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The concept of a local linear elastic strain field is commonly used in the metallurgical research
community to approximate the collective effect of atomic displacements around crystalline defects.
Here we show that the elastic strain field approximation is a useful tool in colloidal systems. For
colloidal crystals with repulsive particle interaction potentials, given similar mechanical properties,
sharper potentials lead to: 1) free energies of deformation dominated by entropy, 2) lower variance in
strain field fluctuations, 3) increased tension-compression asymmetry near dislocation core regions,
and 4) smaller windows of applicability of the linear elastic approximation. We show that the
window of linear behavior for entropic colloidal crystals is broadened for pressures at which the
inter-particle separation sufficiently exceeds the range of steep repulsive interactions.

I. INTRODUCTION

Our ability to synthesize nanoparticles with de-
sired shape or surface functionalization continues to
improve1–3, and research on colloidal crystals has largely
focused on finding connections between interaction po-
tentials and assembled crystal structures2,4–10 As col-
loidal research continues to develop, it is expected
that desired material properties beyond crystal struc-
ture will become targets of investigation for colloidal
engineering11. One such property of interest is the me-
chanical response of colloidal materials. Metallurgists
have accumulated a wealth of knowledge and models to
describe, predict, and explain the various ways in which
bulk properties and defects contribute to the mechanical
behavior of a material. A central concept is the linear
elastic strain field, which has been used to understand
dislocation interaction energies, enabling the creation of
high-strength metals.

The time is now ripe to investigate how such concepts
can be applied in colloidal matter. There are two com-
pelling reasons to do so. The first is to inform the use of
colloidal crystals as analogues of atomic crystals. Given
the large size and long time scales of colloidal particles, it
is possible to directly observe processes that range from
challenging to impossible to observe with atoms. There-
fore it is attractive to re-create the circumstances that
surround a hidden atomic process in a colloidal crys-
tal and observe the system’s evolution. Some pioneer-
ing work has already been done along this line. Schall et
al.12 devised an interferometry method for viewing dislo-
cations in hard-sphere colloidal crystals. Later, the same
authors employed this technique to observe the formation
of dislocation loops in colloidal crystals following inden-
tation by sewing needles13. More recently, Lin et al.14

reported a method for directly measuring local stress
fields around dislocations and other defects within col-
loidal crystals using confocal microscopy. Van der Meer
et al.15 investigated the strain fields that surround point
defects in simulated hard-sphere crystals and used them
to explain interstitial clustering behavior. While these

works are foundational for establishing the connection
between colloidal and atomic material defect dynamics,
many unanswered questions remain. Importantly, it is
not yet clear which atomic phenomena can be meaning-
fully studied via colloidal analogues. By investigating the
use of core metallurgical concepts such as linear elastic
strain fields in colloids, we aim to further inform the use
of these model systems.

The second motivation for our study is to explore
what is possible beyond phenomena seen in atomic ma-
terials. Colloidal crystals are famous for their exotic
optical properties16–19. The creation of metamaterials
with exotic mechanical properties requires greater un-
derstanding of the mechanical behavior of colloidal as-
semblies, which is currently lacking20–23. Beyond the
realization of unusual material properties, there is also
compelling evidence that metallurgical concepts are im-
portant throughout the assembly processes. For example,
it has been shown that local material strain plays an im-
portant role in the evolution of self-limiting assemblies24.
A more complete understanding of the nature of strain
fields in colloidal materials enables greater sophistica-
tion both in the search for exotic material properties
and the exploitation of geometric constraints for assem-
bly engineering25–28.

In this study we focus on a family of isotropic pair po-
tentials (see Fig. 1) that smoothly range from the canon-
ical Lennard-Jones (LJ) potential used to model atomic
systems29:
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to a hard-sphere potential used to model excluded volume
interactions in colloids. This is done with the Shifted
Weeks-Chandler-Andersen (SWCA)30 potential:
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FIG. 1. The isotropic pair potentials used in this study, shown
in units of system thermal energy. Darker blue curves are
potentials with larger hardness values (labeled on curves).
The Lennard-Jones potential (shifted in energy by ε) is also
shown for comparison.

∆ is the average of particle diameters between which the
potential is calculated. ε = 1 for all potentials used
in this study. The pair potential parameter h is used
to indicate potential ‘hardness’. The value of σ used
in the SWCA potential is related to h as σ = 1 − h.
The radial shifting of the SWCA potential is then cho-
sen so potentials of different hardness value are zero at
the same distance between particle centers (as shown in
Fig. 1). As h → 1, σ → 0 and the potential approaches
a step function. By parameterizing our potential space
in this way, we can interpolate between a broad range
of soft to hard repulsive interactions. The key difference
is the length scale over which the potential varies. In
atomic systems, the sharpness of potentials is fundamen-
tally limited by natural constants and the behavior of
electrons. In colloidal systems, the pair potential val-
ues can change rapidly over distances much smaller than
the particle separation distances (such as in hard-sphere
systems, for instance). We examine the extent to which
these materials obey the linear elastic approximation by
computing the strain fields around edge dislocations and
the stress-strain relationships for homogeneous uniaxial
strains.

II. RESULTS

II.1. Elastic Property Matching

To compare repulsive and attractive potentials mean-
ingfully, a pressure (or density) must be chosen for the
repulsive systems. Simply selecting identical densities
for attractive and repulsive interaction potentials is not
sufficient to ensure similar mechanical properties. In-
stead, we outline a deformation free energy matching

procedure which results in material systems with simi-
lar elastic properties. The Lennard-Jones (LJ) solid at
zero pressure was chosen as the reference against which to
match the elastic properties of the repulsive systems. To
agnostically compare materials formed by different po-
tentials the sum of homogeneous deformation strain free
energy under a collection of modes was calculated. The
matching pressure is defined here as the pressure which
satisfies the equation:

min
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Here, Cijkl is the second-order elastic modulus tensor and
ηmij is a homogeneous strain. Note that the first term in
Eq. 3 is the deformation free energy density of a material
under no external stresses (LJ crystal), while the second
term is the deformation free energy density of a material
under the external hydrostatic pressure Pmatch (SWCA
crystal). The ηmij (strain modes) over which to sum de-
formation free energy differences could be chosen to em-
phasize a particular kind of deformation. As an example,
if the target of matching was to produce two materials
with similar behavior under uniaxial loading, then a sin-
gle strain mode corresponding to that loading could be
used in Eq. 3. Since here we are concerned with a general
measure of the mechanical similarity of two materials, we
use an even weighting of all non-zero strains. Using the
six independent components of the linear strain tensor
ηij and combining them with equal weight, 64 permuta-
tions are possible, with one permutation being the trivial
zero strain case.

The result of this property-matching search is shown in
Fig. 2. It is clear that the mechanical properties of softer
potentials can be better matched to the LJ solid by vary-
ing the pressure, however it is possible to match with less
than 10% deformation free energy variation for all pair
potential hardness values studied. We observed that the
pressure window of optimal matching shrinks as the pair
potential hardness increases. All subsequent simulations
of repulsive potentials, unless otherwise stated, are con-
ducted under the appropriate Pmatch shown in Fig. 2.

II.2. Entropy of Deformation

As the hardness of the SWCA potential is increased,
the behavior of the system more closely approaches that
of hard spheres. For a material of hard spheres, system
configurations with particle overlaps are impossible, as
these have infinite internal energy. All other configura-
tions have zero internal energy. Therefore these materials
are ‘entropic’ solids, with no enthalpy changes upon crys-
tallization. It follows that the mechanical properties of
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FIG. 2. Pressures at which the moduli of SWCA systems most closely approach those of an LJ system at zero pressure.
(a) Plots of the absolute value of the fractional difference in strain free energy between the SWCA and LJ system. Here

F ref
strain is the strain free energy of the LJ system against which the matching is being evaluated. Error bars are calculated via

bootstrapping of moduli measurements, and represent one standard deviation. (b) Absolute pressure versus hardness. Tick
marks indicate the uncertainty of Pmatch, one standard deviation of the minima from the fit in (a), and the color map is the
fit value from (a), truncated at 10% maximum difference.

solids studied here must also become increasingly domi-
nated by entropy effects as h approaches 1. Fig. 3 demon-
strates this point explicitly: as pair potential hardness is
increased, the internal energy of deformation decreases in
magnitude, indicating that entropic changes contribute
more to the free energy of deformation (and the elastic
modulus) than energetic interactions between particles.
As hardness is increased, the contribution of potential en-
ergy to the free energy of deformation becomes negligible.
This demonstrates that the h parameterization is useful
for studying the transition from energetic deformation to
entropic deformation.

II.3. Statistics of Strain Fields in Entropic Solids

Working with entropic materials presents a complica-
tion for analyzing strain fields: fluctuations in particle
position are so large that accurate strain fields cannot
be calculated from a single snapshot of a particle’s lo-
cal neighborhood. In materials with energetically dom-
inated free energies of deformation, temperature can be
lowered to improve the accuracy of strain fields sampled
from a single snapshot. This is not possible for materi-
als with significant deformation entropy. Therefore the
strain fields must be calculated from averages of particle
positions.

To understand how the accuracy of strain field sam-
pling changes as snapshots are collected, the per-particle
strain of defect-free simulation domains were calculated
with methods implemented in the visualization and anal-
ysis tool OVITO31,32. Samples were collected with ade-
quate time lag to assure decorrelation. The behavior of
the standard deviation of averaged measurements with

the number of samples is shown in Fig. 4. Harder po-
tentials converge with fewer decorrelated samples. This
is a consequence of collision behavior for different hard-
ness potentials. For soft potentials, velocities slow grad-
ually as particles overlap and are eventually accelerated
apart. A hard particle (h = 1) has instantaneous colli-
sions. Since collisions occur far from the average position
of a particle at its lattice site, slow collisions spread the
particle’s probability distribution function farther from
the average, i.e., increasing positional variance. Hard
particles with fast collisions spend less time far from their
lattice sites. Consequently, variables that are functions
of particle position (such as strain) converge faster for
harder particles.

II.4. Strain Fields Around Edge Dislocations

The strain fields around dislocations arrays were col-
lected for different hardness potentials simulated under
the Pmatch pressures shown in Fig. 2. Dislocations arrays
were created by subtraction of a half plane of particles in
a simulation box spanning 60 unit cell lengths in the x di-
rection (aligned with crystal direction [11̄0]), 24 unit cell
lengths in the y direction (aligned with crystal direction
[112̄]), and 20 unit cell lengths in the z direction (aligned
with crystal direction [111]). Box boundary conditions
are all periodic, and the final particle count was 346,992
for all cases. All systems studied here readily dissociate
into partial dislocations. The per-particle strain fields,
produced from 100 decorrelated samples, are shown in
Fig. 5 (see Fig. S1 in the Supplemental Material for ad-
ditional strain components33). Only one pair of partials
is shown, the full simulation domain contains four par-
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FIG. 3. Energy and entropy of deformation. (a) Internal (potential and kinetic) energy of deformation of potentials in this
hardness family. Solid lines are linear fits to data collected from systems homogeneously deformed along the [11̄0] direction.
(b) Ratio of internal energy change to free energy change (evaluated at 1% strain). Free energy is calculated from the sampled
elastic moduli and the applied homogeneous strain. Error bars of one standard deviation are much smaller than shown data
points.

FIG. 4. The standard deviation of per-particle strain energy
values (normalized to a reference strain) as a function of the
number of decorrelated samples considered. For each sample
number, bootstrapping is used to obtain the standard devia-
tion. The normalization strain is chosen to be the per-particle
strain energy of a 1% volumetric expansion in LJ, which es-
timates the strain energy of a dilatory point defect such as
a vacancy. With increasing h, fewer samples are required to
obtain the same standard deviation values.

tial dislocations. For comparison, analytic strain dis-
tributions calculated with the method of eigenstrains34

are shown for the LJ solid and the hardest potential,
h = 0.95. Sampled dislocation strain fields closely follow
those predicted by linear elasticity for LJ and h = 0 sys-
tems. As h approaches 1, greater asymmetry appears in
the sampled distributions (see Fig. S2 in the Supplemen-
tal Material33). The separation of the partial dislocation

cores decreases with increasing pair potential hardness.
As pair potential hardness is increased, there is a trade-
off between components of the elastic modulus tensor,
which leads to changes in the dislocation array geometry
as the relative strengths of strain component interactions
are changed (see Supplemental Material for discussion33).

To explore the origins of strain asymmetry in the dis-
location cores, we simulated defect-free systems and im-
posed a homogeneous uniaxial strain in the x direction.
Fig. 6 shows the difference in stress-strain relation for the
application of a compressive or tensile strain. This result
explains the asymmetry in the strain field surrounding
dislocation cores. The system can be said to be elasti-
cally linear when the stress depends linearly on strain
and strain energy is symmetric for positive and negative
strains. From this plot, we can see that systems with
higher h have a more limited range of strains where these
two conditions are true. The LJ solid is the most sym-
metric, however the inherent asymmetry of the bonding
well for this potential produces a difference for tension
and compression at large strains (compression into the re-
pulsive particle core increases system energy more than
tension). The pure repulsive solids all display greater
stress-strain asymmetry than the LJ solid. Furthermore,
as h approaches 1, the linear strain region shrinks.

These factors together explain the strain field asym-
metry of dislocations in hard-potential colloidal crystals.
The number density of dislocation lines remains the same
for all systems studied here. As the linear strain limit re-
duces with increasing h, the field close to the dislocation
core begins to exceed these limits; at this point it is en-
ergetically much less costly to increase the tensile strain
than the compressive strain. As h approaches 1, the size
of the region near the core that experiences nonlinear
strain increases. If the dislocation core region is defined
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as the region in which linear elastic theory does not ac-
curately predict strain field magnitudes, then the core
region of dislocations increases in size as the hardness
of the potential is increased. Interestingly, conventional
definitions of core size, such as the distance from the core
at which the shear stress is equal to the theoretical shear
stress of the material35, show the opposite trend when
applied to these systems (i.e., decreasing core size with
increasing pair potential hardness). See the Supplemen-
tal Material for details33.

At pressures lower than the property matching pres-
sure (Pmatch) found in Fig. 2, strain asymmetry is re-
duced. Fig. 7 shows the results of the same measure-
ment as Fig. 6 for particles with h = 0.95 at a range
of pressures lower than Pmatch. As the pressure is low-
ered, the range of linear strain increases. Fig. 7b shows
that nonlinear strain behavior begins to occur at values
that correspond to a fraction of the inter-particle spacing.
Entropic solids have inter-particle spacings significantly
larger than the diameter of the particles. Hard particles
explore a volume of crystal and interact with neighbors
via collisions. When such ballistic motion is averaged
over sufficiently long time scales, the effect is for a re-
pulsive colloidal particle to behave as though bound to
its lattice site through a harmonic potential (for small
strains). Hence, linear elastic behavior is recovered from
hard particle solids without any explicitly defined (ener-
getic) binding wells. As pressure is reduced, the rattle
volume of a hard particle at its lattice site increases. Lo-
cal stress results in changes to the particle rattle volume,
and Fig. 7 demonstrates that large rattle volumes tend
to change more linearly with local stress changes.

III. CONCLUSION

We explored the linear elastic properties of a family of
isotropic pair potentials. The parametrization variable
for the hardness of the potential, h, was shown to cor-
respond to an increasing importance of entropy in the
deformation free energy of colloidal crystals. We demon-
strated a method to define and search for state point con-
ditions of maximum mechanical similarity between sys-
tems with different pair potentials. We showed that for
this family of potentials the increased importance of en-
tropy in deformation has several consequences for strain
fields: 1) faster convergence (smaller variance) of strain
field fluctuations, 2) higher stress-strain asymmetry, and
consequently 3) larger nonlinear strain regions around
dislocation cores. We also showed that the linear regime
for these materials could be increased by lowering the
pressure and thereby increasing the per-particle rattle
volume. However, this changes the mechanical properties
of the solid and so precludes the matching to a reference
material.

Overall, the linear elastic approximation can be use-
fully employed in colloidal crystals, as long as care is
taken to operate within the linearity limits for the state
point in question. Applying linear elastic concepts to

hard spheres at pressures significantly above the crystal-
lization pressure will not yield good results, however at
pressures near the melting point the mechanical behavior
of hard spheres can be well approximated. The LJ solid
at low temperatures and zero pressure is a well-behaved
harmonic solid, and the method of eigenstrains can be
used to accurately predict the form of strain fields sur-
rounding complex defects such as dislocations. The WCA
potential can be matched very closely in mechanical prop-
erties to the LJ solid by the application of pressure, and
the so-obtained solid is likewise well approximated by
linear elastic methods.

The equivalence of complex strain fields calculated
with the method of eigenstrains and the sampled strain
configurations inside simulated colloidal materials opens
the door to using linear elastic methods to predict and de-
sign complex strain states within colloidal materials. Un-
like in atomic materials, inclusions with designed shape
can be easily introduced to colloidal crystals. Results
shown here indicate that linear elastic strain methods
can be used to understand emergent interaction between
defects in colloidal crystals. So long the effects of pres-
sure on the limits of the linear approximation is consid-
ered, the method of eigenstrains and other linear elastic
methods can be powerful additions to the colloidal com-
munity’s toolkit.

IV. METHODS

IV.1. Molecular Dynamics Methods

All molecular dynamic (MD) simulations reported here
are performed with HOOMD-blue36,37. Particles are simu-
lated in a periodic box with Cartesian directions x, y, z
aligned to crystal directions [11̄0], [112̄], [111] in the face-
centered cubic (FCC) structure. Simulations are carried
out in the NPT ensemble via equations derived by Mar-
tyna et al.38. System thermal energy is held at kT = 0.1
and particle mass is fixed at m = 10 (in simulation units).
This thermal energy is chosen so that the LJ system at
zero pressure forms a solid. If simulation units are chosen
to correspond to a system of silica particles of diameter
1.12 µm and bulk silica density (2650 kg/m3) evolving
at room temperature (291.8 K), then the depth of the
LJ attractive well corresponds to a binding energy equal
to three times that required to lift such a particle by its
own diameter while immersed in water (at sea level).

IV.2. Strain Fields of Dislocations in Continuum
Materials

The analytical form of the strain distribution sur-
rounding a periodic dislocation array can be most easily
found with the method of eigenstrains derived by Mura34.
In that approach, the distortions from the defect are in-
troduced as singularities and regularized by the applica-
tion of a function constructed from the elastic modulus
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tensor of the material in the Fourier domain. The result
is a continuous periodic strain distribution.

Strain distributions for edge dislocations are calculated
from the eigenstrain procedure by introducing a region
of ηxx strain bounded by a bi-variate Gaussian in the x
and z directions and constant in the y direction (along
the dislocation line). The center of the eigenstrain re-
gion contains a discontinuity, which defines the location
of the dislocation core. This procedure is an adaptation
of methods used by Chiu39 and Daw40.

IV.3. Elastic Moduli Sampling

The eigenstrain calculation has only a single material-
dependent input, the elastic modulus tensor. We sample
the elastic modulus tensor from MD simulations following
the method of Gusev et al.41: moduli are calculated from
the fluctuations of virial stress and box strain for an MD
simulation which permits the box geometry to change
(NPT ensemble). A constant cutoff rcut = 3σ · 21/6 is
used for the LJ system. At this range, the potential value
is ≤ 0.3% of the attractive well depth. The potential is
shifted and a smoothing function applied so that poten-
tial energy and force are zero at r = rcut. A σ value of 1
is used for the LJ potential. SWCA shifting parameters
(σ and ∆) are chosen so that all potentials are zero at

r = 2
1
6 .

IV.4. Strain Field Sampling

The strain fields surrounding dislocations were sam-
pled by histogramming per-particle strain matrices. Per-
particle strain was calculated using the analysis software
OVITO31. To map the per-particle data onto the output of
the eigenstrain calculation, the individual strain tensors
were assigned to spatial bins and averaged over time. The
number of bins was chosen to be similar to the number of
particles, as this yielded the highest-resolution voxelized
strain field data. The mean and standard deviation of the
mean for per-particle strain fields were calculated with
bootstrapping42.
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FIG. 5. Strain fields around partial dislocation pairs. This view is along the length of the dislocation line, with the Burgers
vector pointing from left to right in the plane of the image. The three strain components with the largest magnitudes are shown.
The other three strain components contain small magnitudes because they involve the [112̄] direction, along which there is little
change in the displacement field around a straight dislocation line. See Supplementary Material for these components33. At
low hardness, and in particular for LJ, we find a close match between the analytically generated strain distribution and the
sampled one. As the hardness of the potential is increased, an asymmetry develops between the compressive and tensile regions
of ηxx and ηzz.
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FIG. 6. Stress-strain relationship for different values of h
under a strain ramp. The region of linear behavior shrinks
and the asymmetry of the stress curve increases as the pair
potential hardness is increased. All potentials are first equi-
librated under appropriate Pmatch and then a uniaxial strain
is applied.

FIG. 7. (a) Stress-strain curves for a system with h = 0.95, found by equilibrating the system under a hydrostatic pressure and
then applying a uniaxial strain. As the pressure is reduced, the linearity of the stress-strain relationship improves. However,
at pressures other than Pmatch, the solids cannot be said to have similar mechanical properties to the other systems shown
in this study. (b) Strain to contact for systems in (a). Strain to contact is the strain needed geometrically to make particle
centers sit a distance of rcut from each other. Error bars represent one standard deviation (due to uncertainty in measurement
of the lattice parameter). The region of linear behavior for a hard repulsive material must be a fraction of the strain-to-particle
contact. Together this data shows that hard potentials behave most elastically linear when the rattle volume of a particle at
its lattice site is large. The time averaged effect of many hard-particle collisions produces an effective harmonic potential.


