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{101̄2}〈1̄011〉 twin is a prominent deformation mode in hexagonal close-packed materials. It is
experimentally observed that twin interfaces are not flat entities, but characterized by kink pairs
(KPs) of diverse heights. It has been shown that these kinks or facets delimit basal and prismatic
planes. The nature of the defects constituting the facets prescribes their properties, in terms of
stability and mobility, which relates to twin growth. In this work we examine the basic features of
such kinks in α-Ti from an atomistic modeling viewpoint. We analyze the response of the system
with KPs varying in width and height upon normal and shear stresses and under pure bending
conditions. We show that bending indeed modifies the interaction energy between kinks, which
raises further questions about the nature of the defects. We calculate the nucleation and migration
energy barrier for the twin depending on the applied shear stress, resulting in small values, which
implies that small thermal energy suffices to activate twin growth. We observe a crossover in the
stable height of the KP depending on the applied stress and its width: the wider the KP the
higher the most stable. We have developed a twin thickening model that accounts for the thermal
KP nucleation and the propagation of the kinks. We show how the model compares satisfactorily
with molecular dynamics (MD) simulations. Finally, we have developed a kinetic Monte Carlo
methodology to study twin growth, with much less computational burden than MD, that is able to
explore the growth rate under a broader set of external conditions.
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I. INTRODUCTION

Twinning is a prominent deformation mechanism in
metals with hexagonal closed-packed (hcp) crystal sym-
metry. It provides an alternate deformation path to ac-
commodate plasticity along the c-axis. As opposed to
slip on either pyramidal I or II systems, twinning induces
a diffusionless transformation leading to the generation
of reoriented volumes within the host crystal. In conse-
quence, the effects of twinning on plastic deformation are
more diverse and complex than those of slip alone. Over
the past five decades or so a vast body of literature has
been generated in order to infer the role of twinning in
both plastic deformation and microstructure evolution
as well as the process(es) leading to the activation of
twinning.1–7.

In this vein, focus has been placed on characterizing
the nature of interfacial defects (i.e. disconnections, par-
tial disclinations) mediating both nucleation and thick-
ening of twin domains. With regards to the former and
motivated by correlations shown between twin transmis-
sion events across grain boundaries and grain boundary
character, a series of atomistic simulations have revealed
the process by which a twin embryo can be formed at
a grain boundary8,9. Further, using continuum based
simulations of the plastic relaxation process in the neigh-
borhood of twin domains, observations of the sequential
twinning process across twin boundaries could be ratio-
nalized.

With regards to twin thickening, seminal contributions
have introduced a means to describe the nature of interfa-

cial defect mediating twin growth and diffusionless trans-
formations in general. Using dichromatic patterns, it was
shown that admissible defects at twin boundaries can be
described as disconnections3,4. These essentially corre-
sponds to line defects inducing a net translation in the
lattice with a translation vector having components par-
allel to the twinning shear direction (i.e. Burgers vector)
and to the normal to the twinning plane. Both transmis-
sion electron microscopy (TEM) observations and atom-
istic simulations have then adopted this framework to
describe the nature of interfacial defects as well as po-
tential reactions between interfacial defects and bulk dis-
locations present at twin interfaces. For example, it is
experimentally observed that among the several poten-
tial twin modes that could be active, {101̄2}〈1̄011〉 twin
is the most prominent in hcp materials such as Mg, Ti or
Zr2,10,11. Atomistic based quantifications of the activa-
tion barriers associated with the nucleation of interfacial
defects on different twinning planes and simulations of
the interaction between bulk dislocations and twin in-
terfaces have both provided for credible explanations of
the observed preference for {101̄2}〈1̄011〉 twinning12–14.
More recently, and on the basis of atomistic simula-
tions, it has been argued that other defect types could
be present at twin interfaces. Among others, a series of
recent studies adopting a two-dimensional viewpoint con-
strained to the plane defined by the twinning shear direc-
tion and normal to the twinning plane, have revealed the
existence of large facets (also called kinks) placing face
to face basal planes and prismatic planes across the twin
boundary (B/P or P/B interfaces)7,15. In parallel to this,
a series of publications have suggested that these kinks,
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FIG. 1: Sketch of the sample orientation, twin KP
(green) and applied stresses and rotations used in this

study.

or other elementary defects at twin interfaces, are best
described as dipoles of partial disclinations16,17. The ra-
tionale being that the reorientation of the lattice across
the {101̄2}〈1̄011〉 twin boundary leads to a net Frank vec-
tor of 3.4 degrees. In the form of partial dipoles, these
defects could induce both a net translation of the lattice
across the twin interface as well as the necessary Frank
vector. Trichromatic patterns were then introduced to
further substantiate these proposals12.

Despite these novel conceptual developments provid-
ing a complementary approach to describe interfacial de-
fects, the core of those defects and their intrinsic dynam-
ics are scarcely studied. Yet, these issues likely provide
a path towards rationalizing the well-established experi-
mental fact that twin thickening is remarkably faster and,
apparently, insensitive to temperature in comparison to
slip18–20. The present study aims at rationalizing these
observations.

The kinetics, path and temperature dependence for
twin growth should be explicitly related to the very na-
ture of the defects characterizing these kinks. While a
significant body of work has been dedicated to the static
analysis of interfacial defect characters, to the authors
knowledge limited work has focused on the dynamics of
interfacial defects. The present study relies on the use
of atomistic and kinetic Monte Carlo (KMC) simula-
tions to address three connected questions. First, it is
known that twin boundaries are not flat, and the shape
of twin boundaries makes it unlikely that the majority of
interfacial defects are emitted from grain boundaries. As
such, one expects twin thickening to be a two-step pro-
cess whereby twin kink pairs (KPs) first appear on the
twin boundary and then these newly generated interfacial
defects migrate. Using atomistic simulations and leverag-
ing the capabilities offered by the nudged-elastic band21
(NEB) method to quantify minimum energy pathways
(MEP), the activation barriers for KP nucleation and
propagation are quantified. Based on this two-step pro-
cess, a rate model for twin growth is developed. Second,
while dichromatic patterns can reveal plausible interfa-
cial defect types, the energetic cost associated with these

can only be obtained via atomistic simulations. The sec-
ond part of the study focuses on energetic considerations
with the intent of rationalizing the simultaneous presence
of interfacial defects of different character along the twin
interface. Among others, the effects of curvature on KPs
is also quantified. Finally, whilst anchoring the reasoning
in the realm of transition state theory, a first attempt is
made to elucidate the apparent lack of temperature sen-
sitivity associated with twinning.

II. METHODOLOGY

Molecular static (MS) and molecular dynamics (MD)
simulations have been performed with the LAMMPS
code22 to analyze the energetic properties of a
{101̄2}〈1̄011〉 twin depending on its atomic structure and
the boundary conditions. We have also studied the MEP
for the nucleation and the growth of the twin KP. A fully
periodic cell was built with directions 〈101̄0〉, 〈011̄1〉,
and 〈01̄11〉 for the lower grain and 〈1̄010〉, 〈011̄1〉, and
〈011̄1̄〉 for the upper grain, which generates two {101̄2}
twin boundaries in the system. The dimensions of this
periodic cell were 0.29 × 34.8 × 45.8 nm3. Although
constrained to a quasi-two dimensional configuration, we
shall see how much can be learned on the system dynam-
ics. We use the first of the three Embedded AtomMethod
(EAM) potentials developed by Mendelev et al.23 for α-
Ti. Minimizations were performed using a conjugate gra-
dient algorithm with a tolerance in forces of 10−4 eV/Å.
To generate the KP (green area in Fig. 1), a region of
the sample close to the twin and in the upper grain was
removed and filled with atoms with the orientation of the
lower grain, such that the number of atoms remains con-
stant. Both the height in z and the length in y of the KP
were varied to compute formation energies.

Two distinct sets of boundary conditions were used.
First, normal stresses were applied on the y and z direc-
tions (σyy and σzz), and shear in yz (σyz), i.e., simula-
tions were stress-controlled. Second, to assess the role
of curvature fields on the nucleation and propagation of
KPs, the sample was subjected to pure bending in the
yz plane (ωxz). In this case, the periodic boundary con-
ditions on y and z were dropped. A region of atoms
close to the sample edges normal to the y direction was
selected and displaced following uy = a+bz2. The dis-
placed atoms were allowed to relax in the x and z direc-
tions but not in the y. Figure 2 shows the atomic struc-
ture of a KP of 6.9 nm in width relaxed at zero pressure.
Upon relaxation of the structure the angle between basal
planes in upper and lower grains results in 86.2o, close to
the theoretical 85.22o.
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FIG. 2: Atomistic detail of the structure of the {101̄2}
twin. Atoms are colored according to their potential

energy. The angle between basal planes results in 86.2o.
The KP is bounded by basal/prismatic (B/P) interfaces.

The distance between B/P interfaces is 6.9 nm.

III. RESULTS AND DISCUSSION

A. Kink pair formation and propagation process

We first focus on the generation of KPs from a perfect
twin interface. In this section the KP consists of a dipole
of b2/2 disconnections separated by a distance w, which
is varied. The excess energy of formation, ∆Ef (w), of
the system containing these dipoles, in comparison with
a domain of equal size containing a perfectly flat twin
boundary, can be expressed as:

∆Ef0 (w) = 2Ecoreb2/2 + Eintb2/2(w), (1)

where Ecoreb2/2 and Eintb2/2 denote the core energy of an indi-
vidual b2/2 disconnection and the elastic interaction en-
ergy between the disconnections, respectively.

Figure 3 presents the formation energy (∆E = EKP −
EFLAT , with EKP the energy of the system with the KP
and EFLAT the energy of the system with a flat twin
boundary) at zero pressure and applying stresses σyy=-1
GPa or σzz=-1 GPa (compressive stresses). We observe
that the formation energy is fairly independent of these
boundary conditions.

Following MacKain et al.24 we could estimate the in-
teraction energy assuming the presence of a dislocation
dipole, which neglecting image interactions is given by

∆Eintb2/2(w) =
1

4π
κb2 ln

(
w

rc

)
, (2)

and therefore

∆Ef0 (w) =
1

4π
κb2 ln

(
w

rc

)
+ 2Ecoreb2/2, (3)

where κ is a constant that depends on the elastic con-
stants and the disconnection orientation24,25, b is the dis-
location Burgers vector, equal to b2/2 in this case with
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FIG. 3: Formation energy of the twin KPs depending
on the distance between the B/P kinks and the applied

normal stress.

b2/2 = 0.05624 nm, w is the distance between kinks and
rc is a minimum critical radius. Fitting this relation to
the atomistic data at zero stress we estimate κ = 154.6
GPa, rc = 0.23 nm and a core energy per unit length of
Ecoreb2/2 = 0.188 eV/nm.

Figure 4 shows the results when σyz shear stress is ap-
plied. The figure displays the formation energy of the KP
depending on the separation between B/P interfaces. In
this case, a significant variation in the energy is observed
as a function of the applied stress. A maximum in some
of the formation energy curves is observed, beyond which
the KP will tend to grow to lower the system energy.
When stress is applied, an extra energy term needs to be
considered in the expression of the formation energy as
the work done by the external forces in the nucleation
process, such that

∆Ef (w, σyz) =
1

4π
κb2 ln

(
w

rc

)
+ 2Ecoreb2/2 − σyzbw. (4)

The values obtained through this elastic approach are
also presented in Fig. 4 as solid black lines. The slight dis-
crepancies, mostly at high stresses, are due to two main
reasons: (i) the image effects appearing in the atomistic
simulations and not considered in the elastic solution and
(ii) the fact that the nature of the defect does not have
purely dislocation character (as we shall see later), which
might add extra terms in the work done to nucleate the
KP.

Figure 5(a) shows the MEP for a KP of 1.39 nm in
width to nucleate from a flat twin boundary depending
on the applied shear stress. The first saddle point is the
Peierls barrier for nucleation, that clearly depends on
stress. The second barrier is the Peierls energy barrier
for the kink to glide. For stresses lower than σyz=-1.2
GPa the barrier from the nucleated configuration back
to the flat twin interface is lower than the barrier for the
twin to grow, which indicates that those configurations
are unstable and the KP will tend to shrink. On the
other hand, for σyz=-1.2 GPa we observe the opposite
trend, which will lead to the preferential growth of the
KP. Figure 5(b) shows the Peierls barriers for nucleation
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FIG. 4: Formation energy of the twin KP depending on
the distance between the B/P kinks and the applied

shear stress.

as a function of applied stress. We have expanded the
activation enthalpy in terms of an activation potential
energy and a linear relation on the stress, ∆H = ∆E −
σyzva. The data given by the NEB calculations show a
quadratic relation of ∆H with stress. If we assume that
va does not depend on stress we have

∂∆H

∂σyz
=
∂∆E

∂σyz
− va = βσyz − va. (5)

From the fit we obtain a value of β = 4.42 ·10−5 nm3

nmMPa

and an activation volume va = 0.051nm3

nm , values given
per unit length of the KP in the x direction (see Fig. 1).
A linear approximation neglecting the quadratic term
(β ≈ 0) is also shown in the figure. Note that the NEB
calculations were performed at constant volume, once the
desired stress was reached. We have not observed any
noticeable deviation in the target stresses during these
simulations.

B. Nature and co-existence of interfacial defects

The second point of interest concerns the defect con-
figurations that could co-exist at twin interfaces. To this
end, we have studied the effect of the KP height in the
formation energy. Figure 6(a) shows the formation en-
ergy, where we observe that for low KP widths the higher
the KP the larger the formation energy, and therefore,
less energetically favorable. More interestingly, we note
a crossover in the curves for different heights. The con-
figuration with a KP of height 0.7 nm becomes more
favorable than the 0.35 nm at around a width of ∼5.5
nm. The configuration with a KP of 1.05 nm becomes
more stable than the 0.35 nm KP at around ∼6 nm. We
have also tested a height of 1.39 nm with a KP width of
8.3 nm. It is found that the 1.39 nm high KP is more
stable than the original 0.35 nm KP but less favorable
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FIG. 5: a) Potential energy barrier (Peierls potential)
for the nucleation and growth of a twin KP depending
on the applied shear stress. b) Nucleation barrier with
respect to applied stress in absolute value. NEB data
fitted with a quadratic relation, ∆H = ∆E − σyzva,

where ∆E is the potential energy barrier that depends
on stress and va is an activation volume. The dashed

line is a linear fit to the data valid at low stress.

than 0.7 nm and 1.05 nm. Furthermore, we also note
that there is a crossover between the 0.7 nm height and
the 1.05 nm. The latter becomes more stable at around
∼7.5 nm. These results imply that an optimal height-
to-width ratio exists. As a general trend, the larger the
width the higher the most stable KP. This relationship
between height and width might be a plausible explana-
tion to the experimental results in which different heights
larger than the minimal 0.35 nm are observed. Also note
that this relationship will depend on the applied stress.
Our results indicate that the larger the stress the shorter
the width required for the crossover to take place. Fig-
ures 6(b) and (c) show the atomic configuration of a KP
of height 1.05 nm and width of 4.86 nm. The atoms
are colored according to their potential energy. We ob-
serve that one of the B/P interfaces is flat (on the left),
while the other shows a step, i.e., a twin boundary (TB)
between B/P kinks (on the right, hereafter rugged con-
figuration).

To gain further understanding on the structure of the
B/P kink, we have perturbed the rugged configuration
at σyz=-1.2 GPa with the goal of taking the system to
a nearby minimum. We have selected a region around
the rugged configuration and randomly displaced the
enclosed atoms sampling uniformly from [−0.5 : 0.5] Å.
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Once the atomic positions are perturbed, the system is
minimized again with the same settings as originally. A
total of one hundred perturbations were tested and three
main final configurations were found: the initial rugged
configuration, a flat configuration and a two-step configu-
ration, as shown in the insets of Fig. 7. Once we have the
new structures, we have analyzed the MEP through NEB
calculations. Figure 7 shows the results, with Fig. 7a pre-
senting the MEP to go from the rugged configuration to
the flat configuration and the Fig. 7b depicts the path be-
tween the rugged and two-step configurations. First, we
readily see (Fig. 7a) that the energy of the rugged config-
uration and the flat interface is virtually the same (less
than 1.7 meV/nm). Second, the energy barrier between
both configurations is extremely small (0.075 eV/nm) and
therefore, both configurations will coexist at equal prob-
abilities at finite temperature. The flat kink is usually re-
lated to the existence of a disclination dipole, while the
stepped configuration is usually associated to the pres-
ence of a disconnection. These calculations show that
both configurations are comparable in energy. On the
other hand, the transition from the rugged configuration
to the two-step configuration shows a slight reduction in
energy of about 0.26 eV/nm, with a somehow larger acti-
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FIG. 7: Minimum energy path at a σyz=-1.2 GPa from
the rugged configuration originally found to a) flat B/P
interface and b) two-step interface. The rectangle in the
initial atomic configuration shows the region where the
atoms were randomly displaced. Atoms are colored

according to their potential energy with the same scale
as in Fig. 6.

vation energy, still of only 0.17 eV/nm. This last two-step
configuration (disconnection-like) is therefore the most
stable among the ones that we have found.

To assess the disclination content of interfacial defects,
we have also analyzed the effect of pure bending on the
formation energy of the KP. Figure 8 shows the results for
different degrees of rotation, as imposed by the displace-
ments uy = a+b ∗ z2 and the atomic relaxations in the
x and z directions. Upon relaxation the imposed normal
strain εyy ≈-0.024 in the compressive side and εyy ≈0.029
in the tensile region. We observe that these rotations
modify the formation energy of the kink, i.e., they do
work when the KPs are nucleated, as in the case of shear
stress described in Eq. 4. However, contrary to the shear
stress, rotations do not lead to any apparent maximum
or change in sign of the formation energy by themselves,
i.e., there will not be spontaneous growth of the KP un-
der pure bending boundary conditions. The fact that
indeed the formation energy changes upon pure bending
implies that defects at the B/P interfaces are complex
in nature probably beyond simple disconnections since
dislocations should not interact with curvature.

As described above, the traditional description of a
kink involves a shear and a shuffle, which have been
mapped to the presence of a disconnection, character-
ized by a Burgers vector and a step height. It has been
recently shown that the interaction field between kinks
follows a logarithmic law as the one derived from dislo-
cation theory24. Our results shown in Figs. 3 and 4 also
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follow a logarithmic relation, which seems to imply the
presence of a dislocation dipole. However, the interac-
tion energy also follows a logarithmic-like function when
curvature is applied, with such energy depending on the
curvature value (see Fig. 8). This might indicate that
disconnections might not suffice to model kinks. Discli-
nation dipoles should respond to applied curvature, but
the given relation to the curvature is mainly unknown26.

C. Consequences of kink pair nucleation events on
strain rate sensitivity

1. Twin thickening rate model

{101̄2}〈1̄011〉 twins thicken by the nucleation of a KP
and the propagation of the kinks upon the action of an
external stress (see Fig.9). This model assumes that
the probability of nucleating KPs with the minimum
height h is much larger than any larger height. This
process is analogue to the thermally activated glide of
dislocations27,28 and can be described as follows:

The total time for the twin to thicken by h is the time
for the KP to nucleate plus the time for the kinks to
propagate half their mean free path, t = tN + tP . In
term of the rates, this total time can be written as

t =
1

ΓN
+

1

ΓP
=

ΓN + ΓP
ΓNΓP

, (6)

where ΓN is the number of nucleations per unit time and
ΓP is the rate for the kink to propagate until it annihi-
lates with an opposite kink. Hence, the velocity for the
twin to grow is

v =
h

t
= h

ΓNΓP
ΓN + ΓP

. (7)

In the framework of transition state theory (TST), the
nucleation rate can be written as

ΓN =
ν0X(σ, T )

w∗(σ)
exp

(
−∆G(σ, T )

kBT

)
, (8)

where ν0 is an attempt frequency, X(σ, T ) is the kink
mean free path, w∗(σ) is the critical width of the KP
and ∆G is the activation Gibbs free energy. The critical
width of the KP is the maximum in the formation energy
(Fig. 4) and can be obtained differentiating Eq. 4 with
respect to w and setting the derivative to zero

∂∆Ef (w, σ)

∂w
=

1

4π
κb2

1

w
− σb = 0, (9)

thus the critical width is

w∗ =
1

4π

κb

σ
. (10)

Substituting in Eq. 8 results

ΓN =
4πν0σX(σ, T )

κb
exp

(
−∆G(σ, T )

kBT

)
. (11)

The dependence of the kink mean free path with the
applied stress and temperature is less clear and will be
fitted from MD simulations. There is in the literature
a square root dependence of X with stress,29 although
no information could be found about the dependence on
temperature. We will fit a function of the type X(σ, T ) ∝
f(σ)g(T ) to the MD data to obtain an empirical relation
valid for the system at hand.

As it was shown in Fig. 5, the enthalpy barriers for the
kinks to propagate are much smaller than the nucleation
barrier. Thus, the kink propagation can be assumed to
happen in a phonon drag regime. In this regime the
propagation rate can be written as

ΓP =
2vk

X(σ, T ) + w∗
≈ 2vk
X(σ, T )

=
2bσ

X(σ, T )Bk
, (12)

where we assume X(σ) � w∗. vk is the kink velocity,
which in the viscous regime can be written as vk = bσ

Bk
,

where Bk is a drag coefficient. Substituting the rates in
the expression for the growth velocity we obtain

v = h

8πν0σ
κBk

exp
(
−∆G(σ,T )

kBT

)
2b

X(σ,T )Bk
+ 4πν0X(σ,T )

κb exp
(
−∆G(σ,T )

kBT

) , (13)
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which is a general expression for the thickening velocity
of the twin. The shear strain rate can then be obtained

γ̇ = arctan

(
b

h

)
v

h
≈ vb

h2
=

8πbν0σ

hκBk

exp
(
−∆G(σ,T )

kBT

)
2b

X(σ,T )Bk
+ 4πν0X(σ,T )

κb exp
(
−∆G(σ,T )

kBT

) .
(14)

It is worth showing the limit at which the propagation
rate is much larger than the nucleation rate (ΓP � ΓN ).
In this limit, the total time for the twin to grow would
be just the nucleation time, t = tN = 1

ΓN
. Therefore, the

velocity of the twin can be written as

v = h
4πν0σX(σ, T )

κb
exp

(
−∆G(σ, T )

kBT

)
, (15)

and then the strain rate

γ̇ =
4πν0σX(σ, T )

κh
exp

(
−∆G(σ, T )

kBT

)
, (16)

which is similar to the expression developed by Luque et
al. in Ref. 30. Also important to highlight is the fact
that this expression is valid in three dimensions, pro-
vided that geometric considerations are taken into ac-
count along with the orientation dependence of the drag
coefficient.

2. Molecular dynamics simulations

As mentioned above, MD simulations have been per-
formed to test the twin thickening model developed above
and to find specific parameters for the {101̄2}〈1̄011〉 twin
in α-Ti. Hence, we have set up MD simulations in the
NPT ensemble with different levels of σyz and tempera-
ture and computed the shear strain rate, which will be,
in general, larger than in traditional experimental tests
due to the MD timescale limitation31.

Assuming a Kocks relation for the activation Gibbs
free energy32 ∆G(σ, T ) = ∆F

[
1−

(
σyz

σ0
yz

)p]q
and further

considering p = q = 1, the functional form we have fitted
from MD results was the following

γ̇ = K
σ

(1+α)
yz

T δ
exp

−∆F
[
1−

(
σyz

σ0
yz

)]
kBT

 , (17)

where α and δ are fitting parameters coming from the
functional form of X(σ, T ), K is a constant depending
just on material parameters, ∆F is the Helmholtz free
energy, and σ0

yz is a critical resolved shear stress that
nullifies the activation barrier. The results are shown
in Fig. 10, where the dependence of the shear strain rate

with shear stress (Fig.10(a)) and temperature (Fig.10(b))
are shown. Dots are MD results while lines are best fits
from Eq. 17 to the MD data. We observe that in both
cases the agreement is remarkable, validating the theoret-
ical model developed in the previous section. This means
that the ∆F can be assumed constant with respect to the
applied stress, which, in turn, implies that the activation
volume is constant. Hence, we can write

−∂∆G

∂σyz
=

∆F

σ0
yz

= −∂∆E

∂σyz
+ v∗a + T

∂∆S

∂σyz
, (18)

and therefore, assuming that the functional form of ∆H
is quadratic in σyz as given by the NEB calculations
above

∂∆E

∂σyz
= T

∂∆S

∂σyz
= β∗σyz, (19)

which implies that the functional form of the entropy
can be written as ∆S = 1

T

[
β∗

2 σ
2
yz + C1

]
, where C1 is

an integration constant that equals zero. Moreover, to
first order, we can assume that the β obtained from the
MS simulations is a good approximation to β∗ (β∗ ≈ β).
We can also conclude that ∆G(σ, T ) does not depend on
temperature, implying that TST holds, although not its
harmonic approximation (HTST). Figure 10(c) shows a
two-dimensional map with the rates as obtained with MD
that we shall compare with the KMC results in the fol-
lowing, while Fig. 11 is a three-dimensional plot showing
the prediction from Eq. 17 compared to MD data. The
values of the fit are given in Table I. We note that the
value for α is small, which indicates that the dependence
of the mean free path between kinks depends only weakly
on stress. On the other hand, we find a large value of δ
implying a strong dependence on temperature. The fact
that experimentally the temperature sensitivity seems to
be small18 is probably due to the fact that the effective
activation barrier is low and the exponential dependence
dominates, which is the case in the temperature range
explored in this work. Unfortunately, direct comparison
with experiments is not straightforward since they would
include the twin nucleation rate, which is not part of this
study. Also worth mentioning is the value of the activa-
tion barrier, ∆F = 0.886 eV/nm, which, although close,
is slightly larger than the value obtained using NEB at
zero stress (∆Eσyz=0 = 0.721 eV/nm). The same applies
for the activation volume, in the case of fitting values to
MD data we obtain v∗a = 0.077nm3

nm which compares to
va = 0.051nm3

nm given by the NEB simulations. We note
that the values obtained from MD are averages over a
different number of mechanisms involved in the thicken-
ing process as opposed to a single mechanism analyzed
in the static calculations of Sec. III A, which results in
the observed deviations.

Using the values for ∆F , v∗a and β∗ shown in Table I,
we can plot ∆G and ∆H with respect to the stress, pre-
sented in Fig. 12. The difference between the Gibbs free
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FIG. 10: Twin thickening rate depending on (a) shear
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thickening rate as given by MD simulations as a
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TABLE I: Fitted values of the parameters in Eq. 17 to
MD data.

K (1/ps·
MPa· nm) α δ

∆F
(eV/nm)

v∗a
(nm3/nm)

β∗ (nm3/nm·
MPa)

1.122·105 0.11 3.217 0.886 0.077 4.42 · 10−5

energy and the enthalpy is related to the entropic factor,
which is relatively small for the range of stresses shown in
the figure. This implies that the bias expected from us-
ing HTST will be moderate, mostly at stress lower than
300 MPa. We will take advantage of this fact for the de-
velopment of a KMC approach to study twin thickening
rates.

3. Object kinetic Monte Carlo model for twin growth

In order to quantify the respective and collective con-
tributions of each interfacial defect (i.e KP height) to the
kinetics of twin thickening, a KMC framework has been
developed. The KMC algorithm solves for the dynamic
evolution of a given system provided that the rates of ev-
ery possible event are known. In that case, the KMC will
result in the correct time evolution for the model used,
providing one realization for the master equation33–35.
We propose here a rather simple physical model to study
twin thickening in two dimensions, sketched in Fig. 13.
We first discretize the twin boundary in small segments
of length b2/2, inspired by, for example, discrete dislo-
cation dynamics algorithms36,37. Each segment has a
rate to move forward (positive z’s) or backward (negative
z’s) and only one segment moves per time step. These
rates are calculated according to HTST by the expression
Γ = ν0 exp

(
−∆E−σyzυa

kT

)
= ν0 exp

(
−∆H

kT

)
. The ∆H is

approximated through a pair interaction model by which
each segment interacts just with its first nearest neigh-
bors

∆H = ∆H
(+/−)
0 (σ) +

∑
n

gn(σ,∆z)∆z. (20)

∆H
(+/−)
0 (σ) is the enthalpy barrier for nucleation (or

Peierls barrier) of a minimum width KP from a flat in-
terface as given by NEB (see Fig. 5). The applied stress
modifies the energy landscape, altering both the barri-
ers for the segment to nucleate toward positive z′s and
negative z′s (see Fig. 13). The Peierls barrier upon mi-
gration forward (∆H+

0 (σ)) is taken as the one given by
NEB, while the one for the direction backwards has been
obtained relying on a linear approximation such that
∆H−0 (σ) = 2 ·∆H0(0)−∆H+

0 (σ), with ∆H0(0) = 0.721
eV/nm the enthalpy barrier at zero stress. These nu-
cleation barriers will be taken as reference, and will be
modified depending on the position of the first nearest
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FIG. 13: Discretization model used in the KMC
simulations. The twin segments are shown in read, each
of length b2/2. The rates for segment i to go forward
(Γ+) or backwards (Γ−) depend on the position of the
segment i and its first nearest neighbors, (i− 1 and
i+ 1). The hoping length of the segments in the z

direction is normalized to 2d{101̄2}.

neighbor segments to give the final enthalpy barrier for a
given configuration. ∆z is the distance between segments
in the z direction and gn(σ,∆z) are the pair interactions
that depend on the applied stress σ and ∆z. These pair
interactions have been fitted to reproduce the barriers
obtained with NEB along with the twin growth rate ob-
tained from MD. The values used in this study are shown
in Table II. The pre-exponential factor that better fits
the MD values is ν0 = 9.0 ·10−1 ps−1. The strain at each
timestep is calculated as εyz = b2/2 · 〈∆z〉/Lz and the
slope of the strain with respect to time is taken as the
strain rate.

TABLE II: ∆H+
0 (σ) and ∆H−0 (σ) in eV (for a kink

length of 0.295 nm) and the interaction parameters
gn(σ,∆z) in eV/2d{101̄2}. 2 · · · and −2 · · · stands for
the fact that the value is the same for ∆z ≥ 2 and

∆z ≤ −2, respectively. Shear stresses in MPa are given
in the first column.

σ ∆H+
0 (σ) ∆H−

0 (σ) g(σ, 1) g(σ, 2 · · · ) g(σ,−1) g(σ,−2 · · · )

100 0.204 0.222 −0.194 −0.110 0.177 0.101

150 0.197 0.229 −0.201 −0.113 0.172 0.098

200 0.195 0.231 −0.201 −0.114 0.172 0.097

500 0.176 0.250 −0.150 −0.119 0.154 0.087

The efficiency of this model allows us to explore dif-
ferent external conditions without much computational
burden. Following this methodology we have computed
the twin growth rate for stresses ranging from 100 MPa
to 500 MPa and temperatures from 100 K to 700 K. Fig-
ure 14(a) shows a map of the rates obtained, which are
indeed comparable to the ones obtained from MD simu-
lations (see Fig. 10(c)). We note that the rates are mono-
tonic with low and high rates at low and high temper-
atures and stresses, respectively. At high temperatures
and stresses the validity of HTST starts to be question-
able and thus the actual rates might differ from those
obtained with our KMC model. Nevertheless, the results
should provide an estimate of the orders of magnitude
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FIG. 14: a) Strain rate map as obtained with the KMC
model for different stress and temperature conditions.
b) Snapshots of the twin interfaces at σyz = 100 MPa
and 300 K (red) and 700 K (blue) to show the different

roughness depending on the temperature.

expected under a set of external conditions.
Finally, the use of the KMC method allows one to as-

sess the morphology of the interface between the twin
and parent domains as a function of temperature and
stress. Figure 14(b) shows an example at a shear stress
σyz = 100 MPa, where the interface elements are plot-
ted for 300 K and 700 K. We note that the interface is
rougher at 700 K with larger kinks corresponding to B/P
interfaces. Although admittedly limited, mostly due to
the lack of long-range interactions, the results from the
KMC approach follow the same trends as the MD data,
Figs. 10(c) and 14(a).

IV. CONCLUSIONS

In this work we have analyzed in detail the properties
of the B/P interfaces forming a kink pair (KP) of grow-
ing {101̄2}〈1̄011〉 twins in α-Ti. Using atomistic model-
ing, it was observed that the interaction energy between
kinks follows a logarithmic law and varies with applied
shear stress, but not with normal stress. The core en-
ergy of b2/2 disconnections was calculated and found to
be Ecoreb2/2 = 0.188 eV/nm. Pure bending seems to do work
when curvature is applied to the system, which lowers the
formation energy and raises questions about the nature
of the interface defects at the kinks. We found that the
stability of the KPs depends on their width and height
for a given shear stress: the further apart the kinks the
higher the most stable KP. We have developed a twin
thickening model based on thermally activated glide de-
scriptions that reduces to a previous model available in
the literature30 when the kink propagation rate is much
larger than the nucleation rate. We have tested the theo-
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retical expressions with results fromMD simulations with
satisfactory agreement. We note that transition state
theory (TST) holds in the studied stress range. How-
ever, its harmonic approximation deviates slightly from
the TST rates beyond intermediate stresses (& 200 MPa).
Finally, we have developed a kinetic Monte Carlo model
to study twin growth that allows us to analyze diverse
external conditions without much computational burden.
The theoretical results obtained in this work imply a high
mobility of the B/P interfaces and therefore a large twin
growth rate, which correlates qualitatively with experi-
mental observations.
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