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Zirconia (zirconium dioxide) and hafnia (hafnium dioxide) are binary oxides used in a range of
applications. Because zirconium and hafnium are chemically equivalent, they have three similar
polymorphs, and it is important to understand the properties and energetics of these polymorphs.
However, while density functional theory calculations can get the correct energetic ordering, the
energy differences between polymorphs depend very much on the specific density functional theory
approach, as do other quantities such as lattice constants and bulk modulus. We have used highly
accurate quantum Monte Carlo simulations to model the three zirconia and hafnia polymorphs.
We compare our results for structural parameters, bulk modulus, and cohesive energy with results
obtained from density functional theory calculations. We also discuss comparisons of our results
with existing experimental data, in particular for structural parameters where extrapolation to zero
temperature can be attempted. We hope our results of structural parameters as well as for cohesive
energy and bulk modulus can serve as benchmarks for density-functional theory based calculations
and as a guidance for future experiments.

I. INTRODUCTION

Zirconium dioxide (zirconia), ZrO2 is a simple oxide
with a range of interesting properties that makes it useful
for important current as well as potential future applica-
tions. Zirconia has high mechanical strength and stabil-
ity at elevated temperatures, high wear resistance, and
is chemically inert. While originally used in refractory
applications, it now also has application in wide range of
areas, ranging from medical devices to cutting tools and
solid electrolytes.1,2 Zirconia is also interesting – and im-
portant – for another reason. Zirconium alloys are used
as cladding in nuclear fuel rods in nuclear power stations.
During fuel burn-up with the fuel rods immersed in wa-
ter, the zirconium will oxidize because of contact with the
water, and hydrogen migrates into the zirconium metal
alloy. The oxide is mostly protective in that it prevents

water from being in direct contact with metallic zirco-
nium, and further oxidation depends on diffusion of oxy-
gen and hydrogen through the zirconia. However, the
zirconia tends to crack along grain boundaries, at which
oxidation continues unabated.3

Hafnium dioxide (hafnia), HfO2, is also of great inter-
est because of its unique electronic and structural proper-
ties. Its wide band-gap, high thermal stability, and large
dielectric constant make HfO2 thin films important in ap-
plications such as optical coatings, and resistive random-
access memory.4–13 Hafnia also has a high dielectric per-
mittivity, good chemical compatibility with silicon, and
a higher heat of formation than SiO2. This makes haf-
nia ideal to replace SiO2 in integrated electronic de-
vices. Its high dielectric response enables reduction of
the gate thickness of the gate dielectric layer in oxide-
semiconductor field effect transistors while suppressing
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FIG. 1. Structures of the three zirconia and hafnia poly-
morphs with oxygen in red and Zr or Hf in blue. The Zr
(Hf) transition temperatures are indicated above (below) the
arrows.

leakage currents through quantum mechanical tunneling
through the dielectric layer.12 Because thin films of haf-
nia may exhibit a wide range of crystallographic phases
and size-dependent phase transitions across several poly-
morphs, an accurate energetic analysis of the different
crystalline forms with the best level of theory at hand is
crucial for their theoretical characterization.

Zirconium and hafnium are in the same column, col-
umn 4, of the periodic table and therefore have very sim-
ilar chemical properties. They have similar ionic and
atomic radii due to the lanthanide contraction; the al-
most identical bonding nature and electronic properties
of the ZrO2 and HfO2 molecules stem from the simi-
larities of the atomic properties of Zr and Hf.14–16 An-
other consequence of the nearly indistinguishable chem-
ical natures of the Hf and Zr atoms, is that bulk haf-
nia and zirconia have similar crystal phases and phase
diagrams17–20. However, experimental and theoretical
studies of the Si:HfO2(ZrO2) interface have shown that
the Si:HfO2 is more thermodynamically stable than the
Si:ZrO2 interface.21 This indicates that there are some
differences in the bulk properties of ZrO2 and HfO2, in
contrast to the very similar zirconia and hafnia molecu-
lar systems. Zirconia and hafnia both have several poly-
morphs: at ambient pressure a low-temperature mono-
clinic (m-ZrO2 and m-HfO2) phase, a subsequent trans-
formation to a tetragonal phase (t-ZrO2 and t-HfO2) at
1478 K for ZrO2 and about 2000 K for HfO2, and to a
high-temperature cubic phase at (c-ZrO2 and c-HfO2) at
2650 K and 2870 K, respectively, as illustrated in Fig. 1;
the melting temperatures are about 2950 K and 3118 K,
respectively.

For ZrO2, the m-ZrO2 to t-ZrO2 transition is particu-
larly important as this can bring about catastrophic frac-
ture because of the accompanying shear strain of about
0.16 and 4% volume change at the transition. Such strain
can be accommodated by metals, but usually not by ce-
ramics. However, it was realized that this transformation
can be controlled and used as a source of transformation
plasticity and transformation-toughening in engineered
two-phase microstructures. This led to much expanded
applications from its original limited use in refractory ap-
plications. Because of the large volume changes not only
in m-ZrO2 to t-ZrO2, but also in t-ZrO2 to c-ZrO2 (3%),
and their implications for applications it is of fundamen-

tal interest to understand the energetics of these phases.

While there exist accurate experimental data for struc-
tural and electronic properties, such as lattice param-
eters, bulk modulus, and cohesive energy, for zirconia
polymorphs obtained using X-ray or mass spectrometric
measurements, there does not exist a similar large body
of experimental data for hafnia.22–25 Structural and elec-
tronic properties of the low-temperature m-HfO2 phase
have been determined at room temperature using X-ray
diffraction.26–32 Lattice parameters have been reported
for t-HfO2 and c-HfO2, but detailed structural and elec-
tronic characterizations are still lacking .26,27,33,34 Be-
cause of difficulties in experimental measurements of the
high-temperature HfO2 polymorphs, it is necessary to
use a theoretically approach to accurately establish struc-
tural and electronic properties of t-HfO2 and c-HfO2.

From a modeling perspective, the question is then
how to accurately obtain the energetic ordering and sta-
bility of the zirconia polymorphs, as well as the ba-
sic structural and electronic properties of hafnia poly-
morphs. There have been a number of density func-
tional theory-based studies of the energetics of the zirco-
nia polymorphs25,35–47; Jiang et al. also included many-
body perturbation theory (GW -approximation) in their
study of the electronic properties of zirconia37. While
DFT can get the energetic ordering right40–42, the calcu-
lated energy differences between the polymorphs depend
very much on the specific exchange-correlation functional
that is used.

Several works have attempted to determine the equa-
tion of state (EOS) of hafnia polymorphs using density
functional theory (DFT) within the local density approx-
imation (LDA) or generalized gradient approximation
(GGA).48–50 However, neither LDA nor GGA exchange-
correlation (XC) functionals can simultaneously obtain
good results for lattice parameter and bulk modulus; for
example, in Ref. 48, the LDA lattice parameters a, b,
and c for m-HfO2 were computed to be 5.12, 5.17, and
5.29 Å, respectively, which are in excellent agreement
with experimental values.27 However, the estimated bulk
modulus of 251 GPa is significantly smaller than the ex-
perimental value of 284 GPa.51. Jiang et al.37 also stud-
ied the electronic structure of hafnia polymorphs within
the LDA approximation as well as within the G0W0 and
GW0 many-body perturbation schemes with good results
for the latter for t-HfO2.

The problem in obtaining quantitatively accurate re-
sults from such calculations stems from the fact that Zr
and Hf have 4d and 5d electrons. In oxides, 3d, 4d,
and 5d electrons are rather localized and lead to elec-
tronic correlation effects that are very difficult to cap-
ture using DFT. Hybrid functionals can often do a bet-
ter job for semiconductors than more standard GGA or
so called DFT+U calculations, in which a Hubbard U -
parameter is added to the d-orbitals in addition to the
regular GGA (or LDA) functional. However, there is no
guarantee that hybrid functionals will give quantitatively
more accurate results for transition metal oxides than
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do other exchange-correlation functionals52. In addition,
hybrid functionals are much more computationally ex-
pensive than local or semi-local functionals.

It is obviously of great interest to establish compu-
tational benchmarks both to guide DFT-based develop-
ments and modeling, but also to help guide experimental
measurements where obtained results have great uncer-
tainties. This is for example the case with measurements
of the bulk modulus of zirconia polymorphs, especially
t-ZrO2 and c-ZrO2, with the latter having experimen-
tal uncertainties of almost 100%.23,46 In this work, we
have performed quantum Monte Carlo (QMC) simula-
tions in order to establish such benchmarks and also to
help establish properties with better certainty where ex-
perimental uncertainty is quite large, e.g., the bulk mod-
ulus of c-ZrO2. Of course, the computational results are
for T=0 K. We will therefore discuss our results from
two different perspectives. The first one is just to com-
pare and discuss our DFT and DMC calculations with
other calculated values in the literature - such compar-
isons are unambiguous insofar as all calculations are at
0 K. The second perspective is to compare with exper-
imental data. One possible way to do so is to add the
effects finite temperatures to the calculations using the
quasi-harmonic approximation to add entropic contribu-
tions from lattice vibrations. However, such calculations
cannot presently be done within QMC. Therefore, the
finite-temperature contributions would have to be done
using DFT, and would then add to the QMC 0 K elec-
tronic energy the same DFT-based contribution at finite
temperatures as it would to some other DFT calcula-
tions. That makes such comparisons rather meaningless
since one would add the same finite-temperature contri-
butions to DMC and DFT and so still end up comparing
0 K electronic energies. Instead, we will focus on using
available experimental data for thermal expansion to ex-
trapolate lattice parameters to 0 K for comparison with
calculated lattice parameters23,25,39. This works rather
well for the monoclinic and tetragonal phases, for which
there exist rather extensive measurements, but is a bit
more difficult for the cubic phases, for which there are
fewer experimental data. There are also experimental
data on bulk moduli and for some values of cohesive
energies22. We will briefly discuss these from the per-
spective of first-principle modeling.

We also examine the energetics of tetragonal distor-
tions of oxygen columns in t-ZrO2 and t-HfO2. In t-ZrO2,
these distortions play an important role in the tetragonal
to cubic transition, and also greatly affect the optical gap
(at the Γ point) in t-HfO2

37,47. We compare the energet-
ics of such distortions obtained from DFT with the ener-
getics from DMC. Because of the computational expense
of the DMC calculations, we had to restrict the motion
of the oxygen columns to be strictly along the c-axis.
Nevertheless, a comparison between the DFT and DMC
results is instructive. We did also perform full structural
optimization, including lattice vectors, for the tetragonal
structure using the PBE0 hybrid functional to confirm

that the distortion of the oxygen columns along the c-axis
is the only relevant degree of freedom in the tetragonal
distortion.

II. QMC METHODS

A. Variational and diffusion Monte Carlo

The properties and behavior of materials and
molecules can be accessed at the quantum level through
solving the time-independent Schrödinger equation,
HΨ(R) = EΨ(R), where H is the Hamiltonian describ-
ing the interactions between the N electrons at coordi-
nates r1, . . . , rN and the atomic nuclei, Ψ(r1, ..., rN ) is
the many-body wavefunction, and E the energy. The
Hamiltonian describing electrons in a solid, is

H =

N∑
i=1

[−1

2
∇2

i + vext(ri)] +

N∑
i<j

1

rij
, (1)

where the first two terms are the kinetic energy and
the external single-particle potential from the nuclei,
respectively, and the last term describes the electron-
electron interactions. This last term is responsible for
moving the Schrödinger equation from a 3D partial
differential equation to a 3N -dimensional partial dif-
ferential equation, where N is the number of electrons.
The goal becomes to find the lowest eigenvalue in the
3N dimensional space of the electrons. Many methods
tend to reduce the complexity by approximating the last
term. The approach in DFT is to study the equations
of an auxiliary system of N non-interacting electrons in
a potential constructed to give the same ground state
density as the system of interacting electrons.53,54 The
ground state energy can then be evaluated, provided
the exact energy functional of the density is known.
The great advantage of DFT is that the complexity of
the problem is reduced to that of N non-interacting
electrons, but the accuracy depends on the accuracy of
the approximate energy functional. DFT is considered
the workhorse of electronic structure methods, and has
proven to be very robust55, but at the same time the
accuracy of the method is strongly dependent on the
choice of the approximation.

In contrast, real-space QMC focuses on the many-
body electronic wavefunction, but instead of perform-
ing integrals by explicit quadrature, one samples the
many-body wavefunction by performing a random walk
in the 3N -dimensional coordinate space of the electrons.
Variational Monte Carlo (VMC) is a direct application
of the Rayleigh-Ritz variational method. If the trial
wavefunction ΨT ({R}), where {R} denotes the collec-
tion of 3N electron coordinates, satisfies the requisite
symmetries and boundary conditions, then the ratio
EV =

∫
d{R}Ψ∗T ({R})HΨT ({R})/

∫
d{R}|ΨT ({R})|2

is an upper bound to the exact ground state energy. In
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this work, we consider only the commonly-used general-
ized Slater-Jastrow function:

ΨT ({R}) = exp [−J({R})]
∑
k

ckdetk(φi(rj)), (2)

where the Jastrow function J({R}) is a real function
of all the electron coordinates, and is symmetric under
electron exchange; it serves to correlate the electrons.
The determinants keep the wavefunction antisymmetric,
and the 3D functions φi in the determinants are the or-
bitals selected in some suitable way. The Jastrow func-
tion J({R}) and the orbitals are parameterized and their
values optimized to minimize EV . By avoiding the need
to use forms that facilitate numerical quadrature, Monte
Carlo sampling allows the use of much more complex trial
wavefunctions encapsulating the electronic correlations.
This is essential in order to describe the physics of the
system, and most electronic structure methods lack ac-
curate descriptions of correlations.

VMC gives the lowest upper bound of the ground state
energy consistent with the assumed trial wavefunction
in Eq. (2). Diffusion Monte Carlo (DMC) goes further
by finding the lowest energy consistent with the nodes
(or phase if it is complex) of the assumed trial function;
only the nodal surface of the trial wavefunction is
preserved to maintain the required anti-symmetry of
the wavefunction. We define the many-body phase of
the trial function by Θ({R}) = Im{ln([ΨT ({R})]}.
Then in the class of functions exp[−J({R}) + iΘ({R})],
we minimize the ground state energy with respect to
J({R}). This can be mapped to a random walk problem
where instead of working in a space of a single system,
it is formulated in an ensemble {Ri} of P “walkers”.
Each walker executes a VMC random walk for a certain
number of steps, then based on the error of the trial
wavefunction, branches by either dying or making
one or more copy of itself. DMC has been found to
lower the VMC error by roughly an order of magnitude.56

We use QMCPACK for the QMC calculations, and
Quantum Espresso 5.3.0 for all DFT calculations with ki-
netic energy cutoffs of 350 Ry (450 Ry) for calculations of
Zr and zirconia (Hf and hafnia). DFT calculations using
Quantum Espresso were also used to generate the trial
wavefunctions. Cohesive energies for hcp Zr and Hf were
calculated by subtracting the calculated energy per atom
of the bulk system from energy of an isolated single atom.
For oxides, we calculated the energy per atom of the bulk
oxide and subtracted the energy of a single isolated metal
(Zr or Hf) atom and that of two isolated oxygen atoms.
We did also use FHI-aims57–59 to do full structural re-
laxations of t-ZrO2 and t-HfO2 using the “default light”
settings and numerical orbitals, 4×4×4 k-point meshes,
and the PBE0 hybrid functional60.

TABLE I. Estimated values of 1st-, 2nd ionization potential
(IP), and electron affinity (EA) in units of eV for an isolated
Zr and Hf atom.

LDA GGA DMC Exp.

Zr atom
1st IP 5.35 5.03 6.43(2) 6.631

EA 2.03 1.75 0.41(3) 0.43(1)2

Hf atom
1st IP 5.98 5.72 6.78(2) 5.831

2nd IP 11.88 11.84 14.55(2) 14.901

1Ref. 64.
2Ref. 65.

B. Pseudopotentials, validation and verification

DMC is very expensive because many walkers are
needed to reduce statistical noise. On the other hand,
because the walkers are statistically independent, DMC
codes scale superbly on leadership-class computers.61,62

However, even on leadership computers it is prohibitively
expensive to include all electrons in calculations of, e.g.,
transition metal oxides; instead, pseudopotentials are
used. In our work, scalar-relativistic pseudopotentials
for zirconium and hafnium were generated with a plane-
wave basis set, as implemented in OPIUM package.63

The pseudopotentials were created using the local den-
sity approximation (LDA) exchange-correlation func-
tional of DFT, with semi-core states included into va-
lence. The zirconium (hafnium) pseudopotential was
based on 28 (60) core electrons and 12 (12) valence
electrons, and the oxygen pseudopotential was based
on six valence electrons. The electronic configurations
for the pseudopotentials were [Ar+3d10]4s24p64d25s2,
[Pd+4f14]5s25p65d26s2 and [He]2s22p4 for Zr, Hf, and O
respectively.

In order to ascertain the accuracy of the pseudopoten-
tials, we first calculated the atomic properties of the zir-
conium and hafnium atoms using DMC. To avoid interac-

FIG. 2. Total DMC energy for hcp Zr as function of unit cell
volume. The Vinet fit to the calculated points is indicated.
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TABLE II. Estimated values of the lattice constant (a), bulk
modulus(B0), and cohesive energy (Ecoh) for hcp zirconium
and hafnium computed with DFT and DMC.

LDA GGA DMC Exp.

hcp Zr
a (Å) 3.16 3.241 3.22(1) 3.231

B0 (GPa) 104 961 96(1) 92(3)2

Ecoh (eV/atom) 7.46 - 5.94(2) 6.253

hcp Hf
a (Å) 3.13 3.19 3.20(1) 3.194

B0 (GPa) 119 108 110(1) 1105

Ecoh (eV/atom) 7.56 6.47 6.51(2) 6.443

1Ref. 66.
2Ref. 67.
3Ref. 68.
4Ref. 69.
5Ref. 64.

tions with spurious periodic image atoms stemming from
the periodic boundary conditions in Quantum Espresso,
we used a sufficiently large computational cubic cell of
side 20 Å with a single atom being located at the center
of the cell.

The first and second ionization potential and electron
affinity of an isolated atom can be calculated as E(N −
1)−E(N), E(N − 2)−E(N − 1) and E(N)−E(N + 1),
respectively. Here, E(N − 1), E(N − 2), E(N + 1), and
E(N) represent the total energy of charge-1 and charge-
2 cations, anion, and neutral atom, respectively. We did
not compute the DMC electron affinity for Hf because the
electron configuration of an anion Hf, which is stabilized
as the mixed state of 5d36s6p and 5d26p3, is difficult to
fully implement in a Slater-Jastrow wavefunction, and in-
stead we computed the first and second ionization poten-
tials. Table I shows the ionization potential and electron
affinity for Zr, and first and second ionization potentials
for Hf. The DMC results are in excellent agreement with
corresponding experimental values, while LDA and GGA
underestimate the atomic properties.

We also calculated properties of bulk hcp zirconium
and hafnium in order to verify the accuracy for the bulk
systems of our DMC calculations with the pseudopoten-
tials we used. For Zr, the initial DFT LDA trial wave-
functions were obtained using a 6× 6× 6 k-point mesh,
which provided k-point convergence. The DMC calcu-
lations used a supercell consisting of 16 Zr atoms (eight
primitive unit cells). Twist-averaged boundary condi-
tions with a total of 64 twists were applied to reduce one-
body finite size effects.70 In order to obtain the equation
of state of bulk hcp zirconium, we computed the total en-
ergy as function of unit cell volume (Fig. 2), keeping c/a
fixed at the experimental value of 1.59 for Zr. By using
a Vinet fit,71 we obtained equilibrium lattice constant,
bulk modulus, and cohesive energy, as shown in Table II.
Even though we did not perform a two-body finite size
analysis for Zr, the results for both lattice constant and
bulk modulus are in good agreement with experimental
values, and the DMC cohesive energy for Zr is calculated

FIG. 3. DMC total energy of a hcp Hf as function of a unit
cell volume. The dotted lines represent Vinet fits. (Inset)
DMC total energy of hcp Hf as function of 1/N , where N
is the total number of atoms in the computational supercell.
The dotted line indicates a single linear regression fit.

to be just 0.31(2) eV/atom smaller than the experimental
one.

Similarly, we computed DMC total energies for vari-
ous volumes of a Hf hcp unit cell with the ratio of c/a
fixed at the experimental value of 1.58.69 We generated
trial wavefunctions with DFT calculations using LDA
and GGA XC functionals on a 12×12×12 k-point mesh
for k-point convergence using the hcp primitive unit cell.
We also performed a finite-size analysis for the DMC re-
sult of bulk hcp Hf by twist-averaging DMC total energies
over total 64 twists to reduce the one-body finite size ef-
fect. We then extrapolated the twist-averaged DMC total
energies computed at different hcp Hf supercells contain-
ing 8 (192 electrons), 15 (360 electrons), and 22 (528
electrons) atoms to the thermodynamic limit (N → ∞)
using a single linear regression fit, as shown in the in-
set of Fig. 3. Figure 3 shows DMC and DFT (LDA and
GGA) total energies as function of the Hf unit cell vol-
ume. From this EOS, the equilibrium lattice parameter,
bulk modulus, and cohesive energy for a bulk Hf were
obtained using a Vinet fit [see dotted lines in Fig. 3].
The results in Table II show that DMC results for the
structural parameters considered here are in good agree-
ment with experimental values. These results allow us to
conclude that the Hf pseudopotential is appropriate to
describe physical and electronic properties of a bulk Hf
system, as well as the Hf atomic properties, within the
QMC framework.

III. RESULTS AND DISCUSSION

In order to generate single-particle orbitals for trial
wavefunctions, we used DFT within the LDA+U scheme,
where the Hubbard U -parameter is treated as a varia-
tional parameter to optimize the DMC nodal surface of
the wavefunction. The basis for this is the fact that DMC



6

FIG. 4. Total DMC energy for m-ZrO2, t-ZrO2, and c-ZrO2 as
function of Hubbard U value in the initial trial wavefunction
obtained from DFT using LDA+U.

satisfies a strict variational principle. Therefore, by vary-
ing U and calculating the DMC ground state energy as
function of U , we can find an optimal nodal surface that
minimizes the DMC ground state energy within the sub-
space spanned by the LDA+U trial wavefunctions. This
has in practice proven to be an efficient way to generate
DMC ground state properties in excellent agreement with
experimentally accessible values72–74. We computed the
DMC total energy of cubic, tetragonal, and monoclinic
phases of ZrO2 and HfO2 as a function of U in the trial
wavefunction using experimental lattice parameters (see
Table IV). Using a quartic fit, (see Fig. 4) the optimal
values of U for c-ZrO2, t-ZrO2, and m-ZrO2 are calcu-
lated to be 3.54(12), 3.34(14), and 3.13(8) eV, respec-
tively.

Using these values for U to generate DFT trial wave-
functions, we then calculated the DMC energies for the
c-ZrO2, t-ZrO2, and m-ZrO2 structures as function of lat-
tice constant, as shown in Fig. 5. For m-ZrO2 (t-ZrO2),
the ratios between a, b, and c (a and c) axes were fixed
while the volume of the unit cell was varied. For t-ZrO2

the ratio was fixed at c/(
√

2a) = 1.02. Equations of state
were obtained using Vinet fits to the calculated data.

In t-ZrO2 (as well as in t-HfO2) an additional degree of
freedom is the distortion of pairs of oxygen atoms located
in columns in the tetragonal unit cell47,75,76. Carbogno
et al.47 showed, using the HSE06 hybrid functional, that
displacements of the oxygen atoms in the tetragonal basal
plane are important for the tetragonal to cubic transfor-
mation. Because the thermodynamics of this transition
is beyond the scope of our work, and because of the great
expense in the DMC calculations, we restricted the dis-
placements to be along the c-direction (see Fig. 6). This
excludes possibilities of obtaining the minimum energy
barrier for distortion of the oxygen atoms47 but does al-
low us to find the distortion at which the t-ZrO2 structure
has minimum energy. We calculated the total energy,
both DMC as well as for a variety of DFT schemes, of
t-ZrO2 as a function of a distortion parameter dz, defined

FIG. 5. Total DMC energy for m-ZrO2, t-ZrO2, and c-ZrO2

as function of volume ratio.

FIG. 6. Directions of the oxygen pair distortion in the tetrag-
onal phases of ZrO2 and HfO2. The blue and red spheres
indicate Zr, or Hf, and O atoms, respectively.

as zO = (0.25 ± dz)c where zO is the location of the ox-
gyen atoms along the c-direction. Note that in these cal-
culations we kept the lattice parameters a and c fixed at
their extrapolated or measured low-temperature experi-
mental values23,25 of 3.57 Å and 5.18 Å while varying dz.
Using a quartic fit, we found the equilibrium distortion
of the oxygen pairs for DMC as well as for DFT using
a variety of XC functionals, as shown in Fig. 7(b). The
minimum value of the DMC total energy is attained at
dz = 0.047(1), which is in excellent agreement with ex-
perimental value of 0.047.77 For t-ZrO2, the location of
the minimum energy is rather insensitive to which DFT
hybrid functional is used.
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TABLE III. Fully optimized lattice parameters and dz for t-ZrO2 and t-HfO2 using FHI-aims (FHI-aims) and Quantum Espresso
[Q.E. (fr)]. Note that only atomic coordinates were optimized in Q.E. (fr), with fixed lattice parameters obtained from FHI-
aims. “Q.E. (s)” indicates manually optimized dz values using fixed experimental lattice parameters in Tables IV and VI, and
fixed Zr atomic coordinates.

t-ZrO2 t-HfO2

PBE0 a (Å) c (Å) dz a (Å) c (Å) dz
FHI-aims 3.59 5.19 0.054 3.58 5.17 0.050
Q.E. (fr) 3.59 5.19 0.051 3.58 5.17 0.057
Q.E. (s) 3.57 (fixed) 5.18 (fixed) 0.051 3.64 (fixed) 5.29 (fixed) 0.069

FIG. 7. Total energy for t-ZrO2 as function of dz away from
its equilibrium value. The dotted line represents quartic fits.
The equilibrium DMC value of dz is estimated to be 0.047(1),
which is in excellent agreement with experimental value of
0.047.77

As mentioned earlier in the Methods section, we did a
full optimization of the six-atom t-ZrO2 unit cell, includ-
ing relaxing the lattice vectors using FHI-aims57–59 with
the PBE0 hybrid functional60 and the default “light” set-
ting until the maximum force on any atom was less than
0.006 eV/Å. We then used the FHI-aims optimized lat-
tice vectors as input to a QE relaxation with PBE0 of the
internal atomic coordinates, keeping the lattice vectors
fixed. In addition, we performed a manual optimization
of the oxygen distortion using QE and PBE0 in which
we used fixed experimental lattice parameters from Ta-
bles IV and VI and kept the Zr positions fixed. There
is some difference between the optimized dz-values using
FHI-aims and QE using the same lattice vectors. We
attribute this difference to smaller basis set used in FHI-
aims in these calculations compared to the very large
kinetic energy cutoff in QE. Taking these differences into
account, we take these calculations to confirm that the
motion of the oxygen columns along the c-axis is the only
relevant internal degree of freedom, justifying the one-
parameter sweep of dz discussed earlier. Note the larger
variation in dz for t-HfO2, especially when the finite-
temperature experimental lattice parameters are used (to
be discussed later).

A. Zirconia

1. Zirconia – comparisons between computed results

Our main results for the zirconia structural parame-
ters are summarized in Table IV, both for DMC as well
as for various DFT schemes and functionals, including
representative recent values from the literature. In gen-
eral, the hybrid functionals PBE0 and HSE06 give lat-
tice parameters that are in good agreement with each
other as well as with the DMC values. The results by
Ricca et al.46 are an exception. We suspect the origin
of this is the basis set used in that work, given that the
FHI-aims and QE calculations generally agree very well
with each other. As is usually the case, LDA tends to
overbind and GGA (eg. PBE) underbind, with too small
and too large lattice parameters, respectively. It is in-
teresting to note that LDA+U corrects (increases) the
lattice parameters compared to LDA but then substan-
tially reduces the bulk modulus while LDA gets the bulk
modulus right. In contrast, all other DFT flavors un-
derestimate the bulk modulus, especially for the cubic
and tetragonal phases. All DFT calculations by us and
those quoted here (as well as many others), except for
one, get the energetic ordering correctly, with m-ZrO2

having the lowest energy, followed by t-ZrO2 and c-ZrO2

in increasing energy. The exception is the calculation by
Ricca et al., which gets the ordering of the tetragonal
and cubic phases wrong. Again, we suspect this error
stems from the basis set used in that calculation. We
note that LDA+U gets very good agreement for the co-
hesive energy compared to DMC, while the other DFT
flavors underestimate the cohesive energy for the three
phases. This clearly suggests that the shape and self-
interaction corrections of the 4d orbitals play a central
and sensitive role in getting both geometry and energet-
ics right. LDA+U improves both geometry and cohesive
energy relative to LDA, meaning that the location of the
energy minima for the three phases in configuration space
are improved by adding a Hubbard-U on the 4d orbitals,
but the steepness of the potential wells about the minima
then becomes much too small. The hybrid functionals,
which include a range-dependent exact exchange energy,
end up somewhere in between LDA+U and DMC: the
lattice parameters are good, but the cohesive energies
and bulk moduli are too small. It should also be pointed
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out that the properties of the LDA+U calculations de-
pend very much on the values of the Hubbard U; ours
were selected by minimizing the DMC total energy which
serendipitously gave good values for lattice parameters
and cohesive energy. Using another scheme to select U,
e.g., by adjusting U to fit the optical band gap, would no
doubt give different results for geometry and energetics.
Finally, we note that the energy differences between the
different phases are very small. Therefore, small errors
in cohesive energies will give large relative errors in en-
ergy differences. The DMC energy difference between the
monoclinic and tetragonal phases is larger, 0.07 eV, than
the uncertainty in the DMC energy difference, 0.04 eV.
In contrast, the energy difference between the tetragonal
and cubic phases is much smaller, 0.04 eV, and barely
larger than the uncertainty, 0.03 eV.

2. Zirconia – comparison with experiments.

Table V shows the results from our HSE06 and DMC
calculations together with experimental data. As can
be expected, the agreement is generally best for the low-
temperature monoclinic phase, for which thermal motion
would have the smallest effect. In addition to the lattice
parameters, the DMC cohesive energy for m-ZrO2 is also
in good agreement with the experimental value, while
the experimental bulk modulus is much smaller than the
calculated one; we note, however, the large experimental
uncertainty in the measurement. Also, we suspect that
even at room temperature the bulk modulus is softened
by thermal motion, while presumably relatively small an-
harmonicity in the thermally induced lattice vibrations
leads to no significant increase of the lattice parameters.

The agreement between the calculated lattice param-
eters and the measured ones is also quite good for the
tetragonal phase. Reference 25 presented lattice parame-
ters for t-ZrO2 extrapolated to zero temperature based on
the thermal expansion measured in Ref. 23, and Refs. 77
and 78 presented data from room- or low-temperature
measurements of nano-crystalline t-ZrO2. Therefore, in
both of these measurements, the effects of thermal ex-
pansion on the lattice parameters are eliminated or are
negligible. The tetragonal distortion dz measured at low
temperatures77 is also in good agreement with the DMC
value. However, as can be expected, the measured bulk
modulus is much lower than the calculated ones, even
room-temperature measurements (up to 200 GPa) of
nano-crystalline t-ZrO2

78; thermal motion significantly
softens the bulk modulus.

Finally, the calculated lattice constant for the cubic
phase is smaller than the measured one, 5.27 Å23 at high
temperatures (2,410◦ C) - here thermal expansion clearly
plays a role. The extrapolated lattice constant in Ref. 25
as well as our own extrapolation of the lattice constants
using thermal expansion data (Fig. 12) give a lattice con-
stant of 5.09 Å, in very good agreement with the calcu-
lated one. We caution that because of the few available

FIG. 8. DMC total energy as function of U in the LDA trial
wavefunction. Dotted lines indicate quartic fits.

data the result - and its very good agreement with DMC
- based on our simple linear fit may be accidental. How-
ever, our own similar extrapolations for the tetragonal
and monoclinic phases, for which there are more experi-
mental data, yield very good agreement with DMC val-
ues as the actual measurements (Fig. 12. Finally, the
measured high-temperature bulk modulus for the cubic
phase is much smaller than the calculated ones, as is to
be expected.

It is remarkable that the calculated DMC energy differ-
ences ∆Et,c and ∆Em,t agree rather well with the mea-
sured enthalpy differences in Ref. 23. This could either
be fortuitous, or an indication that the entropic contribu-
tions to the enthalpy differences are substantially equal
at the transition temperatures.

B. Hafnia

As with zirconia, we started by optimizing the DMC
nodal surface by calculating the DMC ground state en-
ergy of the three hafnia polymorphs as a function of U
in the LDA+U DFT trial wavefunction. We used super-
cells consisting of four primitive unit cells with lattice
parameters and geometries fixed at experimental values,
and using a total of 64 twists (see Table VI). The self-
consistent DFT LDA+U calculations for cubic, tetrag-
onal, and monoclinic phases were done with 6 × 6 × 6,
6× 6× 6, and 4× 4× 4 k-point meshes, respectively.

Figure 8 (a) depicts the DMC total energy as a func-
tion of the variational U -parameter using an LDA+U
trial wavefunction for the hafnia polymorphs. The DMC
ground state energy for t-HfO2 behaves quite differently
from that of the other hafnia polymorphs, as well that
of ZrO2 or TiO2 polymorphs72,73: it does not exhibit a
pronounced minimum at the optimal value Uopt of U , but
a shallow minimum at a small value of about 1 eV and
a dimple that is almost a local minimum at a value of
U of about 6 eV. Also, in comparison of the DMC en-
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TABLE IV. Results for structural parameters, bulk modulus, and cohesive energy from DFT calculations together with DMC
data. ∆Et,c and ∆Em,t are the cohesive energy differences between t-ZrO2 and c-ZrO2, and between m-ZrO2 and t-ZrO2,
respectively.

phase LDA LDA+U GGA PBE1 PBE0 PBE02 B3LYP HSE06 HSE061 DMC

c-ZrO2

a (Å) 5.03 5.09 5.10 5.03 5.06 5.11 5.10 5.06 5.08 5.07(1)
B0 (GPa) 279 247 242 270 254 269 278(2)

Ecoh (eV/f.u.) 25.84 23.36 22.11 21.65 20.76 21.50 23.15(2)

t-ZrO2

a 3.56 3.58 3.61 3.63 3.58 3.62 3.62 3.58 3.60 3.58(1)
c 5.16 5.19 5.24 5.29 5.19 5.245 5.25 5.19 5.20 5.19(2)

c/
√

2a 1.02 1.02 1.02 1.03 1.02 1.023 1.02 1.02 1.02 1.02
dz 0.048 0.027 0.049 0.056 0.051 0.052 0.049 0.051 0.051 0.047(1)
B0 263 244 234 259 244 258 265(1)
Ecoh 26.20 23.51 22.21 21.73 20.86 21.60 23.19(2)
∆Et,c 0.36 0.15 0.10 0.14 0.08 -0.025 0.10 0.10 0.08 0.04(3)

m-ZrO2

a 5.10 5.16 5.17 5.13 5.18 5.17 5.13 5.14(1)
b 5.16 5.22 5.23 5.19 5.24 5.23 5.19 5.20(1)
c 5.27 5.33 5.34 5.30 5.32 5.34 5.30 5.30(1)
B0 255 232 227 251 237 253 254(1)
Ecoh 26.25 23.67 22.33 21.82 20.99 21.71 23.26(2)

∆Em,t 0.05 0.16 0.12 0.13 0.09 0.062 0.13 0.11 0.075 0.07(4)

1Ref. 47.
2Ref. 46.

TABLE V. Results for structural parameters, bulk modulus, and cohesive energy from HSE06 and DMC together with available
experimental data. ∆Et,c and ∆Em,t are the cohesive energy differences between t-ZrO2 and c-ZrO2, and between m-ZrO2

and t-ZrO2, respectively.

phase HSE06 DMC Exp1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7 Exp.8 Exp.9

c-ZrO2
a (Å) 5.06 5.07(1) - - 5.09 - - - - - -

B0 (GPa) 269 278(2) 248 - - - - - - - -

t-ZrO2

a 3.58 3.58(1) - 3.59 3.57 - - - - -
c 5.19 5.19(2) 5.18 5.18 - - - - - -

c/
√

2a 1.02 1.02 - 1.02 - - - - - - -
dz 0.051 0.047(1) 0.057 - - 0.047 - - - - -
B0 258 265(1) - 172(6) - - 170-200 - - - -

∆Et,c 0.10 0.04(3) - - - - - - - - 0.057

m-ZrO2

a 5.13 5.14(1) - - - - - 5.15 - - -
b 5.19 5.20(1) - - - - - 5.21 - - -
c 5.30 5.30(1) - - - - - 5.31 - - -
B0 253 254(1) - - - - - - 212(24) - -
Ecoh 21.71 23.26(2) - - - - - - 22.85 -

∆Em,t 0.11 0.07(4) - - - - - - - - 0.063

1Ref. 79 room T measurements of yttrium-stabilized c-ZrO2 extrapolated to 0% yttrium.
2Ref. 78 at room T using nanocrystalline t-ZrO2.
3Ref. 25 extrapolation to zero T using data in Ref. 23.
4Ref. 77 low-temperature measurement of nanocrystalline t-ZrO2.
5Ref. 80 used yttria-stabilized t-ZrO2 at room T, Ref. 81 used nanocrystalline t-ZrO2 at room T.
6Ref. 24 at room T.
7Ref. 51 at room T.
8Ref. 82.
9Estimated in Ref. 25 from measured enthalpy differences in pure t-ZrO2 in Ref. 22.

ergy as function of U for zirconia and hafnia polymorphs
with that of antiferromagnetic NiO74, the the difference
between the minimum DMC energy at Uopt and that at
U = 0 is very small, less than 0.1 eV/f.u. compared to
about 0.7 eV/f.u. for NiO. This indicates that the on-

site Coulomb repulsion is less significant in zirconia and
hafnia compared to NiO, consistent with the fact that
the on-site repulsion drives NiO to a Mott insulator anti-
ferromagnetic ground state, while zirconia and hafnia do
not have magnetic ground states. Using a quartic fit for
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the DMC total energy as function of U in the LDA+U
trial wavefunction, we find Uopt to be 2.7(3), 1.1(3), and
2.4(2) eV for c-HfO2, t-HfO2, and m-HfO2 , respectively.

1. Hafnia - comparisons between computed results

We then continued to calculate the EOS and structural
parameters for the HfO2 polymorphs. In order to re-
duce structural degrees of freedom in the tetragonal and
monoclinic phases, we imposed constraints on the lat-
tice parameters while the unit cell volume was changed.
The ratio c/a in t-HfO2 was fixed at its experimental
value83 of 1.45; only a single degree of freedom, the lat-
tice parameter a, was considered for m-HfO2 because of
the large (four) number of structural parameters that
otherwise would have to be optimized. Therefore, b/a,
c/a, and β were fixed at their experimental values84. For
t-HfO2, as was the case for t-ZrO2, we calculated the to-
tal energy as function of oxygen distortion dz at fixed c
and a at their experimental values of a = 3.64 Å and
c = 5.29 Å83. Using a quartic fit, we found the equilib-
rium distortion for DMC and each of the DFT XC func-
tionals [Fig. 9(b)]. The minimum value of the DMC to-
tal energy is at dz = 0.064(1), which is larger value than
experimental value of dz = 0.047 for tetragonal zirco-
nia measured at room T.23–25 We note that a previously
obtained value of dz = 0.05 from DFT using the Perdew-
Wang parametrization of the GGA XC functional is sig-
nificantly smaller than both our DMC and DFT results,
including GGA with the PBE parametrization.85 We at-
tribute this discrepancy to a sensitive dependence of the
structural optimization on the DFT XC functional and
pseudopotentials (the DMC pseudopotentials are much
“harder” than pseudopotentials commonly used in DFT).
Figure 9(b) shows that the energy difference ∆E at previ-
ously reported85–87 DFT equilibrium values of dz ∼ 0.050
- 0.07 is well below 0.08 eV/f.u. for all of our DFT and
DMC calculations. Therefore, the changes in total en-
ergy as the oxygen distortion is varied around dz = 0.05
- 0.07 are very small, which means that optimization of
dz is sensitive to the choice of XC functional or pseu-
dopotentials because of the very small contribution of dz-
minimization to the total energy of t-HfO2. This is also
evident in the results in Table III, where the obtained
optimal value of dz is much more sensitive to choice of
method (full potential and localized orbitals vs. pseu-
dopotential and plane waves) as well as to lattice param-
eters. As is also seen in Table III, with the FHI-optimized
lattice parameters of a=3.58 Å and c=5.17 Å, the calcu-
lated dz is much smaller, 0.05 Å to 0.057 Å, much more
similar to the corresponding values for t-ZrO2. For t-
HfO2 the ratio of c to a was fixed at c/(

√
2a) = 1.03,

and dz fixed at its optimal value as a fraction of c when
calculating total energy. Equations of state were then ob-
tained using Vinet fits. We considered a series of super-
cells (twists) in order to extrapolate DMC twist-averaged
total energies to the thermodynamic limit: 6(64), 22(27),

FIG. 9. Total energy for t-HfO2 as function of dz away from
its equilibrium value. Here, the DMC total energies were
computed in eight t-HfO2 supercells with a total of 64 twists.
Dotted lines represent quartic fits.

FIG. 10. DMC total energy of a monoclinic, tetragonal, and
cubic phase of hafnia as function volume ratio. V is the unit
cell volume that is varied, and V0 is the equilibrium volume
obtained from a Vinet fit. The dotted lines are Vinet fits.

and 27(27) for c-HfO2; 8(64), 16(64), and 22(27) for t-
HfO2; and 4(64), 6(64), 8(27) for m-HfO2.

Figure 10 shows the computed DMC total energy as
function of unit cell volume for the three HfO2 poly-
morphs. The equilibrium lattice parameters, cohesive
energy and bulk modulus estimated from Vinet fits are
listed in Table VI together with other representative
DFT-based calculations from the literature. As expected
LDA overbinds and its lattice parameters are consistently
too small, while the lattice parameters from our GGA
and the PBE calculation in Ref.34 are in much better
agreement with the DMC values. LDA+U increases the
lattice parameters but still overbinds - this is proba-
bly because the U-parameters from our optimization are
quite small, as explained earlier. The lattice parame-
ters from the hybrid functionals are in good agreement
with the DMC values. The bulk moduli from the hybrid
functionals are in quit good agreement with but con-
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TABLE VI. Results for structural parameters, bulk modulus, and cohesive energy for hafnia polymorphs from DFT calculations
together with DMC data. ∆Et,c and ∆Em,t represents cohesive energy difference between t-HfO2 and c-HfO2, and that between
m-HfO2 and t-HfO2, respectively.

phase LDA LDA+U LDA+U1 GGA PBE2 GGA+U PBE0 B3LYP HSE06 HSE3 DMC

c-HfO2

a (Å) 4.97 5.01 - 5.03 5.08 5.07 5.00 5.04 5.00 - 5.04(1)
B0 (GPa) 299 273 - 268 258 238 287 271 286 - 297(1)

Ecoh (eV/f.u.) 26.83 24.73 - 22.97 - 20.76 22.65 21.79 22.61 - 24.32(3)

t-HfO2

a 3.54 3.54 - 3.58 3.59 3.60 3.56 3.59 3.57 - 3.58(2)
c 5.14 5.14 - 5.20 5.23 5.23 5.17 5.22 5.19 - 5.20(3)

c/
√

2a 1.03 1.03 - 1.03 1.03 1.03 1.03 1.03 1.03 - 1.03
dz 0.067 0.063 - 0.068 0.055 0.054 0.069 0.068 0.070 - 0.064(1)
B0 273 265 - 245 244 226 267 253 267 - 271(9)
Ecoh 26.93 25.96 - 23.02 - 20.54 22.67 21.88 22.65 24.47(4)
∆Et,c 0.10 - - 0.05 - - 0.02 0.09 0.04 0.15(4)

m-HfO2

a 5.03 5.07 5.39 5.09 5.15 5.14 5.07 5.10 5.05 5.12 5.09(1)
b 5.08 5.12 5.33 5.15 5.19 5.19 5.12 5.15 5.10 5.16 5.15(1)
c 5.21 5.25 5.49 5.28 5.33 5.32 5.25 5.28 5.23 5.28 5.28(2)
B0 275 253 - 248 238 223 270 255 269 - 276(3)
Ecoh 27.07 24.99 - 23.15 - 20.63 22.82 22.02 22.81 - 24.64(3)

∆Em,t 0.14 - - 0.13 - - 0.15 0.14 0.16 - 0.17(5)

1Ref. 88.
2Ref. 89.
3Ref. 90.

TABLE VII. Results for structural parameters, bulk modulus, and cohesive energy for hafnia polymorphs from our DFT HSE06
calculations together with DMC data and experimental values.

phase HSE06 DMC Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

c-HfO2
a (Å) 5.00 5.04(1) 5.08 - 5.14 - - - -

Ecoh (eV/f.u.) 22.61 24.32(3) - - - - -

t-HfO2

a 3.57 3.58(2) 3.63 - 3.66 3.64 - - -
c 5.19 5.20(3) 5.25 - 5.33 5.18 - - -

c/
√

2a 1.03 1.03 - 1.01 - - -

m-HfO2

a 5.05 5.09(1) - - 5.12 - 5.12
b 5.10 5.15(1) - - 5.17 - 5.18
c 5.23 5.28(2) - - 5.30 - 5.29
B0 269 276(3) - - - 284(30) -

1Ref. 34 at high temperatures.
2Ref. 83 powder diffraction at room T. The data for t-HfO2 are quoted in Ref. 85.
3Ref. 84 single crystal at room T.
4Ref. 51 polycrystaline at room T.
5Ref. 31 powder diffraction at room T.

sistently smaller than the DMC values, again with the
poorest agreement for the cubic phase. As was the case
for zirconia, LDA yields bulk moduli in good agreement
with DMC, while LDA+U reduces the overbinding but
substantially softens the bulk modulus. It is interesting
to note that for hafnia, the DMC bulk modulus for the
tetragonal phase is smaller than for the monoclinic phase,
although they are both equal to within one standard de-
viation; the DFT hybrid functionals roughly captures
this as well. In contrast, the bulk modulus for tetrago-
nal zirconia is significantly larger than the bulk modulus
for monoclinic zirconia. This and the shallow minimum
in energy vs. dz for t-HfO2 compared to t-ZrO2 indi-

cate subtle differences in the energetics between the two
compounds in spite of their superficial chemical equiva-
lence. We speculate that this stems from the difference
between the 5d Hf orbitals and the Zr 4d orbitals that
lead to different hybridization with oxygen 2p orbitals.
Figure 11 shows our DFT HSE06-calculated density of
states (DOS) and projected densities of states (PDOS)
for the zirconia and hafnia polymorphs. The PDOS for
the tetragonal phases show a shift upward in energy of
the oxygen 2p relative to the valence band edge in t-ZrO2

compared to t-HfO2, consistent with a difference in the
hybridization (see insets in center panels of Fig. 11). All
DFT calculations in Table VI get the energetic order-
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ing right, with the monoclinic phase having the lowest
energy, followed by the tetragonal and cubic ones. The
cohesive energies for the hybrid functionals are a bit too
small and slightly worse compared to DMC than was the
case for the zirconia polymorphs. The energy differences
between the tetragonal and cubic phases are quite good
for all DFT flavors, while they underestimate the energy
difference between cubic and tetragonal phases. Again,
the energy difference are quite small so small errors in the
cohesive energies will give rise to relatively large errors
in the energy differences.

2. Hafnia - comparison with experiments

For the low-temperature monoclinic phase, the DMC
result for the bulk modulus is in good agreement with the
corresponding experimental value. However, the DFT
HSE06 and DMC lattice parameters are smaller than the
experimental ones because of thermal expansion at the
experimental conditions. It is instructive to compare cal-
culated and measured lattice parameters for hcp Hf and
hafnia. Experimental lattice parameters for both hcp Hf
and m-HfO2 were measured at room temperature31,51. In
contrast to the smaller DMC and DFT lattice parameters
for m-HfO2 (with the exception of GGA+U), the GGA
and DMC lattice parameters for hcp Hf (see Table II)
are in very good agreement with the experimental value.
Hcp Hf is known91 to have a small thermal expansion
coefficient, about 5.9× 10−6 K−1. In contrast, the ther-
mal expansion coefficient for m-HfO2 has been observed92

to vary significantly with temperature, and is consider-
ably larger than for hcp Hf, as much as 32 × 10−6 K−1.
This relatively high sensitivity of the thermal expansion
coefficient of m-HfO2, and therefore of its volume, on
temperature supports our argument that the underes-
timated DMC and DFT lattice parameters are due to
volume expansion of m-HfO2 in the experimental mea-
surements performed at room temperature. As a result
of this thermal expansion in hafnia at high temperatures,
it is also not surprising to observe larger experimental lat-
tice parameters of the tetragonal and cubic phases mea-
sured at 1,600 K (t-HfO2)26,92 and 800 K (c-HfO2)33,
respectively, than our DFT or DMC results, which rep-
resent properties of a (non-physical or metastable) zero-
temperature phase. This is particularly the case for X-
ray diffraction measurements of t-HfO2 which were per-
formed at 1,600 K, and which shows the largest discrep-
ancy, about 1.6 %, between the DMC and experimen-
tal values among three polymorphs. We attempted to
correct for the thermal expansion in the experimental
measurements by extrapolating the measured lattice con-
stants to 0 K [see Fig. 12) (b)]. For m-HfO2, we obtain
an extrapolated value of a=5.11 Å and c=5.28 Å for cu-
bic fits, and for t-HfO2 we obtain a=3.58 Å, c=5.17 Å
(5.07 Å) for quadratic (cubic) fits, in good agreements
with the DMC values. The extrapolation for the lat-
tice parameter of c-HfO2 is considerably more uncertain

because of the sparsity in temperature-dependent mea-
surements of the cubic lattice parameter. We obtain an
extrapolated value of about 5.08 Å, which is in the lower
range of the measurements at high temperatures.

IV. SUMMARY AND CONCLUSIONS

We have evaluated bulk properties (lattice constants,
bulk modulus, and cohesive energy) of the monoclinic,
tetragonal, and cubic phases of ZrO2 and of HfO2 us-
ing diffusion Monte Carlo methods, and compared the
diffusion Monte Carlo results with those of ours as
well as in the literature obtained using various DFT
schemes (LDA, GGA, LDA+U, GGA+U, hybrid func-
tionals PBE0, B3LYP, and HSE06) . We also examined
the distortion of oxygen columns in the tetragonal phases
of ZrO2 and HfO2 at the experimental unit cell volume.
The obtained DMC values for lattice parameters and dis-
tortion of the oxygen columns are in good qualitative and
quantitative agreement with experimental values extrap-
olated to 0 K. Such extrapolations are more reliable for
the zirconia phases than for the hafnia ones, as there ex-
ist more data for zirconia, both measurements of lattice
parameters for a range of temperatures as well as low-
or room-temperature measurements of nanocrystalline t-
ZrO2; such data are considerably sparser for the hafnia
phases. The DFT results, in comparison with the DMC
results, are inconsistent in that no DFT scheme gener-
ally agrees with DMC both for lattice parameters and
bulk modulus. For example, the lattice constants from
the hybrid functionals PBE0 and HSE06 agree well with
the DMC ones, while the bulk moduli are smaller than
the DMC ones; the LDA lattice parameters are too small
while the bulk moduli are in rather good agreement with
the DMC ones. However, the hybrid functionals PBE0
and HSE06 in general yield results in reasonable agree-
ment with DMC. We note that such agreements should
not be taken for granted: even HSE06 has been shown
to give dramatically incorrect results for correlated tran-
sition metal oxides96. The calculated bulk moduli, both
DFT and DMC, are larger than experimentally measured
ones, especially for the zirconia polymorphs, although
we note that there is a lack of experimental data for
the bulk modulus of tetragonal and cubic hafnia. Direct
comparison between calculated bulk moduli that do not
include finite-temperature effects and experiments is dif-
ficult and perhaps not very meaningful; rather, we hope
that the DMC calculations of bulk modulus will be use-
ful to benchmark DFT calculations. There are many
examples of DFT calculations of bulk moduli for zir-
conia and hafnia that do not include finite-temperature
corrections39,43,85. These results have large spreads de-
pending on what code and what flavor of DFT was used.
Therefore, we believe there is value in our DMC values
to serve as a guide for future DFT studies, both for bulk
modulus as well as for cohesive energy (and lattice pa-
rameters).
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FIG. 11. DFT density of states (DOS) and projected DOS for (a) cubic, (b) tetragonal, and (c) monoclinic phases of zirconia
(top row) and hafnia (bottom row) obtained using the DFT HSE06 hybrid functional and QE. The insets in the center panels
for the tetragonal phases show enlargements of DOS and PDOS near the conduction band edge.

FIG. 12. Experimentally measured lattice parameter a as
function of temperature for (a) zirconia and (b) hafnia poly-
morphs. We used cubic and polynomials to extrapolate lat-
tice parameters to 0 K except for c-ZrO2, for which we used
a linear fit. The experimental lattice parameters are from
Refs. 23, 33, 92–95. Note that for the tetragonal phases, we
are reporting a value for a that is

√
2 larger than the values

in Tables IV - VII.

The validation of our pseudopotentials for atomic and
bulk hcp Zr and Hf shows that the pseudopotentials
give excellent results, and errors arising from the DMC
pseudopotentials can be neglected. A potential source of
error in the DMC calculation is that the nodal surface
may not be optimal. We routinely use LDA+U and
PBE+U to minimize the DMC ground state energy as
function of U in the trial wavefunction. LDA+U tends
consistently to give lower DMC energy than PBE+U,
which is why we used LDA+U here (we did not here
present the results for the PBE+U optimization of U)
to obtain trial wavefunctions for the QMC calcula-
tions. This is also consistent with other DMC work on
transition metal oxides72–74 where such optimization of
the nodal surface has shown to be a very efficient way

in general yielding results of structural parameters in
very good agreement with available experimental data.
While this optimization does not guarantee that the
true ground state has been obtained, our experience
has shown that it works very well. Future methods
under development will include expansion of the trial
wavefunction in a large number of determinants selected
perturbatively. It is expected that those methods, when
implemented, will obtain extremely good nodal surfaces.
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