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The lack of reliable methods for identifying descriptors — the sets of parameters capturing the underlying mechanisms of
a materials property — is one of the key factors hindering efficient materials development. Here, we propose a systematic
approach for discovering descriptors for materials properties, within the framework of compressed-sensing based dimensionality
reduction. SISSO (sure independence screening and sparsifying operator) tackles immense and correlated features spaces, and
converges to the optimal solution from a combination of features relevant to the materials’ property of interest. In addition,
SISSO gives stable results also with small training sets. The methodology is benchmarked with the quantitative prediction of
the ground-state enthalpies of octet binary materials (using ab initio data) and applied to the showcase example of predicting
the metal/insulator classification of binaries (with experimental data). Accurate, predictive models are found in both cases.
For the metal-insulator classification model, the predictive capability are tested beyond the training data: It rediscovers the
available pressure-induced insulator→metal transitions and it allows for the prediction of yet unknown transition candidates,
ripe for experimental validation. As a step forward with respect to previous model-identification methods, SISSO can become
an effective tool for automatic materials development.

INTRODUCTION

The materials-genome initiative [1] has fostered high-
throughput calculations and experiments. Correspond-
ingly, computational initiatives (e.g., Refs. [2–5]), have
already tackled many thousands of different systems (see
[6–16]). Much of the data of this field is available in the
FAIR Repository and Archive of the NOMAD Center of
Excellence[17, 18]. On close inspection, one realizes that
such data collections are so-far inefficiently exploited, and
only a tiny amount of the contained information is actu-
ally used. Despite the number of possible materials being
infinite, the request for specific properties — e.g.,“a ma-
terial that is stable, non-toxic, with an optical band gap
between 0.8 and 3.2 eV” — drastically reduces the set of
candidates. This implies that, in terms of functional ma-
terials, the structural and chemical space of compounds
is sparsely populated. Identifying these few materials —
known materials as well as materials that have not been
created to date — requires an accurate, predictive ap-
proach.

Several methods, falling under the umbrella names of
artificial intelligence or (big-)data analytics (including
data mining, machine/statistical learning, compressed
sensing, etc.) have being developed and applied to the
wealth of materials-science data [19–28], but so far, no
general and systematic approach has been established
and demonstrated. The challenge here is that many
different processes and phenomena exist, controlled by
atomic structure, electron charge, spin, phonons, po-
larons and other quasiparticles, and tiny changes in struc-
ture or composition can cause a qualitative change of
the materials property (phase transitions). For exam-
ple, less than 0.001% impurities can turn an insulator
into a conductor. This type of complexity is a signif-
icant element of ‘the fourth paradigm in materials sci-

ence’ [18, 29, 30] which recognizes that it may not be
possible to describe many properties of functional ma-
terials by a single, physically founded model, i.e., via a
closed, analytical expression. The reason is that such
properties are determined by several multi-level, intri-
cate theoretical concepts. Thus, insight is obtained by
searching for structure and patterns in the data, which
arise from functional relationships (including but not lim-
ited to linear correlations) with different processes and
functions. Finding a descriptor — the set of parameters
capturing the underlying mechanism of a given materi-
als property or function — that reveals these relation-
ships is the key, intelligent step. Once the descriptor
has been identified, essentially every learning approach
(e.g., regressions — including kernel-based ones —, ar-
tificial neural networks, etc.) can be applied straight-
forwardly. These issues and in particular the central
role of the descriptor was implicitly assumed in many
seminal machine-learning works applied to materials sci-
ence, but it was only later explicitly identified in the
works of Ghiringhelli et al. [7, 31]. These authors recast
the descriptor-search challenge into a compressed-sensing
(CS) formulation. The CS approach has been shown to
be effective for reproducing a high quality “reconstructed
signal” starting from a very small set of “observations”
[32, 33]. Mathematically, given a set of samples mea-
sured incoherently, P , CS finds the sparse solution c of
an underdetermined system of linear equations Dc = P
(D is called the sensing matrix with columns � rows).
If the number of nonzero entries in c is smaller than the
size of P , then CS effectively reduces the dimensionality
of the problem [32, 34, 35]. In the specific case treated
in [7, 31], given a set of materials mi with observable
properties listed in vector Pi and a huge list of possible
test features dj (forming the features space), the linear
projection of each i-material into the j-feature forms the
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FIG. 1. The method SISSO combines unified subspaces having the largest correlation with residual errors ∆ (or P ) generated
by SIS (sure independence screening) with SO (sparsifying operator) to further extract the best descriptor.

i, j components of the sensing matrix D. The sparse so-
lution of “arg minc

(
‖P −Dc‖22 + λ‖c‖0

)
”, where ‖c‖0

is the number of nonzero components of c, gives the op-
timum n-dimensional descriptor, i.e., the set of features
“selected” by the the n non-zero components of the so-
lution vector c.

In Refs. [7, 31], a modification of LASSO (least
absolute shrinkage and selection operator, [36]) was in-
troduced for finding the optimal solution. However, mov-
ing beyond the showcase application demonstrated in
those papers (predicting the ground-state crystal struc-
ture of octet binaries semiconductors), it turns out that
the method is unable to deal with large feature spaces,
i.e. with situations where knowledge about the underly-
ing processes is not well developed and when in addition
to the atomic properties, also collective properties, e.g.
the electronic band structure, play a role. When the
space of candidate descriptors (the feature space) gets
large (larger than few thousands elements) and/or when
features are correlated, the approach breaks down.

In the present paper, we provide a strong and efficient
solution of these problems, i.e. we present a new method,
called SISSO (sure independent screening and sparsifying
operator), which can deal with an immensity of offered
candidate descriptors (billions, or more) and does not suf-
fer when features are correlated. The outcome of SISSO
is a mathematical model, in the form of explicit, analytic
functions of basic, input physical quantities. This aspect
gives the opportunity to inspect the equations and sug-
gest means to test the generalization ability of the model.

RESULTS AND DISCUSSION

Features e space construction. All quantities that
are hypothesized to be relevant for describing the target
property (the so called primary features [7, 31]) are used
as starting point for the construction of the space [37, 38].

Features are of atomic (species per se) and collective
origin (atoms embedded in the environment). Then, a
combination of algebraic/functional operations is recur-
sively performed for extending the space. For instance,
the starting point Φ0 may comprise readily available and
relevant properties, such as atomic radii, ionization ener-
gies, valences, bond distances and so on. The operators
set is defined as

Ĥ(m) ≡
{
I,+,−,×, /, exp, log, | − |,√ ,−1 ,2 ,3

}
[φ1, φ2] ,

where φ1 and φ2 are objects in Φ (for unary operators
only φ1 is considered) and the superscript (m) indicates
that dimensional analysis is performed to retain only
“meaningful” combinations (e.g., no unphysical items like
‘size+ energy’ or ‘size+ size2’). The intrinsically linear
relationship observables ↔ descriptor in the CS formal-
ism is made non-linear by equipping the features space
with non-linear operators in Ĥ(m). At each iteration,
Ĥ(m) operates on all available combinations, and the fea-
tures space grows recursively as:

Φn ≡
n⋃

i=1

Ĥ(m) [φ1, φ2] , ∀φ1, φ2 ∈ Φi−1. (1)

The number of elements in Φn grows very rapidly with
n. It is roughly of the order of ∼ (#Φ0)2

n× (#Ĥ2)2
n−1

where #Φ0 and #Ĥ2 are the numbers of elements and
binary operators in Φ0 and Ĥ, respectively. For exam-
ple, #Φ3 ∼ 1011 with #Ĥ2 = 5 and #Φ0 = 10. To avoid
a priori bias and contrary to previous works [37], no fea-
tures were disregarded despite the size of the resulting
features space. Instead, we extend the sparse-solution al-
gorithm (using sparsifying operators (SO) [39]) and tackle
huge sensing matrices representative of features spaces
containing coherent elements overcoming the limitations
of LASSO based methods [7, 31].
Solution algorithm. The `0-norm regularized mini-
mization [41] is the obvious path for finding the best
sparse solution of linear equations. It is performed



3

FIG. 2. Benchmark of algorithms. (a) Training error: RMSE versus descriptor dimension for different SOs operating on
the smallest Φ1. (b) Training error: RMSE versus subspace size in the SIS step to find a 3D descriptor by OMP or SISSO with
the same large features space Φ2 (see Supplemental Material at [URL will be inserted by publisher] for a similar picture for a
2D descriptor). (c) Training error: RMSE by SISSO(`0) with Φ2 and Φ3 compared with previous work [7] (features space size
∼ 4 500) and with the Eureqa software [40] (evaluated functions 1012, larger than #Φ3).

through combinatorial optimization by penalizing the
number of non-zero coefficients. The algorithm is NP-
hard and thus infeasible when the features space becomes
very large. Efficient methods can be employed to approx-
imate the correct `0 solution [42] with ideal features space
(e.g., having uncorrelated basis sets). Amongst them are
the convex optimization by `1-norm [43] regularization
LASSO [36]) and the various greedy algorithms such as
the matching pursuit (MP) [44] and orthogonal matching
pursuit (OMP) [45, 46]. Unfortunately, with correlated
features spaces, approximated results can largely devi-
ate from the ideal `0 solutions [42, 47]. Corrections have
been proposed, for example the LASSO+`0 scheme com-
prising LASSO prescreening and subsequent `0 optimiza-
tion [7, 31], and the the `1-analysis and `1-synthesis [48].
However, when the features space size becomes of the
order of 106 − 109, `1 based methods also become com-
putationally infeasible. As previously mentioned, here
we overcome the huge size of the problem by combining
SO with sure independence screening (SIS) [49, 50], which
has been shown to be effective for dimensionality reduc-
tion of ultra-high dimensional features spaces [49]. SIS

scores each feature (standardized) with a metric (cor-
relation magnitude, i.e., the absolute of inner product
between the target property and a feature) and keeps
only the top ranked [49]. After the reduction, SO is used
to pinpoint the optimal n-dimensional descriptor. The
smaller the dimensionality, the better the outcome: pro-
gressively larger n are tested until the “left-over” residual
error is within quality expectation. The combination of
SIS and SO is called SISSO. Figure 1 illustrates the idea.

SISSO. Out of the huge features space (∼ 1010 elements
or more), SIS selects the subspace S1D containing the fea-
tures having the largest correlation with the response
P (target material property). Generally, the larger
the subspace ∪SiD, the higher the probability it con-

tains the optimal descriptor. However, the chosen size
of ∪SiD, depends on i) which type of SO is later used,
ii) the dimensionality n requested, and iii) the avail-
able computational resources. With SO(LASSO), ∪SiD

can contain as much as 105 ∼ 106 elements, depending
on #P . With SO(`0), the largest obtainable size is typ-
ically 105 for n = 2, 103 for n = 3, 102 for n = 4, etc.
(because the number of needed evaluation grows com-
binatorially with n). If n is large, e.g., >10, then the
maximum possible #SiD converge to 1: SISSO becomes
OMP. From inside S1D, SO(`0) finds the best 1D descrip-
tor, which is trivially the first ranked feature. In other
words, the SIS solution in 1D is already the SISSO so-
lution. The residual error for a n-dimensional model is
defined as ∆nD ≡ P − dnDcnD, where dnD is the matrix
with columns being the selected features from the whole
features space, and the cnD = (dnD

TdnD)−1dnD
TP is the

least square solution of fitting dnD to P . If the error, the
root-mean-square of the residual ρRMS(∆nD), is below a
certain threshold then descriptor is considered fit. Oth-
erwise the method recursively considers a higher dimen-
sional solution. In general, for a n-dimensional descrip-
tor, SIS selects the subspace SnD with response ∆(n-1)D.
Then SO extracts the best nD descriptor, with response
P , from the union of all the previously selected subspaces
SnD ∪ S(n-1)D ∪ · · · ∪ S1D. Candès and Romberg [51] have
shown that to identify the best n-dimensional descriptor
with “overwhelming probability” the size of the response
— in our case the number of materials observations P
— needs to satisfy the relationship #P ≥ k ·n · log(#Φ),
where k is a constant (around 1 ∼ 10 [31]) and #Φ is
the size of the features space [32]. Differently from the
typical CS scenario, here #P is fixed [31]; then, when
#Φ increases, the maximum n decreases in order to sat-
isfy the relationship [51]. In practice, features spaces of
growing sizes (Φ0,Φi, · · · ) and different n are tested until
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a model with required accuracy (ρRMS(∆nD) < threshold)
is obtained.

SISSO has advantages over MP [44] and OMP [45] . MP

searches a linear model reproducing P by adding dimen-
sionality to a descriptor while preserving selected features
and corresponding coefficients. OMP improves MP by re-
optimizing the coefficients every time a new component
is introduced, n → n+ 1, but still preserving previously
selected features. SISSO both reselects features and reop-
timizes coefficients at each dimensional increment. SISSO

reduces to OMP when each subspace in the union has unit
size (#SiD = 1,∀i). Still, it differs from iterative SIS [49]
which reduces to simple MP when all #SiD = 1.

Benchmark: Quantitative prediction. SISSO is
benchmarked by comparing the relative stability of octet
binary materials between rock-salt (RS) and zinc-blende
(ZB) configurations. The reference data is taken from
Ref. [7], including the target calculated ab initio enthalpy
difference, RS and ZB for 82 materials and the 23 pri-
mary features related to material compositions forming
Φ0 (see Supplemental Material at [URL will be inserted
by publisher] for a list of the primary features considered
in this study). All quantities are calculated with density-
functional theory in the local-density approximation. De-
tails are given in Refs. [7, 31]. Then, with a combination
of the previously defined operator set, Ĥ(m), and Eq. (1),
the features spaces Φ1 (small, #Φ1 = 556), Φ2 (large,
#Φ2∼105), and Φ3 (huge, #Φ3∼ 1011) are constructed.

Figure 2(a). The training errors (ρRMS) of different
SO: LASSO, LASSO+`0, OMP, and `0 are compared
while operating on the small features space Φ1. LASSO

suffers because of the correlations existing inside Φ1 (see
Figure S1 in the Supplemental Material at [URL will be
inserted by publisher] for a figure showing the correlation
between features); LASSO+`0 and OMP both surpass
LASSO; `0 is the reference: it gives the exact global
minimum solution for descriptors of any dimension.
However, even with `0 the error is still too large for
many thermodynamical predictions — ρRMS(∆nD) >∼ 40
meV/atom — and this is due to the too-small size of
Φ1.
Figure 2(b). For the larger Φ2, SIS combined with
LASSO+`0 as SO — SISSO(LASSO+`0) —, SISSO(`0),
and OMP are compared for generating a 3D descriptor:
SISSO(`0) is the only approach improving consistently
with subspace size # ∪ SiD and it always surpasses
OMP when each #SiD � 1; SISSO(LASSO+`0) does not
improve over OMP because of the failure of LASSO in
dealing with correlated features [42]. Obviously, the
larger the features space and the better the obtainable
model (at least equal). When exhaustive searches
become computationally impossible, SISSO can still find
the optimal solution if the subspace produced by SIS is
big enough.
Figure 2(c). The errors for 1- to 5-dimensional
descriptors are calculated by SISSO(`0) while operating

in the large Φ2 and huge Φ3 spaces. For n = 1, SIS

reduces to the best 1D descriptor, so no `0 is needed.
For n = 2, 3, 4, 5 the size of the SIS subspace is chosen
to follow the previously mentioned relationship [51]
applied to the subspace #S ∼ exp(#P /kn). With
#P = 82 and k = 3.125, the total size of all the selected
subspaces is # ∪ SiD = 5 · 105, 6 · 103, 7 · 102, 2 · 102

for n = 2, 3, 4, 5, respectively. For all these sizes, the
application of `0 regularization as SO involves 1010–1011

independent least-square-regression evaluations. This is
computationally feasible due to our (trivially) parallel
implementation of SISSO (for instance, for this applica-
tion, the production calculations were run on 64 cores).
The training errors for the descriptors identified from
Φ3 are systematically better than those coming from
Φ2, thanks to the higher complexity (see Supplemental
Material at [URL will be inserted by publisher] for the
functional forms of the descriptors). SISSO(`0) with
Φ2 is systematically better than the previous work by
Ghiringhelli et al. [7, 31], due to the allowed larger
features spaces. Note that when SISSO(`0) is applied to
the same features space as in Ref. [7], it also finds the
same descriptor: SISSO combined with the features space
of Ref. 7 has the same results of the yellow line of Figure
2(c). Performance is also compared with the commercial
software Eureqa [40] by using the same operator set and
primary features (Φ0), and 1012 evaluated functions,
a number comparable to #Φ3. SISSO(`0) in Φ3 with
n ≥ 2 and SISSO(`0) in Φ2 with n ≥ 3 have both lower
training error than Eureqa.

Figure 3(a). Training errors were illustrated in Fig-
ure 2(a-c), in order to directly compare over the same
dataset, the ability of different approaches to find op-
timal or close-to-optimal solutions of the CS problem.
With practical applications in mind, it is imperative to
determine the performance of the obtained model on data
that are not used for the training. In statistical learn-
ing [52, 53], this is performed via cross validation (CV),
a class of techniques that, by splitting the dataset into
a training and a test set in various ways, aims at de-
tecting “underfitting” and “overfitting”, i.e., when the
complexity of the fitted model is too small or too large,
respectively. In CS, dedicated CV techniques have been
proposed [54, 55]. Specifically, in a CS-based iterative
technique like SISSO, the only source of overfitting can
come from a too large dimensionality of the descriptor
(note that there is only one fitting coefficient per dimen-
sion, i.e., features recursively built via Eq. 1 do not
contain fitting parameters). For this benchmark appli-
cation, we applied the CS-CV scheme proposed in Ref.
[54] with leave-10%-out (LTO) CV (the dataset is split
in 40 training set containing 90% randomly selected data
points and a test set with the remaining 10%) and leave-
one-out (LOO) CV (one data points constitutes the test
set, and the procedure is iterated #P times). The model
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FIG. 3. Benchmark of algorithms. (a) Cross validation: LTOCV and LOOCV results for the features space Φ3 with OMP
and SISSO(`0). (b) Cross validation: Box plots of the absolute errors for the SISSO(`0)-LTOCV results with features space Φ3.
The upper and lower limits of the rectangles mark the 75% and 25% percentiles of the distribution, the internal horizontal line
indicates the median (50% percentile), and the upper and lower limits of the “error bars” depict the 99% and 1% percentiles.
The crosses represent the maximum absolute errors.

is trained on the training set (the whole SISSO procedure,
i.e., including the selection of the descriptor) and the er-
ror is measured on the test set. In such framework, the
CV error decreases with the number of iterations — the
dimensionality — until the approximate descriptor will
try to fit the data (containing possible errors) starting
from primary features having intrinsic limitations, thus
causing a subsequent increase in the CV error. The it-
eration at which the CV error starts increasing identifies
the maximum dimensionality of that particular model.
This is determined by the features space — in turns de-
termined by set of primary features, operators set, and
number of iterations of the features space construction —
and the training set. CS-CV is performed for Φ3 with the
subspace sizes reported in the description of Figure 2(c),
and for subspace of unit size (for which SISSO becomes
OMP). It is found that the dimensionality minimizing
the error is two for both the CV schemes of SISSO(`0).
In order to achieve a smaller prediction error, one would
then need to add new primary features, possibly substi-
tuting features that are never selected in a descriptor,
or increase the complexity of the features space, or both.
OMP finds the same dimensionality of the problem (2∼3),
has a lower computational cost but a cost of worse per-
formance in terms of prediction error.
Figure 3(b) depicts the box plots for the distribution
of errors as function of the dimensionality for SISSO(`0)-
LTOCV results with features space Φ3 (RMSE shown in
(a)). The 1% and 99% (extrema of the “error bar”), the
25% and 75% (lower and upper limits of the rectangle)
and the median (intermediate horizontal line) percentiles
are marked. The maximum absolute errors are also in-
dicated by crosses. The worsening of the RMSE beyond
2D is mainly determined by an increase in the largest
errors (the 99%-percentile), while most of the errors re-
main small (median/lower percentiles ∼ constant).

LOOCV is also used to inspected how often the same
descriptor is selected. The test operates in #Φ3 with
SISSO(`0). The LOOCV descriptor agrees with the one
found over all data 79, 73, 58 times out of 82 iterations.
It is remarkable, as the size of Φ3 is of the order 1011

features and there are only 82 data points. This means
that the 1D, 2D, 3D descriptor is selected from 1011, 1022,
1032 combinations, respectively. We note that descriptors
that are selected using the reduced training data set need
be correlated with the full data-set descriptors, implying
the existence of a “hidden” correlation between the func-
tional forms. Hence, selecting different descriptors does
not imply over-fitting (this is independently determined
via CS-CV), but choosing different existing approximate
functional relationship among the primary features.
Application: classification models. The SISSO

framework can be readily adapted to predict categori-
cal properties (as opposed to continuous properties like
an energy difference), i.e., it can be applied for classifi-
cation. In the space of descriptors, each category’s do-
main is approximated as the region of space (area, in
2D) within the convex hull of the corresponding training
data. SISSO finds the low-dimensional descriptor yielding
the minimum overlap (or maximum separation) between
convex regions. Formally, given a property with M cat-
egories, the norm for classification is defined as:

ĉ ≡ arg min
c

M−1∑
i=1

M∑
j=i+1

Oij + λ‖c‖0

 , (2)

where Oij is the number of data in the overlap-region
between the i− and j−domain, c is a sparse vector (0/1
elements) so that a feature k is selected(deselected) when
ck = 1(0), and λ is a parameter controlling the number
of nonzero elements in c. Of all the possible solutions
of Eq. (2) having the same dimension and overlap, we
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FIG. 4. SISSO for classification. (a) An almost perfect classification (99.0%) of metal/nonmetal for 299 materials. Sym-
bols: χ Pauling electronegativity, IE ionization energy, x atomic composition,

∑
Vatom/Vcell packing factor. Red circles, blue

squares, and open blue squares represent metals, non-metals, and the three erroneously characterized non-metals, respectively.
(c) Reproduction of pressure induced insulator→metals transitions (red arrows), of materials that remain insulators upon
compression (blue arrows), and computational predictions at step of 1GPa (green bars).

chose the one with minimum n-dimensional overlap vol-
ume [56]:

Ω ≡ 2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

Ωij

min(Ωi,Ωj)
, (3)

where Ωi, Ωj , and Ωij are the n-dimensional vol-
umes of the i−, j−, and overlap ij−domains. Fi-
nally, the SIS correlation “property↔feature” is defined

as
(∑M−1

i=1

∑M
j=i+1Oij + 1

)−1

: high correlation ⇔ low

overlap.
SISSO for classification is tested on a simple
metal/nonmetal classification of binary systems. The
training systems are far from creating an exhaustive list
and, as such, the test is strictly meant for benchmarking
the validity and implementation of Equations (2-3). All
essential atomic and structural parameters are included
as primary features in Φ0. They originate from the
WebElements [57] (atomic) and SpringerMaterials [58]
(structural) databases (see Supplemental Material at
[URL will be inserted by publisher] for a list of the
features considered in this study). Amongst them are
the Pauling electronegativity χ, ionization energy IE,
covalent radius rcov, electron affinity, valence (number
of valence electrons for A and (8-valence) for B), coor-
dination number, interatomic distance between A and
B in crystal, atomic composition xA, and a “packing
parameter”, here the normalized ratio between the vol-
ume of spherical atoms and the unit cell:

∑
Vatom/Vcell

with Vatom = 4πr3cov/3. The operator set Ĥ(m) and

Eq. (1) are then used to generate Φ3 (∼ 108 elements).
Note that SISSO finds its optimal descriptor based on
combinations of the input physical quantities (features):
non-optimal outcomes indicate that the target property
depends on features not yet-considered in Φ0. As such,
to avoid “garbage in, garbage out”, SISSO requires
physical intuition in the choice of features to add: con-
veniently, important and non-important features will be
automatically promoted or neglected. Here, since metal-
licity also depends on “interstitial charge”, the inclusion
of a packing parameter related to superpositions of
orbitals is advantageous. Given a set of features, SISSO

finds their best combination leading to the optimum
descriptor. If the packing parameter were removed from
the primary list, SISSO would autonomously select the
combination of features trying to replicate as much as
possible the lost descriptive power, in this case the AB
atomic distances [59]. The experimental binary data set,
extracted from the SpringerMaterials database [58] and
used for training the SISSO model, contains AxB1−x

materials having: i. every possible A species; ii. B
as p−block element (plus H and with the condition
A 6= B, i.e., elemental solids, such as carbon diamond,
are not tackled); iii. non-layered structure and without
dimers (the coordination polyhedron of A comprises
only B atoms, and vice versa); iv. good experimental
characterization and without large distortions (we do not
have any distortion feature). A total 299 binaries in 15
prototypes (NaCl, CsCl, ZnS, CaF2, Cr3Si, SiC, TiO2,
ZnO, FeAs, NiAs, Al2O3, La2O3, Th3P4, ReO3, ThH2)
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are then used (see Supplemental Material at [URL
will be inserted by publisher] for a list of the training
materials). Details on the feature-space construction
and model identification are given in Appendix. Out of
Φ3, SISSO(`0) identifies a 2-dimensional descriptor with
a training accuracy of ∼ 99.0%. The convex domains, in-
dicating metallic and non-metallic materials, are shown
in Figure 4. The figure also includes a line calculated
with a support-vector machine [60], to help visualizing
the separation between convex domains. These plots are
called material-properties maps (or charts [7, 61–64])
and SISSO has been specifically designed to identify
low-dimensional regions, possibly non overlapping.

Figure 4(a) shows the three incorrectly classified sys-
tems (blue empty squares). YP (NaCl prototype) might
have slightly erroneous position in the figure: the cova-
lent radius rcov(Y) (controlling the packing parameter)
suffers of large intrinsic errors (see Figure 2 of Ref. [65])
and therefore the compound position might be misrepre-
sented. La3Te4 and Th3As4 (Th3P4 prototype) are dif-
ferent. In this case, SISSO indicates that the primary
feature are not enough or that the compounds have been
experimentally misclassified (due to defects or impuri-
ties [66–68]). Inspection of the found descriptor suggests
a justification of the involved primary features. The x-
projection — x-axis in Figure 4(a) — indicates that the
higher the packing factor

∑
Vatom/Vcell, i.e., the higher

the interstitial charge, the higher the propensity of a ma-
terial to be a metal. This is not surprising. The merit
of the descriptor found by SISSO is to i) provide a quan-
titative account of the dependence of metallicity on the
packing factor, allowing for predictions (see below) and
ii) reveal the functional form packing factor → metallic-
ity: It is not trivial that the descriptor is linear with the
inverse packing factor. Metallicity also correlates with
the electronegativity of the A species, often the main
electron donor, by competing against the B species, a
p-element trying to complete its covalent/ionic bonds by
filling the unoccupied orbitals and thus removing inter-
stitial charge. Thus it is not surprising that the material
with largest x-projection is LiF, a purely ionic compound
with closed electron-shells: the ratio amongst the two ex-
treme electronegativities, (Li has the lowest, F the high-
est), pushes the compound toward the rightmost corner
of the non-metals domain. On the other side, AuIn2 is the
compound furthest from the non-metals region: Au has
the highest χ amongst transition metals and In has one
of the smallest χ of the considered p-elements. Available
experimental band gaps were also extracted (see Supple-
mental Material at [URL will be inserted by publisher]
for a figure showing distribution of band gaps). The ro-
bustness of the descriptor is corroborated by leave-one-
out cross validation. In 97.6% of the times, LOOCV re-
produces the same functional solution obtained from the
whole data. In the few cases where the descriptor dif-

fers from the all-data one, the packing fraction always
remains; even more: the packing fraction is present in all
features selected by SIS at the first iteration.

Beyond the training: Prediction of metalization
by compression. Although pressure is neither included
in the features space nor in the training data, its effect
can be tested by reducing Vcell. Amongst the training
data, we have 3 systems experiencing pressure-induced
insulator→metal transition: HgTe, GaAs and CdTe.
HgTe, CdTe and GaAs go from insulating zinc blende
to metallic rock salt (or an orthorhombic oI4 phase
for GaAs) at ∼ 9, 4, and 28 GPa, respectively (see
red arrows). Geometrical parameters (cell volumes) at
normal and high pressure are taken from the experi-
mental databases and used to modify the x-coordinate
of the descriptor. Concurrently, we have also looked
for materials that do not become metallic with high-
pressure structural transitions (indicated by the blue
arrows). In this case our model again makes a correct
prediction. Figure 4(b) shows that the descriptor is
perfectly capable of reproducing the correct metallic
state. The idea can be extended to systems which have
not yet been fully characterized to predict potential
insulator→metal transitions. The subset of prototypes
which are reasonably close to the domain convex hull
and have a fully characterized ab initio elastic tensors
[69] are “computationally compressed” by having their
Vcell reduced following the first order linearized bulk
modulus relation: (Vcell(p)− Vcell(0))/Vcell(0) ∼ −p/BT ,
where p is the pressure and BT is the isothermal bulk
modulus extracted from the entries in the AFLOW.org
repository [69] (see SI for the entries data). The panel
shows a set of compounds for which the descriptor
predicts the transition to metallic. The green marks
are positioned at 1 GPa steps to allow an informed
guess of the pressure. Within this approximation,
some compounds are predicted to become metallic at
pressure between 5 and 15 GPa: AgBr, AgI, GaSb,
AlSb, EuSe, and CaTe. Pressure-induced structural
phase transitions are also not considered in such analysis
and thus, the insulator→metal transition pressure might
be overestimated facilitating experimental validations.

Beyond the training: Significance of the “dis-
tance” from the dividing line. Figure 5 depicts the
experimental band gap of the insulators vs. the scaled
distance from the dividing line, i.e., the dimensionless
ratio between the x-projection of its descriptor versus
the x-projection of the dividing line corresponding
to the y-projection of its descriptor value. With this
rescaling, the dividing line corresponds to the vertical
line x = 1 The trend of the data points reveals that
the descriptor found by SISSO — trained only on a
categorical property — includes a quantitative, albeit
approximate, account of how strongly an insulator is
far from being a metal, by locating materials with large
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FIG. 5. SISSO for classification. Correlation between the
band gap of the non-metals and the scaled coordinate from
the dividing line.

band gaps further from the line than small-gap materials.

General remarks on the descriptor→property re-
lationship identified by SISSO. As clear from the two
application cases presented here, the equations found by
SISSO are not necessarily unique and all components of
the descriptors may change at each added dimension.
This reflects the approximate nature of the equations
and the unavoidable relationships among features (one
or more primary features may be accurately described
by nonlinear functions of a subset of the remaining fea-
tures). We also note that the mathematical constraints
imposed in order to obtain solutions efficiently (linear
combination of nonlinear functions for the continuous-
property case and minimally overlapping convex hulls in
the classification case), are very flexible but not com-
plete. I.e., the found descriptor→property relationship
is intrinsically approximate.

CONCLUSIONS

We have presented an efficient approach for extract-
ing effective materials descriptors out of huge and pos-
sibly strongly correlated features spaces. This algo-
rithm, called SISSO (sure independence screening and
sparsifying operators) tackles huge spaces while retain-
ing the effectiveness of compressed sensing. Specifically,
SISSO is built to work also (but not limited to) when
only relatively small training sets are available. SISSO

autonomously finds the best descriptor from a combina-
tion of features (physical properties), and it is capable
of determining the ones not relevant to the problem, so
that the features space can be further optimized. SISSO

identifies the descriptor→ property relationship in terms
of an analytical equation. It does not need to be exact —

a simple, analytical descriptor → property function may
not even exist — but it is the most accurate expression
given the available features space. If an exact, analytic
expression does indeed exist, SISSO is expected to find it
if included in the features space.

SISSO shows superior advantages with respect to other
established methods, e.g., OMP and LASSO as well as the
software Eureqa, especially when dealing with a corre-
lated features spaces. SISSO does not have the limitation
of LASSO, which suffers with large and highly correlated
features spaces. Currently, the only issue of SISSO is
the required computer memory needed to handle the fea-
tures space, and efforts are underway for more efficient
implementations. Our approach is benchmarked on the
quantitative modeling of enthalpy differences for a set of
zinc-blende and rock-salt prototypes and applied to the
metal/insulator classification of binaries. The robustness
of the classification is corroborated by the proper repro-
duced insulator↔metal transitions, which allows to pre-
dict a set of systems for further experimental analyses.
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APPENDIX

In this appendix, we present details on the
metal/insulator-classification application.
Primary features. Descriptors are to be identified by
SISSO from a systematically-constructed large/huge fea-
tures space in which components are generated by recur-
sively transforming a set of input primary features, Φ0,
via algebraic operations, Ĥ ≡ {I,+,−,×, /, exp, log, | −
|,√ ,−1 ,2 ,3 }. Primary features usually comprise of prop-

erties of isolated atoms (atomic features) and properties
of the materials (composition and geometry). For the test
on binaries’ metal/nonmetal classification, the following
is the full list of considered primary features:. (1) first
ionization energy, IEA (A-species) and IEB (B-species);
(2) electron affinity, EAA and EAB ; (3) atom covalent
radius, rcovA and rcovB; (4) Pauling electronegativity,
χA and χB ; (5) valence, vA (#valence electrons) and vB
(8−#valence electrons); (6) coordination number, CNA
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(#nearest neighbor B of A) and CNB ; (7) interatomic
distance between A and B in crystal, dAB ; (8) atomic
composition xA (or xB = 1−xA; and (9) the ratio of the
cell volume to the total atom volume in the unit cell of
the crystal, Vcell/

∑
Vatom (Vatom = 4πr3cov/3).

It is critical to limit the redundant and unnecessary
primary features in Φ0 to enhance computational perfor-
mance (the size of features space Φn increases very fast
with #Φ0) and to increase SIS success rate: the higher
#subspace/#Φ the higher the probability that SIS sub-
spaces contain the best models. Starting from an empty
Φ0, few primary features are added. SISSO is then ap-
plied to identify the best model, with Ĥ as operators
space. If an appropriate quality of the model is not
achieved (e.g., the number of correctly classified mate-
rials is lower than a desired threshold)), other primary
features are added in Φ0 to check for improvements. Pri-
mary features preserved in Φ0 may become redundant
or unnecessary on a later stage, e.g. when new ones are
added. To retain computationally manageable sizes of
the features space, tests are performed to remove those
primary features that either are never appearing in the
identified descriptor or that do not improve the perfor-
mance of the model (in this specific case, when the num-
ber of correctly classified materials does not increase).
Eventually, Φ0 will converge to the best possible small
set of primary features, along with the best models that
can be generated from it.

Data variety. The influence of data variety on the de-
scriptors is investigated and Table I shows how the metal-
insulator classification descriptors depend on the proto-
types of training materials.

The first calculation starts with a data set of all the
available materials (132) in NaCl-prototype. The ini-
tial features space, Φ0, contains the primary features of
all the 10 atomic parameters (Table I), and one struc-
tural parameter of interatomic distance dAB to capture
the geometrical differences between the training rock-salt
materials. SISSO is then applied: (1) Φ3 is constructed;
(2) the best descriptor is identified from Φ3 for classify-
ing the metals and insulators with 100% accuracy. The
simple descriptor is shown in Table I. It indicates that a
rock-salt compound tends to become non metal when the
large interatomic distance is decreased with the radius of
species A.

Next, the number of prototypes is increased to 5, for
a total of 217 materials. However, with the previous
Φ0 and calculation-settings, SISSO fails to identify a de-
scriptor having perfect classification (there are 7 points
in the overlap-region between the metal and non metal
domains). The non-optimal outcome indicates that the
classification depends on primary features not yet con-
sidered. First, Φ0 is slimmed by reducing its size to 7 —
EAA, EAB , vA, and vB are removed — without affecting
the quality of the predictions (8 points in the overlap-
region). Second, two new features CNA and CNB are

added (#Φ0 → 9) to describe the different coordination
environments of the prototypes. SISSO finds a 2D de-
scriptor from the constructed Φ3 with 100% classifica-
tion, shown in Table I. From the descriptor, the geomet-
rical differences between training materials are captured
by the two features of dAB and CNB : systems belonging
to such 5 prototypes with large dAB and small CNB tend
to be non metals.

The number of prototypes is increased to 10, for a
total of 260 materials. As shown in Table I, with the
previous #Φ0 = 9, the identified best descriptors is 2D
have 99.6% classification (only one point, YP-compound
in NaCl-prototype, is misclassified). Although the classi-
fication is excellent, the descriptor is complicate. Search-
ing for a simplification, new primary features of atomic
composition xA, xB , and Vcell/

∑
Vatom are introduced

to replace rcovA, rcovB, dAB , CNA, and CNB , leading to
#Φ0 → 7. With the same training materials, SISSO finds
a much simple descriptor having the same accuracy of
99.6% (YP-compound remains misclassified). This result
shows that the choice of proper primary features leads to
descriptors’ simplification.

Finally, all the available 15 prototypes of binary
materials (299) are considered and used with the 7
primary features in Φ0. With a constructed Φ3 of
size 108, SISSO identifies the best 2D descriptor with
a classification accuracy of 99.0% (three misclassified
compounds: YP-compound in NaCl-prototype, Th3As4
and La3Te4 in Th3P4-prototype). When new infor-
mation — compounds and/or prototypes — is added,
the functional form of the descriptors adapts. For
predictive models, the data set requires all necessary
information, e.g., by uniform sampling of the whole
chemical and configurational space of the property
of interest. The above 15 prototypes are not all the
available prototypes for binary materials, and the lay-
ered materials (e.g., MoS2, and those materials having
A− A or B − B dimers, e.g., FeS2, are not included) as
the presented model is strictly illustrative of the method.

Reproducibility. To enable reproducibility, online
tutorials where results can be interactively reproduced
(and extended) are presented within the framework of
the NOMAD Analytics-Toolkit (analytics-toolkit.nomad-
coe.eu).
For the RS/ZB benchmark application:
analytics-toolkit.nomad-coe.eu/tutorial-SIS.
For the metal-nonmetal classification:
analytics-toolkit.nomad-coe.eu/tutorial-metal-nonmetal.
The SISSO code, as used for the work presented here,
but ready for broader applications is open source and
can be found at github.com/rouyang2017/SISSO.
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TABLE I. Dependence of the metal-insulator classification descriptors on the prototypes of training binary materials.

prototypes #materials primary features descriptor class.

NaCl 132 IEA, IEB , χA, χB ,
rcovA, rcovB, EAA,
EAB , vA, vB , dAB

d1 := IEAIEB(dAB−rcovA)
exp(χA)

√
rcovB

100%

NaCl, CsCl, ZnS, CaF2, Cr3Si 217 IEA, IEB , χA, χB ,
rcovA, rcovB, dAB ,
CNA, CNB

d1 :=
IEBd

2
AB

χAr
2
covA

√
CNB

, d2 :=

IE2
ArcovB log (IEA)|rcovA−rcovB|

CNB

100%

NaCl, CsCl, ZnS, CaF2, Cr3Si, SiC, TiO2,
ZnO, FeAs, NiAs

260 IEA, IEB , χA, χB ,
rcovA, rcovB, dAB ,
CNA, CNB

d1 := dAB/rcovA−χA/χB
exp (CNB/IEB)

, d2 :=

r3covAdABIEB

|χB/χA−|CNB−CNA||

99.6%a

NaCl, CsCl, ZnS, CaF2, Cr3Si, SiC, TiO2,
ZnO, FeAs, NiAs

260 IEA, IEB , χA,
χB , xA, xB ,
Vcell/

∑
Vatom

d1 := Vcell∑
Vatom

√
χB

χA
, d2 :=

IEAIEB
exp (Vcell/

∑
Vatom)

99.6%a

NaCl, CsCl, ZnS, CaF2, Cr3Si, SiC, TiO2,
ZnO, FeAs, NiAs, Al2O3, La2O3, Th3P4,
ReO3, ThH2

299 IEA, IEB , χA,
χB , xA, xB ,
Vcell/

∑
Vatom

d1 := xB∑
Vatom/Vcell

IEB
√
χB

χA
, d2 :=

χ2
A

∣∣∣|1− 2xA| − x2A χB
χA

∣∣∣ 99.0%b

a One entry misclassified: YP-compound in NaCl-prototype.
b Three entry misclassified: YP-compound in NaCl-prototype; Th3As4- and La3Te4-compounds in Th3P4-prototype.
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[26] A. Bartók, S. De, C. Poelking, N. Bernstein, J. Ker-
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plexitätsreduktion in Multivariaten Datenstrukturen,
Universität Dortmund (1998).

[61] M. F. Ashby, A first report on deformation-mechanism
maps, Acta Mater. 20, 887–897 (1972).

[62] D. G. Pettifor, A chemical scale for crystal-structure



12

maps, Solid State Commun. 51, 31–34 (1984).
[63] D. G. Pettifor, The structures of binary compounds. I.

Phenomenological structure maps, J. Phys. C: Solid State
Phys. 19, 285–313 (1986).

[64] O. Isayev, D. Fourches, E. N. Muratov, C. Oses,
K. Rasch, A. Tropsha, and S. Curtarolo, Materials Car-
tography: Representing and Mining Materials Space Us-
ing Structural and Electronic Fingerprints, Chem. Mater.
27, 735–743 (2015).
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