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Constructed to satisfy 17 known exact constraints for a semilocal density functional, the strongly
constrained and appropriately normed (SCAN) meta-generalized gradient approximation functional
has shown early promise for accurately describing the electronic structure of molecules and solids.
One open question is how well SCAN predicts the formation energy, a key quantity for describing
the thermodynamic stability of solid-state compounds. To answer this question, we perform an
extensive benchmark of SCAN by computing the formation energies for a diverse group of nearly
one thousand crystalline compounds for which experimental values are known. Due to an enhanced
exchange interaction in the covalent bonding regime, SCAN substantially decreases the formation
energy errors for strongly-bound compounds, by approximately 50% to 110 meV/atom, as compared
to the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE). However, for
intermetallic compounds, SCAN performs moderately worse than PBE with an increase in formation
energy error of approximately 20%, stemming from SCAN’s distinct behavior in the weak bonding
regime. The formation energy errors can be further reduced via elemental chemical potential fit-
ting. We find that SCAN leads to significantly more accurate predicted crystal volumes, moderately
enhanced magnetism, and mildly improved band gaps as compared to PBE. Overall, SCAN rep-
resents a significant improvement in accurately describing the thermodynamics of strongly-bound
compounds.

I. INTRODUCTION

Density functional theory (DFT)1,2 is the standard ap-
proach for computing the electronic structure of solid-
state materials due to an attractive balance between ac-
curacy and computational efficiency in the Kohn-Sham
approach. If the underlying exchange-correlation (xc) en-
ergy functional Exc were known, in principle DFT would
give the exact ground-state properties of any many-
electron system. In practice, the exact Exc is unknown
and must be approximated. Examples of such approxi-
mations are the well-known local density approximation
(LDA) and generalized gradient approximation (GGA).
Developing improved approximate functionals for DFT
is an important challenge for electronic structure theory.

A substantial weakness of DFT is that, unlike certain
quantum chemistry approaches, there is no straightfor-
ward way to systematically converge to the exact result.
In other words, it is not generally clear how to develop
increasingly more accurate approximations to Exc. How-
ever, Perdew has proposed a general framework to de-
scribe and develop improvements to Exc by including de-
pendence on additional information. In this framework,
known as Jacob’s ladder3, each rung of the ladder is a
more sophisticated approximation to Exc, as shown in
Fig. 1. In the bottom rung, LDA, Exc depends solely the
electron density ρ. The next rung up is GGA, in which
Exc depends on ∇ρ in addition to ρ itself (for example,
in the GGA of Perdew, Burke, and Ernzerhof (PBE)7).
Further up the ladder are more complex Exc function-
als containing explicit dependence on Kohn-Sham wave-
functions ψ, such as hybrid functionals. While beyond-
DFT approaches like DFT+U8 and DFT plus dynamical

mean-field theory (DMFT)9 have not been considered in
the Jacob’s ladder framework, they share a similar phi-
losophy. In these methodologies, the energy functional
relies on the local density matrix or local Green func-
tion, for a set of localized orbitals, in addition to ρ, ∇ρ,
etc.

Meta-generalized gradient approximation (meta-
GGA), the third rung of Jacob’s ladder, takes the Exc

form of GGA and adds an additional dependence on the
positive orbital kinetic energy density

τ =
∑
i

1

2
|∇ψi|2. (1)

Here ψi is the Kohn-Sham wavefunction for the ith oc-
cupied band. Exc now depends on τ in addition to ρ and
∇ρ:

Exc[ρ,∇ρ, τ ] =

∫
ρεxc(ρ,∇ρ, τ) d3r (2)

Here we consider a spin-dependent meta-GGA, just as
the local spin density approximation (LSDA) is the spin-
dependent version of LDA. Therefore, just as Exc of
LSDA depends on the individual spin densities (ρ↑ and
ρ↓), here Exc depends on the different ρ, ∇ρ, and τ for
each spin channel. For brevity, we do not indicate the
separate spin channels in Eq. 2.

We note that, more generally, the meta-GGA rung of
Jacob’s ladder also includes Exc that depends on ∇2ρ in
addition to or instead of τ10. There is evidence that τ
contains essentially the same information as ∇2ρ, though
replacing the dependence on τ with a dependence on ∇2ρ
can lead to some loss of accuracy11,12. Here we only com-
ment on meta-GGA depending solely on τ . τ is an im-
plicit functional of ρ via the Hohenberg-Kohn theorem.



2

LDA

Hartree

Chemical Accuracy

GGA

meta-GGA

hyper-GGA

RPA

..
.

ρ

∇ρ

τ

exact

exchange

unoccupied

orbitals

..
.

FIG. 1. Jacob’s ladder framework for describing different lev-
els of sophistication and accuracy of Exc in density functional
theory. Starting from the Hartree level of theory (Exc = 0)
and attempting to climb towards chemical accuracy, each rung
of the ladder labeled on the left corresponds to additional de-
pendencies of Exc indicated on the right. The top rung listed
is the random phase approximation (RPA). Figure is based on
Refs. 3 and 4. We note that additional methodologies have
been described as rungs in between meta- and hyper-GGA
not shown here5,6.

Therefore, meta-GGA can still be considered a pure den-
sity functional. Meta-GGA functionals are nonlocal since
τ is not local in ρ. However, they can still be considered
as semilocal DFT since they are not explicitly nonlocal
in ρ. Meta-GGA are semilocal in ψ. Although nonlocal
density functionals (involving a double integral in ρ) can
be much more computationally intensive, this is not so in
the case of meta-GGA since the nonlocality stems only
from the dependence on ψ, which is readily available.

In 2015, Sun et al. introduced the strongly constrained
and appropriately normed (SCAN) functional, a new
non-empirical meta-GGA functional13. SCAN satisfies
17 known possible exact constraints for a meta-GGA
functional. One example is the requirement that the ex-
change enhancement factor Fx = Ex/E

LDA
x must be no

larger than 1.174, a constraint derived from the case of
a non-spin-polarized 2-electron density14. Here Ex is the
exchange part of Exc (Ec is the correlation part) and
ELDA

x is the LDA Ex. SCAN is also designed to accu-
rately describe particular systems for which exact results
are known, which are known as norms. The simplest
example of such a norm is the homogeneous electron gas
(jellium), which is exactly described by LDA by construc-
tion. Examples of norms for SCAN include the jellium

surface, as well as the large-Z scaling behavior of the Ex

and Ec for noble gas atoms, where Z is the atomic num-
ber. The norms chosen are called appropriate in the sense
that a meta-GGA should in principle be able to describe
them. Stretched H+

2 is an example of an inappropriate
norm for meta-GGA since in this case the xc hole will be
far from the reference electron15.

The SCAN functional depends on a dimensionless mea-
sure of τ called α defined as:

α =
τ − τsingle-orbital

τuniform
(3)

Here τsingle-orbital = |∇ρ|2/8ρ and τuniform =

(3/10)(3π2)2/3ρ5/3 are the limits of τ for the single or-
bital and uniform density cases, respectively. The elec-
tron localization function16,17 can be written very simply
in terms of α as (1 + α2)−1.
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FIG. 2. Non-spin-polarized exchange enhancement factor for
the LDA, PBE, and SCAN density functionals as a function
of dimensionless density gradient for different α. The SCAN
functional is constructed based on 3 different limits of α cor-
responding to the different bonding regimes indicated.

To illustrate the degree to which SCAN differs from the
first two rungs of Jacob’s ladder, in Fig. 2 we plot the
non-spin-polarized exchange enhancement factor versus
the reduced density gradient s = |∇ρ|/[2(3π2)1/3ρ4/3],
for different α. SCAN distinguishes between three differ-
ent bonding regimes: metallic (α = 1), covalent (α = 0),
and weak (α→∞). Interpolation between these limiting
values is used for other values of α. Just as PBE is built
around LDA, SCAN is built around PBE. Therefore, just
as the EPBE

x → ELDA
x for s→ 0, in the metallic regime

(α = 1), ESCAN
x → EPBE

x → ELDA
x for the same limit.

However, for not-so-slowly varying densities and/or val-
ues of α different from unity, SCAN shows significantly
different behavior than PBE and LDA.

A limited amount of benchmarking has been performed
on SCAN with respect to solid-state materials. Sun et al.
computed the lattice constant mean average error for 20
simple elemental and binary solids and found values of
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0.081, 0.059, and 0.016 Å for LDA, PBE, and SCAN,
respectively13. Tran et al. benchmarked a plethora
of functionals at the LDA, GGA, meta-GGA, and hy-
brid levels of theory18. In addition to computing the
lattice parameter, cohesive energy, and bulk modulus
for 44 strongly-bound elemental and binary solids (e.g.
Pd, LiF), the lattice parameter and cohesive/binding
energy were computed for 5 weakly-bound solids (e.g.
Ne, graphite). For the strongly-bound solids, SCAN
was found to have the lowest mean absolute relative
errors for all the computed properties as compared to
the commonly-used LDA, PBE, revPBE, PBEsol, BLYP,
TPSS, and PBE0 functionals. The performance of SCAN
for the weakly-bound solids was less impressive on an
absolute scale (mean absolute relative error in the cohe-
sive/binding energy of over 55%), but again here SCAN
out-performed the other common functionals. Several
(though not all19,20) other recent studies on small num-
bers of systems are suggestive that SCAN is a signif-
icant improvement over LDA and GGA for solid-state
materials21–34.

In the present work, we perform an extensive bench-
mark of SCAN for a diverse set of over 1,000 solids. We
focus on the formation energy, which is a central and
widely-used quantity describing the thermodynamic sta-
bility of solid compounds. We also present results for
crystal volume, magnetism, and band gap. In all cases,
we compare SCAN to the GGA (PBE) level of theory.
PBE is chosen due to the connection to SCAN as well
as its prevalence and popularity35. We find SCAN per-
forms remarkably well for strongly-bound compounds,
with a decrease in the formation energy mean average er-
ror of around 50% to 110 meV/atom relative to PBE. For
less strongly-bound compounds, i.e. intermetallic com-
pounds, SCAN shows no improvement compared to PBE;
in fact, it provides moderately worse (by around 20%)
formation energy predictions. The distinct exchange be-
havior of SCAN in the covalent, metallic, and weak bond-
ing regimes is responsible for such trends. SCAN shows
significant improvement in predicted crystal structures.
In particular, we find a mean average volume error 40%
lower than than of PBE. SCAN provides moderately im-
proved band gap predictions compared to PBE, but it
still has much larger errors than fully nonlocal function-
als such as hybrid functionals and many-body perturba-
tion theory approaches. Overall, SCAN is a significant
advance in describing strongly-bound compounds at a
modest increase in computational cost.

II. METHODOLOGY

A. Compound formation energy

We benchmark solid-state thermodynamics via the for-
mation energy

∆Ef = E −
∑
i

xiµi. (4)

Here E is the total energy of a compound containing xi
atoms of element i, which has an elemental chemical po-
tential of µi, in the formula unit. For example, for FeS2,
∆Ef = EFeS2

−µFe−2µS . In this work, all formation en-
ergies are normalized to the number of atoms in the com-
pound formula unit. We assume the PV term is small
for the solid materials studied here, i.e., ∆Ef ≈ ∆Hf ,
where ∆Hf is the formation enthalpy. Therefore, in the
text we use ∆Ef and ∆Hf interchangeably.

B. Elemental reference states

The elemental chemical potentials µ correspond to the
energy per atom of the pure element in a particular ref-
erence state. Here we choose the elemental reference
states to best match the experiments since we compare
to measured formation energies. These reference states
generally correspond to the stable phase at standard
conditions36, with a few exceptions. In the case of P,
α white P is the reference state. Since this phase has a
complicated structure with partial occupancy, we choose
β white P as our reference state37. These two phases have
similar structural motifs. Similarly, in the case of B we
choose α rhombohedral B rather than β rhombohedral B.
For elements with diatomic gases as the reference phases,
we choose the isolated diatomic molecule as our reference
phase. We also consider Xe-containing compounds, for
which we choose the isolated Xe atom as the reference
state. The full list of elemental reference states is given
in the Supporting Information

C. Compound selection

We use the Open Quantum Materials Database
(OQMD)38,39 to acquire the compound and elemental
crystal structures, as well as the tabulated experimental
formation energies. The experimental formation energies
come from two sources: the Scientific Group Thermodata
Europe Solid Substance (SSUB) database40 and the ther-
modynamic database of the Thermal Processing Tech-
nology Center at Illinois Institute of Technology (IIT)41.
Unlike SSUB, the IIT database focuses on intermetallic
compounds.

We find the set of compounds in the OQMD for which
the following criteria are satisfied:

1. Compound does not contain Br or Hg
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2. There is an experimental formation energy reported
for the corresponding composition

3. The compound is reported in the Inorganic Crystal
Structure Database (ICSD)42,43

Criterion 1 is chosen since Br and Hg are liquids at stan-
dard conditions, which are more difficult to model. We
note that the experimental formation energies are tabu-
lated by composition, rather than by the precise struc-
ture, so criterion 2 does not always uniquely identify a
single compound with the composition in the case of
polymorphism. Criterion 3 is chosen to pick out the
structure most likely to correspond to the experimen-
tally measured formation energy. In the case of multiple
distinct structures present in ICSD at the composition,
we choose the lowest-energy compound (based on calcu-
lations in the OQMD). This ensures only a single com-
pound is associated with each composition with a mea-
sured formation energy. 1,793 unique compounds in the
OQMD satisfy these criteria44.

To reduce computational cost, we choose the com-
pounds whose primitive unit cells contain no more than
10 atoms. This corresponds to 1,000 compounds. The
distribution of compounds in terms of number of atoms
in the primitive cell is included in the Supporting Infor-
mation. 912 of the compounds are binary, 87 are ternary,
and 1 (CaMg(CO3)2) is quaternary. 55 of the 1,000 se-
lected compounds are ignored since either (1) there is a
significant discrepancy in different reported experimental
formation energies, (2) the magnitude of the experimen-
tal formation energy is less than 50 meV/atom, and/or
(3) the DFT calculation for the compound or any con-
stituent element failed to converge for one or both of the
xc functionals. This leaves 945 total compounds. The
rationale for excluding these compounds is discussed in
more detail in the Supporting Information. We also in-
clude the full list of selected compounds, in addition to
information on a few exceptions for compound selection,
experimental formation energy values, and experimental
volume values.

III. COMPUTATIONAL DETAILS

DFT calculations are performed using the projector
augmented wave (PAW) method45,46 with a 600 eV plane
wave cutoff using the Vienna ab initio software package
(vasp)47–50. We employ the recommended vasp 5.2 PBE
PAW potentials for all calculations (SCAN and PBE)51

since SCAN PAW potentials do not currently exist. This
represents an approximation (albeit a widely-used one).
The recent work of Yao and Kanai showed that, for
norm-conserving Troullier-Martin pseudopotentials with-
out non-linear core corrections, the use of PBE potentials
for SCAN calculations can lead to differences in certain
cases27. However, such transferability issues are expected
to be less significant for the PAW method since the core-
valence interaction is re-evaluated52. Uniform Γ-centered

Monkhorst-Pack k-point meshes53 with k-point density
of at approximately 700 k-points per Å−3 or greater are
chosen. The average number of k-points times the num-
ber of atoms in the unit cell, another metric of k-point
density, is approximately 11,300. 1st-order Methfessel-
Paxton smearing54 of 0.2 eV is employed for structural
relaxations, while total energy calculations use the tetra-
hedron method with Blöchl corrections55. The energy
and ionic forces are converged to 10−6 eV and 10−3

eV/Å, respectively. Spin-polarized calculations with fer-
romagnetic initialization of 3.5 µB per magnetic site are
employed for compounds containing Sc–Cu, Y–Ag, Lu–
Au, La–Yb, and Ac–No; such initialization is also em-
ployed for O2 to properly capture the triplet ground
state. For elements with gaseous reference states, the iso-
lated atom/molecule is computed using a face-centered-
cubic cell with 15 Å conventional cell lattice parame-
ter and 50 meV Gaussian smearing. We note that our
calculations are performed using tighter convergence pa-
rameters than the existing PBE-based calculations in the
OQMD.

IV. RESULTS AND DISCUSSION

A. Formation energy

The comparison of computed and experimental forma-
tion energies is shown in Fig. 3, which represents the
primary result of this work. The most striking trend
is the significant improvement of SCAN over PBE for
the predicted ∆H for compounds with a large, nega-
tive formation energies. We refer to these compounds
as strongly-bound compounds. This trend is seen most
dramatically for values of ∆Hexp of around −1 to −4
eV/atom. Here the magnitude of ∆Hcalc for PBE is sig-
nificantly lower than that of experiment in a systematic
fashion, corresponding to an underbinding of the com-
pound with respect to the elements. In stark contrast, no
clear systematic underbinding or overbinding of ∆Hcalc

for SCAN is apparent. We note that the SCAN values
for strongly-bound compounds still have deviations (both
positive and negative) from the ∆Hcalc = ∆Hexp line. A
quantitative analysis of the errors, for both functionals,
will be presented further below. For compounds with a
smaller magnitude of ∆Hexp, which we call weakly-bound
compounds, the differences in the accuracy of the predic-
tion for PBE and SCAN are less obvious. As shown in the
histogram of ∆Hexp in Fig. 3, these weakly-bound com-
pounds represent the majority of the experimental data.
This stems in part from the focus of the IIT database
on intermetallic compounds, which generally have low-
magnitude ∆H.

In order to more easily see the difference in accuracy
between ∆Hcalc of PBE and SCAN for the full range of
∆Hexp, in Fig. 4(a) we plot the error ∆Hcalc − ∆Hexp

as a function of ∆Hexp. Histograms of the errors are also
included. Here PBE’s systematic underbinding of ∆H
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FIG. 3. Comparison of calculated and experimental exper-
imental formation energy for the 945 compounds for PBE
and SCAN. Multiple points for the same compound and func-
tional correspond to different sources of experimental forma-
tion energy. The dashed diagonal line corresponds to the
∆Hcalc = ∆Hexp line of perfect agreement. Each bar chart
on the axes corresponds to a histogram, which is stacked in
the case of the experimental formation energy.

for strongly-bound compounds can again be observed in
the region of ∆Hexp of around −1 to −4 eV/atom. In
addition, the errors appear to increase with increasing
magnitude of ∆Hexp. In other words, the more negative
∆Hexp is, the more PBE underbinds, which has been pre-
viously observed39. In the histogram of error values for
PBE, this systematic underbinding leads to a longer tail
of positive error values, resulting in a distribution that
appears to be centered around a positive value rather
than zero. No such strong systematic underbinding or
overbinding for strongly-bound compounds can be ob-
served for SCAN. As such, the distribution of the errors
for SCAN appears much better (though not perfectly)
centered around zero.

In Fig. 4(a), one can also observe a moderate overbind-
ing trend of SCAN for the weakly-bound compounds.
For example, for ∆Hexp of around −1 to −0.5 eV/atom,
many more of the SCAN error values are negative (cor-
responding to overbinding) than positive. In contrast,
such an overbinding tendency for weakly-bound com-
pounds is not observed for PBE. The moderate, system-
atic overbinding of SCAN for weakly-bound compounds
contributes to a slightly negative (overbinding) center-of-
mass of the error distribution.

These two trends – SCAN’s lack of systematic un-
derbinding for strongly-bound compounds and its mild

overbinding of weakly-bound compounds – are our pri-
mary findings in terms of compound formation energy.
The same trends can be observed in the relative errors
(∆Hcalc−∆Hexp)/|∆Hexp|, shown in Fig. 4(b). Consis-
tent with the absolute error data, PBE exhibits a roughly
constant positive average relative error (on the order of
+10%) for strongly-bound compounds, contributing to a
skewing of the relative error histogram to positive (under-
binding) values. In contrast, no clear systematic under-
binding or overbinding for strongly-bound compounds is
found for SCAN. For the weakly-bound compounds, the
relative errors can blow up for compounds with small
∆Hexp due to the |∆Hexp| in the denominator of the rel-
ative error. For example, a relative error of over 240% in
magnitude is found for TaCo2, which has ∆Hexp of only
−0.065 eV/atom. Therefore, the relative error axis is
truncated in Fig. 4(b) for clarity. One can again observe
SCAN’s moderate, systematic overbinding of weakly-
bound compounds with ∆Hexp of around −0.5 to −1
eV/atom, contributing to a clear shoulder in the relative
error histogram at around −20%.

In order to separately analyze the formation energy
errors for strongly- and weakly-bound compounds, we
partition the total 945 compounds into these two groups
based on ∆Hexp. We choose to define strongly-bound
compound as any compound with ∆Hexp < −1 eV/atom;
the rest are weakly-bound compounds. The critical value
of precisely −1 eV/atom is somewhat arbitrary and is
chosen based on visual inspection of the different regions
of data in Fig. 3. However, we find no change in the con-
clusions discussed below by slightly varying this value.
In addition, performing an analogous analysis based on
partitioning the compound set based on constituent el-
ements rather than ∆Hexp, discussed in the Supporting
Information, also leads to the same conclusions.

Using this ∆Hexp-based convention for compound set
partitioning, we quantify the formation energy errors for
strongly- and weakly-bound compounds in Figs. 5(a) and
5(b), respectively. Mean error (ME), mean average er-
ror (MAE), root-mean-square error (RMSE), mean rela-
tive error (MRE), mean absolute relative error (MARE),
and root-mean-square relative error (RMSRE) are con-
sidered based on the error and relative error expressions
discussed above. For each subset of compounds, the ab-
solute and relative error metrics show the same quali-
tative trend. In particular, by all error metrics SCAN
out-performs PBE for the strongly-bound compounds,
whereas PBE out-performs SCAN for the weakly-bound
compounds. For strongly-bound compounds, SCAN has
a ME of only −0.027 eV/atom as compared to +0.239
eV/atom for PBE. In other words, the distribution of
errors for SCAN’s description of strongly-bound com-
pounds is extremely well-centered around zero. This en-
ables much improved MAE and RMSE values for SCAN
(0.110 and 0.159 eV/atom) as compared to PBE (0.259
and 0.305 eV/atom). These correspond to very signifi-
cant (≈ 50%) decreases in error. The maximum absolute
error for SCAN (−0.605 eV/atom for ScN) is also sub-
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and SCAN for (a) 297 strongly-bound compounds, (b) 648
weakly-bound compounds, and (c) all 945 compounds. Abso-
lute (relative) errors are plotted with respect to the left (right)
axis.

stantially decreased as compared to that of PBE (0.963
eV/atom for VF2). Similarly large improvements for
SCAN are found in terms of the relative errors, with 82%,
49%, and 34% decreases in the magnitudes of the MRE,

MARE, and RMSRE values, respectively.

For weakly-bound compounds, we find the opposite
qualitative trend. PBE is moderately more accurate than
SCAN for such compounds. The ME for PBE is sig-
nificantly smaller in magnitude (0.015 eV/atom) than
that of SCAN (−0.046 eV/atom). However, SCAN’s in-
creases in MAE and RMSE are a more modest 20% and
16%, respectively, compared to the PBE values. Simi-
larly, for the relative errors, the increase in MARE and
RMSRE for SCAN compared to those of PBE are 10%
and 2%, respectively. Ultimately, we find SCAN is sig-
nificantly better for predicting the formation energy of
strongly-bound compounds, while it is moderately worse
for weakly-bound compounds like intermetallics.

Finally, we briefly comment on the overall ∆Hcalc er-
rors (for all 945 compounds). These errors, plotted in
Fig. 5(c), reflect the combination of (1) significant er-
ror reduction for strongly-bound compounds with large
∆Hexp magnitude and (2) modest error increase for
weakly-bound compounds with small ∆Hexp magnitude.
In our particular case, there are 648 weakly-bound com-
pounds and only 297 strongly-bound compounds. In this
case, SCAN achieves modest decreases in absolute er-
rors with decreases in MAE and RMSE of 24% and 25%,
respectively, and essentially no difference in terms of rel-
ative errors. We emphasize that the overall formation
energy errors in SCAN will be a strong function of the
fractions of strongly- and weakly-bound compounds un-
der consideration. Therefore, one should consider the two
individual formation energy error trends, rather than the
overall trend for our particular compound set, as the key
result. We note that a very recent work by Zhang et al.
also found a significant reduction of the ∆Hcalc MAE
of non-intermetallic compounds for SCAN compared to
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PBE, in agreement with our calculations56.

B. Origin of formation energy trends

In order to elucidate the origin of the distinct forma-
tion energy trends for strongly- and weakly-bound com-
pounds, we perform a detailed analysis of the strongly-
bound oxide CaO and three weakly-bound intermetallic
compounds HfOs, ScPt, and VPt2. While for CaO SCAN
reduces the ∆Hcalc error from 324 meV/atom in PBE
down to just 2 meV/atom, for the intermetallics SCAN
increases the error magnitudes by 181–261 meV/atom.
We note that both LDA and the earlier meta-GGA of
Tao, Perdew, Staroverov, and Scuseria (TPSS)57 exhibit
similar ∆Hcalc as PBE (differences no larger than 19
meV/atom in magnitude) for these intermetallic com-
pounds, which suggests the overbinding of this class of
compounds is specific to SCAN.

Figure 6(a) contains normalized real-space distribu-
tions, for each compound, of the three ingredients to εxc
for SCAN: ρ, s, and α. The density is parametrized by
the Wigner-Seitz radius rs = (3/4πρ)1/3 for convenience.
We weight the distributions by the density ρ since higher-
density regions of space have a higher impact on Exc due
to the explicit factor of ρ in Eq. 2. The results are shown
for SCAN calculations, though we show in the Support-
ing Information that the distributions are similar for the
PBE case.

The distribution of α shows that, unlike CaO, the
intermetallic compounds exhibit significant (even dom-
inant in the case of HfOs) probability of larger α in the
range of 1–2. In addition, the distributions illustrate the
overall relevant ranges of parameter space for the four
compounds: ∼ 0.25–1.25 for rs, ∼ 0–1 for s, and ∼ 0.25–
2 for α. Including the elemental reference states, whose
α and s distributions are shown in the Supporting Infor-
mation, one finds expanded ranges of ∼ 0.25–1.75 for rs,
∼ 0–2 for s, and ∼ 0.25–2 for α. We note that O2 has
a significantly broader distribution of s and α, which is
consistent with its distinct molecular nature.

We construct the corresponding formation distribution
of α by computing the difference between the α distribu-
tion of the compound and the appropriate linear combi-
nation of the α distributions of the constituent elements,
in analogy to Eq. 4. This function, shown in Fig. 6(b)
represents the change in the distribution of α that occurs
upon formation of the compound from the elements. The
formation distributions show appreciable rearrangement
of α upon compound formation. There are distinct be-
haviors for CaO and for the intermetallics that explain
the distinct formation energy behavior for SCAN, which
we now will discuss.

The CaO formation distribution exhibits a large posi-
tive peak in the vicinity of α = 0.5, balanced by decreased
probability of α > 1. This peak stems from the filling of
the O p shell, whereas the broad valley for larger α cor-
responds to the depletion of O2 states. To understand

0
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FIG. 6. (a) Density-weighted probability distributions of rs,
s, and α in real space for CaO and three intermetallic com-
pounds. The distributions are normalized to unity. (b) The
compound α formation distribution defined in analogy to the
formation energy of Eq. 4. (c) Non-spin-polarized exchange-
correlation enhancement factor at rs = 1 bohr for LDA, PBE,
and SCAN at several relevant α values.

the impact on Exc, in Fig. 6(c) we plot the non-spin-
polarized exchange-correlation enhancement factor Fxc =
Exc/E

LDA
x as a function of s for LDA, PBE, and SCAN

for several α. As compared to the exchange enhance-
ment in Fig. 2 discussed previously, Fxc adds the density-
dependent contribution from correlation. The values in
Fig. 6(c) are plotted for rs of 1 bohr as a representa-
tive example; Fxc for other relevant values of rs (shown
in the Supporting Information) show the same qualita-
tive behavior. The SCAN Fxc increases with decreasing
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α. Therefore, the increased probability for lower α upon
formation of CaO leads to a negative Exc contribution to
∆Hcalc within SCAN since ELDA

x = −(3/4π)(3π2ρ)1/3

is a negative energy. In contrast, PBE as a GGA has no
dependence on α, so it lacks this negative contribution
to ∆Hcalc. SCAN thus predicts a more negative ∆Hcalc

than PBE, leading to much better agreement of ∆Hcalc

with experiment, due to its behavior in the α = 0 (co-
valent bonding) regime as compared to that of larger α.
We attribute the improvement to the exchange energy
in particular since this is the largest energetic term. We
note that a more rigorous analysis for CaO should con-
sider the spin-dependent Fxc since O2 is in a triplet state,
but we expect the same qualitative trend given the dif-
ferences between Fxc for the non-spin-polarized and fully
spin-polarized cases shown in Ref. 13.

For the intermetallics, the α formation distribution
shows the most significant rearrangement in the regime
of ∼ 1–1.7. In particular, for each compound there is
a positive contribution for α of 1.1–1.3 and a negative
contribution for larger α of ∼ 1.4–1.7. In other words,
intermetallic compound formation leads to smaller α in
the α > 1 regime. This rearrangement stems from the
decreased weak bonding in the compounds as compared
to elements like Hf, Os, and Pt. As shown in Fig. 6(c),
for α > 1, smaller α again leads to increased Fxc and thus
a more negative Exc. SCAN thus predicts a more nega-
tive ∆Hcalc than PBE, in this case leading to moderately
worse agreement with experiment, due to its behavior in
the α → ∞ (weak bonding) regime. We again attribute
the exchange energy in particular since it is the largest
energetic term. This finding is consistent with the very
different ∆Hcalc error for the intermetallic compounds
found within TPSS, which exhibits quite distinct Fx be-
havior for α > 157.

C. Elemental chemical potential fitting

One approach to improve the quality of the predicted
∆H, at the cost of adding empiricism, is to fit the elemen-
tal chemical potential µ for one or more elements39,58–60.
Here we perform a simultaneous least-squares fitting of
µ for all 78 periodic table elements (“fit-all”) contained
within our set of 945 compounds, which minimizes the
RMSE of ∆H. The resulting corrections to the DFT-
calculated µ (which we call δµ) are plotted in Figs. 7(a)
and 7(b) for PBE and SCAN, respectively. For PBE,
significant positive corrections are found for electronega-
tive elements such as O, S, F, and Cl. These corrections
are consistent with PBE’s tendency to underbind the
strongly-bound compounds, which typically contain such
elements. In contrast, since SCAN does not suffer from
an appreciable systematic underbinding or overbinding
of the strongly-bound compounds, there are no large cor-
rections to the electronegative elements for SCAN. Since
SCAN moderately overbinds intermetallic compounds,
there are many more negative δµ for metallic elements

FIG. 7. Elemental chemical potential corrections δµ ob-
tained via fitting for (a) PBE and (b) SCAN. Grey-colored
squares correspond to elements not considered in the com-
pound set. The training and testing ∆E RMSE from 9-fold
cross-validation are shown in panel (c) for the cases of fitting
µ for no (“fit-none”) and all (“fit-all”) elements.

for SCAN as compared to those of PBE. One can observe
this trend for many alkali, alkaline earth, transition, and
lanthanide metals.

In order to assess the possibility of overfitting, we per-
form 9-fold cross-validation and separately analyze the
training and testing errors. Figure 7(c) illustrates the
RMSE ∆H errors for PBE and SCAN for the fit-all case
and that of no fitting (“fit-none”). Fitting reduces the
error from 195 to 120 meV/atom for PBE and 144 to
104 meV/atom for SCAN. Since the training and test-
ing errors are nearly identical, this indicates there is no
overfitting in predicting ∆H with the set of fit µ. We
note that the corresponding testing MAE are 83 and 72
meV/atom for PBE and SCAN, respectively. The full
set of fitted µ values are included in the Supporting In-
formation.
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In order to assess the accuracy of the crystal structures,
we compare the computed relaxed volume per atom to
experimental values taken from the ICSD. Both the com-
pounds and solid elements are considered. Figure 8(a),
which shows the absolute and relative errors for PBE
and SCAN, demonstrates that SCAN achieves a signifi-
cant improvement in the predicted volumes. While PBE
on average overestimates the volume by 0.77 Å3/atom,
SCAN only underestimates it by 0.11 Å3/atom. The

MAE for SCAN is 0.58 Å3/atom, a 41% decrease from
the corresponding PBE value. The relative error magni-
tudes for SCAN are similarly smaller than those of PBE.

A complete plot of the predicted and experimental vol-
umes, shown in the Supporting Information, illustrates
that the SCAN’s improved prediction of volume is par-
ticularly significant for layered materials. For example,
SCAN predicts a volume of 35.6 Å3/atom for the lay-
ered material MgI2 with experimental volume of 34.3
Å3/atom, whereas PBE significantly overestimates the
volume with a value of 40.6 Å3/atom. Such improved
volume prediction for layered materials is consistent with
the improved treatment of (intermediate) van der Waals
interaction in SCAN13. We find similar behavior for one-
dimensional materials like BeI2 and AgCN.

Unlike the behavior for ∆H, the predicted volume
behavior is less different between strongly- and weakly-
bound compounds. The same qualitative trend, smaller
errors for SCAN than PBE, is found for both sets of com-
pounds by all error metrics considered. In addition, for
SCAN the quantitative accuracy of the predicted volumes
is essentially the same for the two sets of compounds.
The difference in volume MAE between the two sub-
sets of compounds is only 0.02 Å3/atom for SCAN, with
the slightly larger errors for strongly-bound compounds.
For PBE, the difference is larger (0.50 Å3/atom), also
with the larger errors for strongly-bound compounds.
This is consistent with the underbinding trend of ∆H
for strongly-bound compounds and suggests that PBE’s
treatment of the compound (as opposed to only the el-
ements) contributes to the underbinding of ∆H. Addi-
tionally, the larger errors for layered materials, which are
mainly strongly-bound compounds (in the sense of large
∆Hexp) also contribute to the worsened volume predic-
tions for strongly-bound compounds in PBE. For exam-
ple, layered ZrCl2 with ∆Hexp of -1.73 eV/atom exhibits
a 44% volume error within PBE (4% in SCAN). Over-
all, SCAN shows a significant improvement over PBE for
prediction of crystal volumes with 57% and 33% MAE
reductions for strongly- and weakly-bound compounds,
respectively.

E. Magnetism

Next, we explore the predicted magnetic properties.
The spontaneous magnetization of the elemental met-
als Fe, Co, and Ni for PBE and SCAN as compared
to experiment61 are shown in Fig. 8(b). In all cases,
SCAN predicts a moderately larger magnetization than
that of PBE. The enhancement in magnetization is 0.42
µB (19%), 0.13 µB (8%), and 0.1 µB (14%) for Fe, Co,
and Ni, respectively. For Fe and Ni, this leads to wors-
ened comparison to experiment. For example, SCAN
overestimates the magnetization of Fe by 17%, while PBE
underestimates it by only 2%. In contrast, SCAN’s mag-
netization for Co (1.72 µB) is closer to the experimental
value (1.75 µB) than that of PBE (1.59 µB). Such results
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suggest a tendency of SCAN to moderately overestimate
the magnetism in itinerant (ferro)magnets in some cases.

We also compare the predicted local magnetic mo-
ments of PBE and SCAN in all of the magnetic systems
considered. We choose to consider a system magnetic if
any local magnetic moment is greater than 0.1 µB in mag-
nitude. Figure 8(c) shows the maximum local magnetic
moment, averaged over all the magnetic systems. While
the overall magnitude of this quantity (around 2 µB) is
not important as it is dependent on the particular set of
elements and compounds studied in this work, we com-
ment on the difference in the values between PBE and
SCAN. Consistent with the behavior for the elemental
ferromagnets, here SCAN again shows a moderate mag-
netic enhancement. In particular, the average maximum
magnetic moment within SCAN is 12% larger than that
found within PBE. A complete plot of the magnetic mo-
ments for all the magnetic compounds, which illustrates
this trend, is included in the Supporting Information.
This plot also indicates there are certain compounds pre-
dicted to be non-magnetic within PBE for which SCAN
predicts magnetism (e.g., FeTe2 and FeCl2).

F. Band gaps

Finally, we consider the performance of SCAN for elec-
tronic band gap prediction. Semilocal approximations to
Exc like LDA and PBE are well known to underestimate
band gaps62. Although SCAN is not specifically designed
to address this band gap problem, it is interesting to eval-
uate its accuracy for predicting band gaps as compared
to PBE, especially since SCAN in principle contains some
nonlocality via τ . Details of the extraction of experimen-
tal band gap values63 for comparison are discussed in the
Supporting Information.

Figure 8(d) compares computed band gaps to experi-
mental values. Nearly all the points lie below the dashed
line of perfect agreement, which indicates that SCAN like
PBE suffers from a systematic underestimation of elec-
tronic band gap. However, the SCAN points are usually
in better agreement with experiment. As one example,
the SCAN band gap for GaN is 2.2 eV as compared to
3.2 eV in experiment, whereas the PBE gap is 1.7 eV.
Additionally, it appears the improvement in band gap
prediction for SCAN as compared to PBE becomes more
significant on an absolute scale as the magnitude of the
band gap increases. For example, for LiF (with a very
large experimental gap of 13.1 eV), the SCAN band gap
is 1.8 eV larger than that of PBE, though still underesti-
mating the experimental value. The band gap enhance-
ment of SCAN compared to PBE is not solely a result
of structural relaxation. For example, SCAN exhibits a
0.3 eV enhancement of band gap of GaN with respect
to PBE using the experimental structure, as compared
to 0.5 eV using relaxed structures. For LiF, the corre-
sponding band gap enhancement is 1.1 eV and 1.8 eV

without and with structural relaxations, respectively.
Overall, we find a band gap MAE of 1.2 eV for SCAN

as compared to 1.5 eV for PBE. This indicates that
SCAN provides a modest improvement in band gap pre-
diction as compared to PBE, though the band gaps still
significantly underestimate experimental values, in agree-
ment with a previous study64. We note that fully non-
local approaches to band gap prediction like many-body
perturbation theory in the GW approximation65–69 as
well as hybrid functionals like HSE70 perform signifi-
cantly better at band gap prediction71. For example,
previous work has shown band gap MAE of 0.6 eV for
HSE and 0.5 eV for GW, considering the 15 compounds
in Ref. 71 for which self-consistent GW and HSE values
are given. Another earlier work found a band gap MAE
of 0.3 eV for HSE72.

V. CONCLUSIONS

In summary, an extensive benchmark of the new SCAN
meta-GGA for a diverse set of approximately 1,000 inor-
ganic crystals is performed and compared to the GGA
level of theory (PBE). Unlike PBE, SCAN does not ex-
hibit a substantial, systematic underbinding of strongly-
bound compounds with respect to the elements, due to
enhanced exchange interaction in the covalent bonding
regime. This leads SCAN to significantly out-perform
PBE for formation energies of such compounds, with a
decrease in MAE of around 50% to 110 meV/atom. In
contrast, due to distinct exchange behavior in the weak
bonding regime, SCAN performs moderately worse than
PBE for weakly-bound compounds like intermetallics, for
which the formation energy MAE increases by 20% to
102 meV/atom. The formation energy errors can be
further reduced by fitting the elemental chemical poten-
tials. SCAN shows significant improvement in volume
prediction, with a 41% decrease in MAE with respect
to PBE to 0.58 Å3/atom. A moderate magnetic en-
hancement is found using SCAN as compared to PBE,
with a 12% increase in the average maximum magnetic
moment. SCAN significantly underestimates experimen-
tal band gaps, though there are moderate improvements
(20% decrease in MAE) as compared to PBE. Overall,
SCAN represents a significant improvement in accuracy
for strongly-bound compounds as compared to PBE.
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