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Abstract 
In crystalline solids, grain boundaries (GBs) play a significant role in determining a large 
number of material properties. The design and synthesis of special GBs has been a long-standing 
challenge in materials science and engineering. Here we demonstrate a new mechanism to 
produce special GBs. Unique multi-grain structures can be obtained through cyclic, diffusionless 
phase transformations under external fields, with all GBs being coherent special GBs. The 
crystallographic character of the GBs produced in this way is dictated by the broken symmetry 
during the phase transformations, while the topology of the GB network is determined by the 
geometric compatibility and self-organization of the multi-grain structures. Such a new 
mechanism not only suggests a novel method of GB engineering, but also reveals a fundamental 
relationship between special GBs and phase transformations from a crystallographic point of 
view. 
 
Introduction 
 
In materials science and engineering, extensive attentions have been given to grain boundaries 
(GBs) because of their critical importance in determining material properties [1-6]. As a 
consequence, a number of processing techniques have been developed to tailor material 
properties through GB engineering. For example, grain refinement is one of the most efficient 
ways of strengthening according to the Hall-Petch equation [7, 8], which leads to an excellent 
combination of strength and ductility. Special thermodynamic and kinetic phenomena are also 
widely observed near GBs, e.g., GB segregation (including segregation transition) [9] and GB 
diffusion, which are exclusively contained in GBs and do not exist in the bulk. In the emerging 
field of GB engineering, GBs are optimized for desired material properties. Two basic characters 
of GBs considered in GB engineering are (1) the crystallographic and geometric features of GBs, 
e.g., misorientation and inclination and, (2) the topology of the GB network [2-4, 10]. As 
discovered in experiments, unique properties can be associated with the so-called special GBs [1, 
11]. From a crystallographic point of view, special GBs (also called Σ GBs sometimes) are 
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usually featured by specific values of misorientation that allow atomic sites from neighboring 
lattices of adjacent grains to coincide, and the reciprocal density of coinciding sites is designated 
as Σ. For a given misorientation, a special GB can be either coherent if the boundary plane is 
low-index (i.e., all lattice planes are continuous from one grain to the other across the GB), or 
incoherent if the boundary plane is irrational (usually high index in experiments). Coherent 
special GBs can exhibit sharp extrema for a number of orientation-dependent properties. These 
properties, including GB energy and mobility, fracture toughness, diffusivity, defects migration 
rate and corrosion resistance, are usually distinctive at various types of coherent special GBs [11]. 
 
Topology of GB network (or GB network connectivity) is another critical factor not only 
determining the thermodynamic stability and the evolution of GB network but also affecting 
several material properties [4, 10]. For example, the branching features of the network (i.e., grain 
junctions and nodes) control diffusion, corrosion and oxidation behavior, and environmental-
assisted inter-granular crack propagation caused by the transport along GBs. In addition, as 
reported in the literature, a reasonable balance of strength and ductility can be achieved by 
introducing ultra-fine isolated grains into a matrix grain, which also suggests a critical link 
between unique topology of GB network and material properties [12]. However, despite their 
importance, the above two characters are usually difficult to control precisely in GB engineering. 
One conventional technique of GB engineering is the production of annealing twins through 
iterative cold working and annealing, where the proportion of special twin boundaries could be 
over 60% including both coherent and incoherent twin boundaries. Another technique is pulsed 
electrodeposition, which can produce lamellar structures with a large amount of Σ3 coherent twin 
boundaries [13]. However, most of the existing GB engineering techniques can only be applied 
to the coherent Σ3 GB in face-centered-cubic (FCC) crystals, because the grain boundary energy 
of this specific type is much lower than those of other candidate GBs in FCC. To the best of our 
knowledge, a general approach to precisely design other coherent GBs (e.g., Σ5 and Σ7) in FCC 
materials or coherent special GBs in other crystal systems, e.g., body-centered cubic (BCC) and 
hexagonal close-packed (HCP) structures, is still unavailable. 
 
Since the characters of GBs are difficult to precisely control in the diffusional processes (e.g., 
annealing) discussed above, it is natural to consider the possibility of utilizing diffusionless 
processes. In fact, it is recently reported that crystalline defects, such as dislocations and special 
GBs, can be produced by the diffusionless phase transformations in which the symmetry groups 
of the parent and product phases cannot be included in a common finite group [14]. However, 
because such phase transformations are beyond the reach of Landau’s classical phase transition 
theory [14, 15], the formation mechanism of transformation-induced defects is still unclear due 
to the lack of a mathematical tool. In particular, it has not been well recognized that special GBs 
are intrinsically associated with the broken symmetry during phase transformation cycling. 
During this process, a large number of crystallographically equivalent structural states, not 
confined in a single Ericksen-Pitteri neighborhood (EPN) [14, 16], can be generated through 
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transformation cycling, which provides plenty of fundamental building blocks for GB design. 
EPN is a neighborhood surrounding a unique high symmetry structural state (e.g., the structural 
state of the parent phase) in the deformation space (or strain space). Within the EPN, all the other 
states have relatively low symmetry comparing with the high symmetry state [14]. In other word, 
considering a continuous deformation process from the high symmetry state to any other state in 
the EPN, we only expect the loss of symmetry operations (a group-subgroup relation between the 
symmetry groups of the initial and final states). Note that GBs generated by transformation 
cycling is distinctively different from the twin boundaries produced by one-way transformation, 
because the latter is always confined in a single EPN while the former could involve a few 
different EPNs. As will be shown in the following, by employing a newly developed theoretical 
framework, i.e., phase transition graph (PTG) [17], we can systematically determine the special 
GBs generated during diffusionless phase transformation cycling where all of the structural states 
(as well as domain states) and GBs self-organize into a special polycrystalline aggregate. 
 
In this work, inspired by recent experimental observations of transformation-induced GBs and 
self-accommodated multi-domain structures [18-20], we propose a new means to design and 
develop multi-grain structures through diffusionless phase transformation cycling. All GBs 
produced in this way are coherent special GBs, the types of which are dictated by the broken 
symmetry during the phase transformations. The topology of GB network is dictated by 
geometric compatibility and self-organization of multi-grain structures. To illustrate the generic 
mechanism, a phase transformation from square lattice to hexagonal lattice in 2-dimensional (2D) 
is analyzed first. It is shown that the GBs generated during a transformation cycle are Σ5 
boundaries. Purely from crystallographic point of view, we demonstrate that a multi-grain pattern 
with all Σ5 boundaries and a unique topology of GB network, i.e., isolated small grains 
embedded in one matrix grain, could be generated during a transformation cycle. A similar 
mechanism is also found in Ti and Zr alloy systems undergoing the transformation cycling 
between BCC and HCP, in which the targeted multi-grain structures can be controlled through 
applying an external field, i.e., stress field. By applying a uniaxial compression during 
transformation cycling, we design a unique self-organized cross-twin structure (twins within 
twins) with Σ3 and Σ7 boundaries, the stability of which is demonstrated by both 
crystallographic analysis and phase field simulations. The size of the grains produced in this way 
is determined by the interplay between GB energy and elastic interaction, which is typically in 
the nano/submicro-scale. 
 
Construction of Phase Transition Graph 
 
Mathematically, a phase transformation between two structural states (the two states usually 
belong to two phases) can be interpreted as a pairwise relation and represented conveniently by a 
graph. For a PTG, G(V, E), V={vα1, vα2, …, vβ1, vβ2, … } is a set of vertices that correspond to 
different structural states of α, β, ... phases, and E is a set of edges that connect the vertices 
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(describes transformation pathways among different structural states). To illustrate PTG 
construction at an intuitive level, we first consider a typical structural phase transformation in 2D 
between square and hexagonal lattices with the lattice correspondence shown in Fig. 1. 
According to the group theory [21], the transformation from square to hexagonal generates two 
variants, while that from hexagonal to square generates three variants. By choosing a reference 
state (e.g., the square state in the center of Fig. 1(a), or S1 in Fig. 1(b)), all the other vertices 
represent different structural states (or deformation states) with respect to the reference (Fig. 2(a)) 
and their connectivity can be determined through linear algebraic procedures [17], leading to the 
construction of a PTG (Fig. 2(b)). This PTG is infinite and interconnected, because the symmetry 
groups of the two phases (i.e., square and hexagonal) cannot be included in a finite common 
group [14]. Note that each structural state (corresponding to a vertex in the PTG) is uniquely 
determined associated with lattice correspondence, which could be in any orientation (parallel to 
the concept of objectivity or frame indifference in continuum mechanics) [22]. 
 
PTG is a theoretical framework to capture the connectivity of multiple structural states in 
different phases through transformation pathways, and all the accessible structural states during 
phase transformation cycles can be systematically determined. For example, starting from S1, 
HEX1 and HEX2 can be reached after a forward square to hexagonal transformation. During a 
backward transformation from hexagonal to square, HEX1 can transform to S1/S2/S3, while 
HEX2 can transform to S1/S4/S5. As a result, the structural states of S2-S5 could be reached 
after one transformation cycle, and more and more states can be reached after multiple 
transformation cycles [17]. All of the S2-S5 vertices are in the square lattice, but they are 
different structural states, which can be obtained by applying different lattice-invariant 
deformations on S1. Note that the description of transformation pathways in PTG is beyond the 
reach of Landau’s phenomenological theory, in which a unique high-symmetry state that has all 
the symmetry elements of the low symmetry states is required. However, in the above 2D 
example of the transformation between square and hexagonal, a crystalline state having both 
four-fold and six-fold symmetry is theoretically impossible. The same is true for the FCC to 
BCC transformation through the Bain path, and the BCC to HCP transformation through the 
Burgers path [23, 24]. 
 
Grain boundary generation during the square to hexagonal transformation 
 
Based on all the accessible structural states identified in the PTG, domain and defect structures 
generated during the square to hexagonal transformation can be systematically analyzed, with the 
incorporation of the geometric constraint (e.g., kinematic compatibility). For example, 
considering one transformation cycle (starting with S1) from square to hexagonal and back to 
square, the deformation gradient matrices for all the accessible states (S1-S5) can be determined, 
and the possible defect structures between the states of S1 and S2 can be predicted by solving 
kinematic compatibility condition [22, 25-28].  
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The deformation gradient matrices for structural states of S1, S2 and S5 are as follows [22, 27, 
28]: ۴ௌଵ ൌ ቂ1 00 1ቃ , ۴ௌଶ ൌ ቂ1 10 1ቃ , ۴ௌହ ൌ ቂ 1 0െ1 1ቃ    (1) 

 
Considering two neighboring grains (or domains) in different structural states (e.g., S1 and S2), 
we could expect a boundary between the two grains, and the type of the boundary as well as the 
misorientation between the two grains is dictated by the compatibility condition. For example, 
the defect structures between S1 and S2 are determined by [22, 25-28]: 

۴ௌଶۿ  െ ۴ௌଵ ൌ ܊ ٔ  (2)      ܖ
 

where Q is a rigid-body rotation, ⊗  is the dyadic product. b and n are the shear vector and shear 
plane normal of a lattice invariant shear. The above equation is known as the Hadamard jump 
condition or invariant plane strain condition in continuum mechanics and phase transformation 
crystallography [22, 25-28]. n suggests the normal of a compatible grain boundary, while Q is 
the relative rotation between the two grains, which suggests the misorientation.  
 
Two solutions of Eq. (2) can be obtained, 
 

ቐ܊ଵ ൌ ቂ10ቃܖଵ ൌ ቂ01ቃ, ቐ܊ଶ ൌ ଵହ ቂെ12 ቃܖଶ ൌ ቂ21ቃ       (3) 

 
which correspond to two different types of defect structures in the square lattice. The first 
solution suggests dislocations with Burgers vector of <10> on {01} plane. The second solution 
suggests a Σ5 GB on (21) plane with a misorientation of 53.13°. Note that the generation of 
coherent special GBs rather than general GBs could be expected because all the coherent special 
GBs are associated with certain symmetry operations in crystal lattice, which correspond to the 
broken symmetry during the phase transformation and transformation cycles. 
 
With the knowledge of fundamental building blocks of structural states (e.g., S1-S5) determined 
by the PTG and the spatial relation among them (e.g., Σ5 boundary with 53.13° misorientation), 
self-organized multi-grain patterns can be constructed, which is parallel to the self-
accommodation of martensite domain structures in shape memory alloys [22]. The formation of a 
possible self-accommodated multi-grain structure is shown in Fig. 2. In Fig. 2(a), it is a single 
crystal in S1 state before the transformation, and the regions indicated by different colors will go 
through different pathways during the transformation cycle. In Fig. 2(b), different grains shown 
by different colors are in different structural states or orientations. We should note the difference 
and connection between structural state and orientation. A grain in a given structural state could 
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be in any orientation (e.g., grains colored by light green and dark green are in S1 but different 
orientations), and two grains in different structural states could be in the same orientation (e.g., 
grains colored by orange and blue are in S2 and S5, respectively, but the same orientation). All 
the grains are in the square lattice in Fig. 2(b), so that all the boundaries are GBs. As shown in 
Fig. 2(b), there are three structural states (i.e., S1, S2 and S5) involved with only two different 
orientations. It is interesting to find that grains in S1 can exhibit both of the two orientations (the 
light green and dark green domains). The ones colored in light green are without rotation, while 
the ones colored in dark green are with 53.13° rotation. The grains in structural states of both S2 
(orange) and S5 (blue) have the same orientation as that of the dark green grains, so that the 
boundaries among them (Σ1 GBs) cannot be distinguished in terms of lattice continuity (Fig. 
2(b)). As a result, the whole multi-grain structure can be regarded as multiple isolated grains 
(light green) embedded in one large matrix grain (dark green, orange and blue). All the small 
isolated grains share the same misorientation of 53.13°, while all the GBs are Σ5 boundaries. 
Also note that such a multi-grain structure can periodically repeat to fill the whole space in 2D 
without any gap or overlap, which is critical for the formation of a compatible structure in 
macroscopic materials. 
 
Note that this multi-grain structure produced through diffusionless phase transformation is 
unique in terms of geometry and topology. For conventional techniques in GB engineering, e.g., 
iterative cold working and annealing, it is difficult to precisely control the type of GBs, due to 
the high atomic mobility at annealing temperature. A large fraction of a specific type of GBs 
cannot be easily obtained unless there is an extremely strong GB energy anisotropy. In contrast, 
all the GBs produced through diffusionless phase transformation have to be coherent special GBs, 
the types of which are dictated by the broken symmetry during the phase transformation. In 
addition, such a unique topology, i.e., isolated small grains embedded in one matrix grain, is hard 
to obtain through annealing, because the GB energy will drive the shrinking of isolated small 
grains, when GB migration is allowed at elevated temperature. As the size of the isolated grain 
becomes smaller, the driving force (proportional to the GB curvature) becomes larger. As a result, 
it is difficult to stabilize nano-sized isolated grains at elevated temperature, even though they 
could lead to distinctive material properties (e.g., strength and ductility) [12]. However, as shown 
in Fig. 2(b), all the GBs are planar Σ5 boundaries, and the isolated grains can be stabilized due to 
very low mobility of special GBs at low temperature. In addition, because of the spatial 
correlation among the multi-grains (i.e., compatibility constraint), any diffusionless motion of 
the GBs will lead to the increase of either elastic energy (e.g., domain deformation) or grain 
boundary energy (e.g., coherent twins become incoherent). Given that Σ5 GBs are the special 
GBs with the lowest Σ value in square lattice (suggesting the maximal number of coincide lattice 
sites), the multi-grain structure shown in Fig. 2(b) is stable at low temperature (diffusional GB 
migration is not allowed). Note that such a mechanism suggests a new way to produce stabilized 
nano-grain structure, and the size of the isolated grains is determined by the interplay of GB 
energy and elastic interaction energy (if the GB energy is larger, the grain size becomes larger), 
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which is parallel to the formation of modulated nano-domain structures during structural phase 
transformations [22, 28]. 
 
The above example in 2D is informative to illustrate the crystallographic origin of multi-grain 
structures (with coherent special GBs) generated by phase transformation cycling. It also 
establishes the theoretical foundation to describe this phenomenon. From a mathematical point of 
view, Fig. 2 provides a way to fill a space completely with several specific types of building 
blocks without any gap or overlap. The building blocks are associated with the nature of the 
phase transformation, i.e., symmetry breaking. The way the building blocks arrange themselves 
is constrained by the compatibility among different domains, e.g., Eqn. (1)-(3), which can be 
easily understood through Fig. 2. 
 
Design of self-organized multi-grain structures in BCC crystal 
 
As shown in the above 2D example of the square to hexagonal transformation, a unique isolated 
grain structure can be constructed by an appropriate choice of structural states (i.e., S1, S2 and 
S5). Those structural states could be self-organized due to compatibility (or elastic interaction), 
which suggests a thermodynamic feasibility of the formation of such a multi-grain structure. 
However, we can also expect kinetic difficulties in this process. During the transformation from 
square to hexagonal, structural states of HEX1 and HEX2 are crystallographically and 
energetically equivalent (Fig. 1). So, we expect an equal probability of the formation of domains 
in HEX1 and HEX2 states. During the backward transformation from hexagonal to square, for 
the domains starting with HEX1, there is an equal probability to reach S1, S2 and S3. Similarly, 
the domains starting with HEX2 have an equal probability to reach S1, S4 and S5. As a result, 
after a whole transformation cycle, the final probabilities that a grain is in the structural state of 
S1, S2, S3, S4, S5 could be simply estimated as 1/3, 1/6, 1/6, 1/6, 1/6, respectively (by ideal 
random selection without considering the spatial correlation among multiple domains). 
Considering the grain structure formed in Fig. 2, we only need S1, S2 and S5 in particular, which 
could be difficult to be achieved in such a “random walk” process (random walk of structural 
state in PTG). In other words, in order to obtain the unique grain structure shown in Fig. 2, a 
strong bias preferring S2 and S5 (over S3 and S4) should be applied. The bias could be some 
kind of external field. For a general design strategy of the bias, we will take a real material 
system, where the physical nature of the phase transformation determines the type of the bias. 
 
Real material systems in 3-dimensional (3D) space are rather complex. Five degrees of freedom 
of GBs in 3D space provides more choices of special GBs during phase transformation cycling. 
Here we consider a transformation cycle between BCC and HCP through the Burgers path, 
which is typically found in Ti and Zr alloy systems. Note that the symmetry groups of BCC and 
HCP cannot be included in a common finite group, because a crystalline state with both four-fold 
and six-fold rotational symmetry is theoretically impossible. As reported in the literature [21], 
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starting from one BCC state, twelve crystallographically equivalent HCP states can be generated 
through the Burgers path, which can be divided into six shear modes. The two HCP states within 
the same shear mode have opposite internal shuffles, which lead to different stacking sequence 
along [0001] direction (i.e., one HCP has ABAB… stacking sequence while the other has 
ACAC… stacking sequences). In our following analysis, these two HCP states within the same 
shear mode will not be distinguished (described by one vertex in PTG), since they are exactly the 
same in terms of both crystal orientation and shear mode. During the reverse transformation from 
HCP to BCC, three crystallographically equivalent BCC states are generated due the loss of the 
three-fold rotational symmetry in HCP. 
 
The PTG for the BCC to HCP transformation is shown in Fig. 3. Each BCC state is neighbored 
with six HCP states (6 shear modes), while each HCP state is neighbored with three BCC states. 
Starting from B1, we can get another twelve BCC states, i.e., B2-B13, after a transformation 
cycle. All of the BCC states can be taken as building blocks to construct a self-accommodated 
multi-grain structure. Here we choose four BCC states, i.e., B2-B5, and the deformation gradient 
matrices for those states are as follows (B1 is chosen as the reference state, i.e., the identity 
deformation gradient matrix), 
 ۴ଶ ൌ ൥ 0.75 െ0.25 െ0.5െ0.25 0.75 െ0.50.75 0.75 െ0.5൩ , ۴ଷ ൌ ൥ 0.75 െ0.25 0.5െ0.25 0.75 0.5െ0.75 െ0.75 െ0.5൩,    

     ۴ସ ൌ ൥ 0.75 0.25 0.50.25 0.75 െ0.5െ0.75 0.75 0.5 ൩ , ۴ହ ൌ ൥0.75 0.25 െ0.50.25 0.75 0.50.75 െ0.75 0.5 ൩  (4) 

 
Both the crystallographic analysis and the phase field simulations suggest that grains in B2-B5 
states can form a self-accommodated cross-twin structure as shown in Fig. 4 [29]. The atomic 
structure is visualized using the Ovito software [30]. Grains in different structural states are 
plotted in different colors (blue: B2; green: B3; yellow: B4; red: B5). For this structure, it can be 
found that all the GBs between different grains are coherent special GBs. The cross-twin 
structure can also be regarded as “twins within twins”. As shown in Fig. 4, blue and green grains 
with Σ3 boundaries (also yellow and red grains) form 1st-level twins, while (blue/green) and 
(yellow/red) grains with Σ7 boundaries form 2nd-level twins. 
 
Even though both the crystallographic analysis and the phase field simulation suggest the 
stability of such a cross-twin structure, an engineering design to precisely select the four domain 
states (i.e.,g B2-B5) is still required. Since the BCC to HCP transformation is a typical phase 
transformation in response to a stress field, we expect that a biased stress could serve the purpose. 
The transformation strains for the structural states of B2-B5 can be determined through 
Lagrangian finite strain formula, 

 ۳௜ ൌ ۴೔೅۴೔ିூଶ , ݅ ൌ 2~5     (5) 
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۳ଶ ൌ ൥0.09375 0.09375 0.06250.09375 0.09375 0.06250.0625 0.0625 െ0.125൩ , ۳ଷ ൌ ൥0.09375 0.09375 െ0.06250.09375 0.09375 െ0.0625െ0.0625 െ0.0625 െ0.125 ൩,  
۳ସ ൌ ൥ 0.09375 െ0.09375 െ0.0625െ0.09375 0.09375 0.0625െ0.0625 0.0625 െ0.125 ൩ , ۳ହ ൌ ൥ 0.09375 െ0.09375 0.0625െ0.09375 0.09375 െ0.06250.0625 െ0.0625 െ0.125 ൩,  

 (6) 
 
From the above transformation strains, it is clear that a uniaxial compressive stress along the 
[001] direction is the most convenient biased-load condition to make exactly the desired four 
BCC states (i.e., B2-B5) energetically favorable. And it can be easily shown that such a uniaxial 
stress will not favor B6-B13. 
 
As reported in the literature, cross-twin structures are commonly observed in low-symmetry 
phases (e.g., orthorhombic and monoclinic) during diffusionless phase transformations, as a 
result of autocatalytic nucleation and self-accommodation [19, 22, 28, 31]. In such cases, the 
structural states in low-symmetry phases are within a single EPN. By designing a cross-twin in a 
high-symmetry (i.e., BCC) phase with the structural states in multiple EPNs involved, we also 
suggest a thermo-mechanical process to generate the multi-grain structure in Fig. 4, i.e., a 
thermal transformation cycling with a uniaxial compressive biased-load. The microstructure 
evolution during the transformation cycling is illustrated schematically in Fig. 5 and the atomic 
structure are shown in Fig. 6. Starting from a single crystal in B1 state at high temperature, a 
uniaxial compressive biased-load is applied and maintained during the whole thermal cycling 
process. When the system is quenched to low temperature, HCP becomes the stable phase. Two 
HCP variants, in H1 and H2 states, are energetically favored (over H3-H6) by the biased-load, 
leading to a {1012} type of twin in HCP. Thereafter, the system is heated to high temperature, 
and BCC becomes the stable phase again. During the heating, each HCP domain has three 
choices. It can either go back to the initial BCC state or transform to new BCC states, e.g., the 
domain in H1 state can transform to B1, B2 or B3 state. Since the biased-load makes all the four 
new BCC states (i.e., B2-B5) energetically favorable, the HCP domains would prefer to 
transform to the new BCC states. As a consequence, the {1012} type of twin boundaries in HCP 
becomes a special type of GBs (Σ7 boundaries) in BCC, and a new type of grain boundaries (Σ3 
boundaries) can be generated, since the biased-load equally favors the four structural states of 
B2-B5. In ideal case, the whole process does not produce internal stress when the designed 
microstructure forms (i.e., microstructures in Fig. 5), as proven by our crystallographic analysis. 
During the whole transformation cycle, the macroscopic shape of the system changes, i.e., it 
elongates along [100], [010] directions and contracts along [001] (due to the biased-load), 
generating the following averaged strain (if the volume fractions of all the four kinds of domains 
are 25% [29]), 
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۳௔௩௘ ൌ ۴ೌೡ೐೅ ۴ೌೡ೐ି۷ଶ ൌ ൥0.08333 0 00 0.07143 00 0 െ0.125൩   (7) 

 
Theoretically, the volume fractions of the four kinds of domains are adjustable with the 
constraint: fB2 : fB3 = fB5 : fB4, which could change the averaged strain as well. 
 
With the deformation gradient matrix for each domain calculated, the atomic structure during 
lattice distortion can be generated using Ovito [30]. The formation mechanism of special GBs 
generated by transformation cycling is shown in Fig. 6. All the domain states are referred to the 
structural state in Fig. 3. Starting from a single crystal in B1 state, a {1012} twin forms during 
the BCC to HCP transformation. To satisfy the compatibility condition, there is a rotation of 
3.37° between H1 and H2 domains, so that the twin boundary (dashed line) is not horizontal in 
Fig. 6. In addition, the relaxation of a number of atoms near the twin boundary (the green atoms 
near the dashed line) will be expected, which is parallel to the local relaxation during the 
formation of {1012}  deformation twin in HCP structures. A subsequent transformation from 
HCP to BCC produces the cross-twin structure with Σ3 and Σ7 GBs. We also choose another 
convenient viewing direction (a common <111> for B2-B5 domains), shown in the second row 
of Fig. 6. Considering the difference between the initial and final structures, the initial one is a 
single crystal while the final one is a multi-grain structure with a macroscopic shape change (Eqn. 
(7)). Note that both the initial and the final structure can periodically repeat to fill the whole 
space in 3D, without any gap or overlap. 
 
The change of atomic structure in a single domain is shown in Fig. 7 to further illustrate the 
mechanism clearly. The domain undergoes a B1 to H1 to B2 transformation cycle (referred to the 
structural state in Fig. 3). The viewing directions for the upper and lower rows are ሾ001തሿ and ሾ1ത10ሿ, respectively, in B1 index. In H1 state (second column), there is a six-fold rotational 
symmetry with a rotation axis of ሾ0001ሿுଵ/ሾ1ത10ሿ஻ଵ. B1 and B2 are two crystallographically 
equivalent structural states with respect to H1, and they can be connected by a lattice-invariant 
deformation. As a result, the macroscopic shape of this domain changes during the 
transformation cycle. In general, all the domains should have cooperative shape changes (or self-
accommodation) to avoid internal stress and the generation of dislocations. 
 
The {1012}type of twin structures formed during the BCC to HCP transformation have been 
widely observed in experiments, with a typical domain size of hundreds of nanometers [32]. In 
addition, coherent special GBs, e.g., Σ3 and Σ11 (characteristic GBs between domain states of 
B1 and B2), are also observed during the BCC to HCP transformation cycling in Ti-alloys and 
the α to ε transformation in Fe-alloys induced by either temperature or stress [33-37]. With the 
above necessary pieces, the formation of cross-twin structures should also be expected with an 
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elaborated processing design. Up to now, there is no direct experiment with the thermo-
mechanical processing as we suggest, so the cross-twin structure in BCC has not been observed 
yet. Since the mechanism we propose requires an interdisciplinary knowledge of crystallography 
and phase transformation within a new mathematical framework (beyond the reach of Landau’s 
theory), PTG, it is rather difficult to elucidate without a theoretical guideline. Also note that the 
energetic competition between GBs and dislocations are not considered in the above, which is 
beyond the scope of crystallography analysis. As observed in experiments, both dislocations and 
GBs can be generated by transformation cycling [18, 20, 33]. We have a few suggestions 
regarding this competition from a crystallographic point of view. Firstly, when the symmetry of 
the product phase is reduced, e.g., HCP is reduced to orthorhombic (orthorhombic is a subgroup 
of BCC), twin could become dominant over dislocations. In experiments, the HCP phase in Ti 
can change to α” (orthorhombic) by introducing alloy additions (e.g., Mo, Nb, etc.), which leads 
to twin-dominant microstructures during the transformation [32]. A similar phenomenon of 
twin/dislocation competition is also reported in Fe alloys with carbon addition (i.e., steels). A 
relatively low temperature is preferred, which kinetically favors twinning over dislocation. 
Secondly, the geometric features of the cross-twin structure (e.g., all compatible boundaries and 
spatial periodicity) are critical for the nucleation, growth and the self-organization of multiple 
domains [29], because of the macroscopic shape change. As reported in the literature, the cross-
twin domain structures are widely observed in experiments as a self-accommodated 
microstructure [19, 22, 28, 31], which strongly suggests the feasibility of such a self-organization 
process. In addition, a volume change as small as possible (e.g., <1%) during the transformation 
is also required. Otherwise, dislocations will be induced inevitably during the transformation. 
Thirdly, a low level of biased-load during the forward transformation is preferred, which assists 
the pathway selection but does not activate the possible symmetry-dictated non-phase 
transformation pathway [17, 18]. In contrast, a relatively high level of biased-load is required 
during the backward transformation to drive the domains to new structural states rather than the 
original. However, the biased-load stress should be always lower than the yield strength of either 
the parent or the product phase. Fourthly, the same mechanism shown in Fig. 5 will not be 
limited within BCC/HCP transformation. For example, the transformation between γ (BCC) and 
α (face-centered orthorhombic) in uranium-alloys shares similar broken symmetry. As a result, 
the cross-twin structure with Σ3 and Σ7 (Fig. 4) can also be expected during the transformation 
cycling in uranium alloys. Theoretically, {1012}type deformation twins in HCP (similar to the 
structure in the middle of Fig. 5) could also produce the cross-twin structure after a 
transformation to BCC (with appropriate biased-load), which is a one-way transformation rather 
than cycling. 
 
Besides the system of the BCC to HCP transformation presented above, a few general strategies 
to select other material systems to produce special GBs can also be suggested. A reconstructive 
phase transformation (the symmetry groups of the parent and product phases cannot be included 
in a common finite group) is required to generate multiple structural states, which are the 
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necessary building blocks to generate multiple grains as well as GBs among them. A self-
accommodated multi-grain structure is also required for vanishing elastic strain and internal 
stress, which is critical to prevent plastic yielding and dislocation generation. A self-
accommodated structure is related to the symmetry change, while a volume change as small as 
possible during the phase transformation is another critical factor to reduce internal stress and 
prevent dislocation plasticity. An energy-based model should be required to quantify the 
competition between GBs and dislocations. However, it is beyond the scope of our current 
crystallographic analysis. Theoretically, the conventional Landau phase transition theory cannot 
capture the nature of the mechanism we propose. Instead, order parameters associated with 
translational symmetry [38, 39] should be employed to describe the cycling process of 
reconstructive phase transformations. 
 
Here we summarize the major procedures in designing and synthesizing unique multi-grain 
structures and special GBs through diffusionless phase transformation cycling: 
 
(1) Select a material system with a structural phase transformation, in which the symmetry 
groups of the parent and product phases cannot be included in a common finite group; 
(2) Construct the PTG and identify possible structural states during transformation and 
transformation cycles (similar to Fig. 3); 
(3) By utilizing the structural states in the PTG as building blocks, construct a self-
accommodated multi-grain (i.e., polycrystalline) structure with coherent special GBs (similar to 
Fig. 4); 
(4) Select an appropriate external field to make the necessary structural states (or building blocks) 
energetically favorable; 
(5) Suggest a formation process of the multi-grain structure according to the transformation 
pathways in the PTG (similar to Fig. 5). 
 
Conclusion 
 
We propose a new mechanism to produce special grain boundaries through diffusionless phase 
transformation cycling. Both the geometric character of grain boundaries and the topology of 
grain boundary network produced in this way are unique, which could lead to favorable material 
properties. Comparing with conventional methods in grain boundary engineering, the following 
distinctions of the method presented in this work should be noted: 
 
(1) All the grain boundaries are coherent special grain boundaries, the types of which are dictated 
by the broken symmetry during the phase transformations; 
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(2) The topology of the grain boundary network is determined by the spatial correlation of the 
multi-grain structure, which can be precisely designed and controlled by applying external fields 
during the phase transformations; 
 
(3) The multi-grain structures are free of internal stress (in ideal case); 
 
(4) A new theoretical framework, phase transition graph, is employed to investigate the 
generation of grain boundaries during phase transformations, which is beyond the reach of 
Landau’s phase transition theory; 
 
(5) The work suggests a new methodology for a precise design and synthesis of coherent special 
grain boundaries, with a grain size at the nano/submicro-scale. 
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Fig. 1. Construction of the phase transition graph for a square to hexagonal transformation: (a) 
change of crystal structure; (b) vertices and edges in PTG. (Blue and dark red lines in (a) 
represent two independent vectors in the 2D lattices and they also indicate the lattice 
correspondence among all the structural states in (b)). The orange shapes in (b) indicate lattice-
invariant deformations of original square lattice S1 and the corresponding new square lattices are 
represented by dotted lines. 
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Fig. 2. Multi-grain structure produced through a square to hexagonal transformation: (a) single 
grain in S1 state before phase transformation; (2) a multi-grain structure with S1, S2 and S5 
domain states after one forward-backward transformation cycle. See Fig. 1 for S1, S2 and S5 
structural states of the square phase. 
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 Fig. 3. PTG for the BCC to HCP transformation. 
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Fig. 4. A cross-twin multi-grain structure formed in BCC: (a) atomic structures; (b) phase field 

simulation result. 
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Fig. 5. Schematic drawing of the formation process of multi-grain pattern in BCC through 

biased-load thermal cycling. 
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Fig. 6. Atomic structure for the formation of multi-grain pattern in BCC during transformaiton 

cycling. 
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Fig. 7. Lattice distortions in B2 domains during transformation cycling. 

 


