per-
cent error (0.47%) in lattice parameters, while revPBE
gives the highest percent error (1.44%).

In the case of cohesive energies, behavior differs con-
siderably among methods, varying up to 9.9% (observed
using LDA method). Better DFT cohesive energies were
obtained using PBE and PBE+U methods, with only
1.60% and 1.84% deviation. We derived the experimental
cohesive energy to be 30.6(5) eV and found that all DFT
methods, except revPBE, overbind the atoms in LaMnO3

crystal. The relative error for the revPBE approximation
was 2.07%. In comparison, the DMC method provided
the best cohesive energy with only a 0.64% error, slightly
underbinding the LaMnO3 crystal.

Table V presents our results for the optical and quasi-
particle gaps of LaMnO3. All DFT results presented
were obtained from generalized Kohn Sham eigenstates.

We present only the quasiparticle gap using DMC for
LaMnO3. We performed QP calculations in DMC via a
two-point extrapolation using 20- and 40-atom cells. Our
PBE+U calculations yield an indirect transition from
(0.389,0.0,0.5) to Γ wavevectors. Therefore, the cal-
culation of the optical transition requires a very large
supercell. Similarly, all the band structure calculation
methods shown in Table V predict an indirect band gap
for LaMnO3. Compared with the rest of the theoreti-
cal methods investigated, our DMC results have better
agreement with the experiments, although experimental
uncertainty is rather large, 1.1–1.7 eV.

TABLE V. Excited-state properties of LaMnO3 (in eV)
DFT calculations are differences in Kohn-Sham eigenstates,
whereas DMCQP is the quasiparticle gap. The optical band
gap is not calculated at the DMC level because of computa-
tional limitations.

PBE+U HSE B3LYP GW DMCQP Expt

Eg 0.2 2.47114 2.3115
0.82116,

1.45(15)
1.18,

0.96117, 1.3118,
1.6119 1.7120

IV. CROSS COMPARISON

The most common computational approaches to study-
ing the properties of solids are based on DFT. Despite
the application and success of DFT in many branches
of science and engineering, however, transition metal–
based compounds remain challenging to study using cur-
rent approximations of DFT16–29. This section presents a
comparative analysis of various properties of manganese-
based oxides calculated from different computational
techniques. The aim is to provide a comparative picture
of the performance of exchange-correlation functionals in
predicting the properties of various manganese-based ox-
ides.

As mentioned earlier, prediction of the correct ground-
state structure is one of the most basic properties used to
validate the accuracy of any underlying approximation.
Most of the semilocal functionals (LDA, PBE, PBEsol,
and AM05), Hubbard-corrected (PBE+U30), and hybrid
functionals (HSE0630) contradict the experimental ob-
servation on the prediction of the ground-state structure
of MnO (see Fig. 3(a)). Whereas other than DMC only
PW9131, revised PBE and random phase approximation
(RPA)30 correctly predicted the RS phase as the ground
state of MnO. Although revised PBE correctly identified
the ground state of MnO, this is likely fortuitous because
it overestimated the lattice parameter by ∼2.5% and un-
derestimated the cohesive energy by ∼25%.

As is evident from Fig. 3 (b and c), the accuracy of
semilocal and hybrid functionals in predicting lattice pa-
rameters and cohesive energies ranges from 1% to 4%,
respectively. Moreover, most semilocal and hybrid func-
tionals also overestimated the bulk modulus for the RS
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FIG. 6. (Color online) Comparison (relative error) of calculated and available computational and experimental results for (a)
lattice constants and (b) cohesive energies of LaMnO3. Standard deviation error bars (red bars) show statistical uncertainties
in the DMC data. An asterisk (*) denotes results from the present work, while the available results are collected from a104,
b105, c106, d107, e108, f 109, g110, h111, i108, j 112, k113, and l76–79.

TABLE VI. DMC-calculated cohesive energies (per fu)
along with available mean experimental values for MnO73,
MnO2

73–75, and LaMnO3
76–79.

MnO MnO2 LaMnO3

DMC 9.52 (4) 13.54 (3) 30.32 (6)
Expt. 9.50 (2) 13.52 (2) 30.6 (5)

phase of MnO. On the other hand, the bulk modulus in
the RPA is in good agreement with experimental results
irrespective of the considerable variations among differ-
ent experimental values69,88–90. As shown in Fig. 3 (a-c)
and Table I, the present and previously published26,63

DMC results for lattice parameters, bulk moduli, and
cohesive energies lie within the experimental uncertain-
ties.

In the case of β-MnO2, PBE, revised PBE, and most of
the Hubbard-corrected functionals overestimate the equi-
librium volume, while PBEsol underestimates the volume
by ∼2% (Fig. 5 (a)). Figure 5 (a) also suggests that
the equilibrium volume of MnO2 increases with the in-
creased value of U in Hubbard-corrected functionals. For
LaMnO3, similar to two other cases, semilocal functionals
largely underestimate the lattice constant by 1% to 4%.
However, Hubbard-corrected and hybrid functionals pre-
dict lattice parameters and energetics better and repair
the weakness of the semilocal functionals. Basically, for
all compounds the accuracy in the lattice parameters and
cohesive energies increases as we move from semilocal to
hybrid functionals. However, the most accurate results,
within the experimental uncertainties, are obtained from
DMC. For example, in Table III, we compare the DMC-
calculated cohesive energies with the mean experimental
values.

To date, materials modeling has been largely dom-
inated by either quantum mechanical methods (e.g.,
DFT) or force-field–based methods. Both approaches

are versatile and have shown potential for providing a
good description of a range of chemistries and chemical
environments. However, because of the limited predic-
tive power of existing approximate exchange-correlation
energy functionals, significant failures have been made
in predicting the properties of transition metal ox-
ides. Particularly for manganese-based oxides such
as TbMnO3

121,122, HoMnO3
123, AMn2O4 (A=Co and

Zn)124, CaMn7O12
125, and mixed metal oxides126, DFT

results are very sensitive to the choice of the param-
eters and/or functionals. Having established the ac-
curacy of the DMC methods in predicting the proper-
ties of manganese-based oxides—namely MnO, MnO2,
and LaMnO3—we now have confidence that the DMC
methodology is the gold standard to be applied to ob-
tain accurate results in more complex manganese-based
oxides.

V. CONCLUSIONS

We have demonstrated the accuracy of the DMC meth-
ods in predicting the structural and electronic proper-
ties of manganese-based binary (MnO and MnO2) and
ternary (LaMnO3) oxides. Our results for MnO are
within the error bars of previous DMC calculations26,63

performed using different PPs, basis sets, and QMC
codes. DMC-calculated lattice constants (except for
MnO2), bulk modulus, and cohesive energies are found
to be within the uncertainty of the available experi-
ments. DMC has produced accurate ground and excited-
state energies for manganese-based oxides, which exhibit
strong electron correlation effects. The present work val-
idates the use of DMC methods for manganese-based
oxides, which have complicated electronic structure and
are challenging to theory. Having applied DMC to rela-
tively simple polymorphs where good experimental data
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is available, we have confidence that the methodology
can be applied to obtain accurate results in more com-
plex manganese-based oxides such as manganites and
manganese-based mixed metal oxides suitable for electro-
chemical energy storage and conversion devices, catalysis
to electronic devices.
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