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The roles of an electric field and electronic doping in insulator-to-metal transitions are still not
well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking
into account both structural and electronic instabilities as well as free electrons and holes in VO2,
a strongly correlated transition metal oxide. Our phase-field simulations demonstrate that in a
VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the
supercooling region in sharp contrast to the conventional Landau-Zener smooth electric breakdown.
We also show that hole doping may decouple the structural and electronic phase transitions in VO2,
leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical
confinement and the size effect. This work provides a general mesoscale thermodynamic framework
for understanding the influences of electric field, electronic doping, and stress/strain on insulator-to-
metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related
strongly correlated systems.

I. INTRODUCTION

Vanadium dioxide (VO2), a strongly correlated tran-
sition metal oxide, undergoes a first-order insulator-to-
metal transition (IMT) from a monoclinic insulator (M1)
to a rutile metal (R) at Tc = 338 K upon heating1. The
coexistence of the strong electron correlation and the V
dimerization obscures the nature of the resistive transi-
tion in VO2. While the strong dimerization suggests a
Peierls transition, recent microscopic theories uncovered
the crucial role of the electron correlation2–4. Moreover,
recent experiments demonstrated that the structural and
electronic phase transitions in VO2 may be decoupled,
e.g., through a contact of a VO2 nanobeam with a metal-
lic substrate5, an elastic constraint on a VO2 thin film6,
or a combination of hole doping and geometrical confine-
ment for a VO2 thin film7. Therefore, it is imperative
that both structural and electronic instabilities are in-
corporated in any thermodynamic theory of the IMT in
VO2.

A sufficient amount of free charges may alter the IMT
by screening the electron-electron repulsion and thus re-
ducing the electron correlation8. It was experimentally
demonstrated that an applied electric field is able to drive
the IMT via a field-induced charge accumulation. In a
VO2 transistor, the bulk conductive channels open up
collectively above a threshold voltage, with an exten-
sion far exceeding the Thomas-Fermi screening length9.
This is in sharp contrast to the standard field-induced
Landau-Zener breakdown activated smoothly at a field
of the order of the energy gap, which is predicted by the
across-gap tunneling10,11. There are also experimental
evidences that demonstrate the ability of electronic dop-
ing, i.e., introduction of holes or electrons through so-
lute dopants and defects, to modulate the IMT in VO2,
e.g., in doped MxV1−xO2 (M = Ti4+, W6+, Mo6+ or
Nb5+)12 and VO2-VO2−δ bilayers7. The measurement
of the phase transitions in the VO2-VO2−δ bilayer fur-
ther unveiled the presence of a metallic monoclinic (MM)

phase in the hole-doped and geometrically confined VO2

layer7. Such a MM phase is, however, absent in the pris-
tine bulk VO2.

Although the microscopic quantum theories may pro-
vide physical insights into the IMT at the electronic
structure level2–4, the mesoscale mechanisms and domain
evolution during the IMT of a doped crystal under an
electric field and/or stress require mesoscale continuum
models that take into account the electron correlation,
structural changes, as well as the presence of free charges.
In this article, we formulate a phase-field model with the
thermodynamics described by a Landau potential as a
function of structural order parameters, spin-correlation
order parameters13, and free electron and hole concen-
trations. As an example, we study the electric break-
down of a VO2 slab under a uniform electric field. It
is shown that inside the supercooling region, it occurs
through an abrupt universal IMT in sharp contrast to
the smooth Landau-Zener breakdown. We then study
the IMT in a VO2-VO2−δ bilayer, and show that hole
doping in the VO2 layer may induce a metastable MM
phase which could be stabilized via a geometrical con-
finement between the two layers and the size effect.

II. THERMODYNAMICS OF A
LATTICE/ELECTRON SYSTEM

By examining the symmetry breaking of the mag-
netic group during the IMT, we previously formulated
a bulk Landau potential incorporating a set of struc-
tural order parameters ηi, i = 1, 2, 3, 4 and a set of spin-
correlation order parameters µi, i = 1, 2, 3, 4 (characteriz-
ing the magnetic order) to explicitly describe the struc-
tural and electronic transitions during the IMT in the
pristine VO2

13. It reads (per unit cell)13
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where T is the temperature and other parameters are
constants (satisfying certain symmetry relations13), and
the Einstein summation convention is used. A finite ηi
indicates the dimerization of the neighboring V atoms,
and a finite µi indicates the formation of the dynamical
singlet situated on the neighboring V sites13, which may
be directly related to the opening of the energy gap2–4.
Hereafter we simplify the description of the theory by
reducing the four-dimensional order parameters ηi and
µi to one-dimensional order parameters η ≡

√∑
i η

2
i and

µ ≡ −
√∑

i µ
2
i . The order parameter values for R, M1

and MM phases are (η = 0, µ = 0), (η 6= 0, µ 6= 0) and
(η 6= 0, µ = 0), respectively13. In the presence of free
electrons and holes, the total bulk Landau potential can
be written as a sum of the contribution from the pristine
VO2 and that from the free charges

Ωt(η, µ, n, p) = F (η, µ) + Ω(µ, n, p), (2)

where n and p are the concentrations of the free elec-
trons and holes, respectively. Ω is the (non-equilibrium)
thermodynamic potential of the free charges. It must
depend on the electronic order parameter µ. The equi-
librium state can be determined by minimizing Ωt with
respect to all the order parameters η, µ, n and p14.

Ω may be approximated using the effective two-band
model for semiconductors, in which the energy bands are
approximated as only one band below (valence band,
at energy Ev with an effective density of states Nv)
and one band above (conduction band, at energy Ec
with an effective density of states Nc) the Fermi level
EF0

15. The equilibrium electron and hole concentra-
tions at zero field can be approximated by the Boltz-
mann distribution, n = Nc exp[−(Ec − EF0)/kBT ] and
p = Nv exp[−(EF0−Ev)/kBT ]15, where kB is the Boltz-
mann constant. Substituting EF0 = EF + (Ec + Ev)/2
into these expressions where EF is the Fermi level mea-
sured from the midpoint of the energy gap, one can see
that equivalently n = Nc exp[−(Eg/2 − EF )/kBT ] and
p = Nv exp[−(Eg/2 +EF )/kBT ], where Eg = Ec −Ev is
the gap. Hence, referencing to the midpoint of the gap,
the energies of the electrons and holes are both Eg/2,
while their chemical potentials are EF and −EF , respec-
tively. Ω may then read (per unit cell)

Ω =
Eg
2

(n+ p) + eV (p− n)− TS

− EF (n− p+Na −Nd)− Ω0. (3)

Here V is the electric potential, e is the elementary
charge, S = −kBn[ln(n/Nc) − 1] − kBp[ln(p/Nv) − 1] is
the entropy, and Na and Nd are the acceptor and donor
concentrations, respectively. Ω0 = −2kBTni is a refer-
ence energy with ni =

√
NcNv exp(−Eg/2kBT ) being the

intrinsic carrier concentration. Note that in the EF term
in Eq. (3), (Nd − Na) is subtracted from (n − p), i.e.,
(Nd−Na) free charges, which are released from dopants,
do not participate in the (non-equilibrium) process of
particle number variation (recombination). This is be-
cause these dopants are assumed a priori to remain ion-
ized. Eg can be approximated as13

Eg ≈
2U2µ2

0µ
2

kBTc
, (4)

where U is the onsite Coulomb repulsion and µ0 a
dimensionless parameter. Fitting this to the mea-
sured value of the energy gap ∼ 0.67 eV of the M1
phase16 with U ∼ 4 eV2, we obtain µ0 = −0.025.
The minimization of Ωt with respect to n and
p gives n = Nc exp[−(Eg/2 − EF − eV )/kBT ]
and p = Nv exp[−(Eg/2 + EF + eV )/kBT ]
reconciling the Debye-Hückel approximation17.
With the charge neutrality condition at zero
field n + Na = p + Nd, one also finds EF =

kBT ln

[√
Nv
Nc

(Nd −Na)/2 +
√

(Nd −Na)2/4 + n2i
ni

]
.

We note that mathematically EF in Eq. (3) is a Lagrange
multiplier for maintaining charge neutrality.

The Ω added to F in Eq. (2) may alter the IMT
of the pristine VO2. To see this, one can substitute
n and p with their equilibrium values and leave Ωt as
a function of µ and η only, which allows for a con-
venient comparison between the total Landau poten-
tials before and after the inclusion of Ω. In the zero
field and intrinsic (no doping) case, one obtains Ω = 0
and Ωt(η, µ) = F (η, µ) at equilibrium, which recovers
the Landau potential of the pristine VO2. In the in-
trinsic case but with an applied electric field, one has
Ωt(η, µ) = F (η, µ)− 2kBTni[cosh(eV/kBT )− 1] at equi-
librium, which, by expansion to the first order of Eg (con-
sidering temperatures near Tc), gives

Ωt(η, µ) ≈ F (η, µ)+[cosh(eV/kBTc)−1]
√
NcNvEg, (5)

in which the constant terms independent of η and µ
have been dropped. Using Eq. (4) one finds that the
Eg term added to F will renormalize the Curie-Weiss
temperature of the spin-correlation order parameter, i.e.,
T ′0 in Eq. (1), by always lowering it by an amount
4[cosh(eV/kBTc) − 1]

√
NcNvU

2µ2
0/kBA. This indicates

that the applied electric potential assists the transition
from an insulator to a metal. In the doped case but at
zero field, imagining hole doping Na � ni and Nd = 0,
one obtains at equilibrium p ≈ Na � n ≈ n2i /Na and

Ωt(η, µ) ≈ F (η, µ) +
NaEg

2
, (6)

in which the constant terms independent of η and µ have
also been dropped. Similar to the case with the applied
electric field, the Eg term added to F will renormalize
T ′0 by always lowering it by an amount 2U2µ2

0Na/kBA,
indicating that hole doping assists the transition from an
insulator to a metal.
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FIG. 1. (a) Spatial profiles of the spin-correlation order pa-
rameter at an applied voltage 0.4 V, outside (T = 300 K) and
inside (T = 337 K) the supercooling region, respectively. The
inset is a schematic of the geometry. (b) The length of the
metallic region as a function of the applied electric field at
the two temperatures. The lines are guide to eyes. The inset
shows the theory fit of the nonzero lM at T = 300 K.

III. RESISTIVE SWITCHING IN VO2 UNDER
AN ELECTRIC FIELD

We employ Eq. (5) to simulate the IMT in VO2 under
an electric field. As shown in the inset of Fig. 1(a), we
consider a VO2 slab of a length L = 250 nm (along the x
direction) subject to a uniform electric field E = ∆V/L
(Coulomb gauge, where ∆V is the voltage drop across
the slab) in the x direction, assuming an open circuit
configuration. The electric potential is V (x) = E(x −
L/2) as we set the x = 0 point at the left surface of the
slab. Using the phase-field method18, we calculate the
stable states of the slab subject to an applied voltage
∆V = 0.4 V, at T = 300 K and T = 337 K, which are
outside and inside the supercooling region, respectively
(the Landau potential yields a supercooling temperature
Ts = 309 K). The results are shown in Fig. 1(a).

At 300 K, the two oppositely charged surfaces of the
slab turn into metal that gradually grows as the elec-
tric field E increases [see Fig. 1(b)], while the middle
part of the slab remains insulating, forming an insulat-
ing tunnel between the two metallic regions. The metal-
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FIG. 2. Total Landau potentials of the metal-insulator-
metal sandwich (blue squares) and the metal (red diamonds)
as a function of the electric field at 337 K. The lines are
guide to eyes. Filled and empty markers indicate stable and
metastable states, respectively. The threshold E and lM of
the sandwich at the crossing point of the Landau potentials
are 4.5 × 105 V/m and 126 nm, respectively, as indicated in
the figure.

lic regions will finally touch each other at a threshold
electric field Eth, which essentially corresponds to the
Landau-Zener tunnel breakdown10,11. To calculate Eth,
we employ a theory fit to extrapolate the simulation
data in Fig. 1(b), as numerical errors occur in simula-
tions at large V due to the exponential dependence of
Ω in Eq. (5) on V . Since the applied voltage creates
two metal-insulator domain walls, we consider the effec-
tive domain wall repulsion induced by finite domain wall
width, Frep = v exp[−(L − lM)/w]19, with the parame-
ters v and w to be fitted (lM is the total length of the
metallic regions). The equilibrium lM corresponds to the
minimum of the total Landau potential (including Frep)
with respect to lM, which is achieved by

Ωt(x = lM/2)|R − Ωt(x = lM/2)|M1

V
+
dFrep

dlM
= 0, (7)

where V is the unit cell volume of VO2. The inset of
Fig. 1(b) presents the comparison of lM obtained from
Eq. (7) and that from the simulation data, showing a
good fitting yielding v = 273 mJ/m2 and w = 109 nm.
Extrapolation from the theory fit gives Eth = 2.87 ×
107 V/m at 300 K, which is comparable with the Eth

measured by the experiment . 108 V/m20 and that esti-
mated from the Zener tunnel breakdown ∼ 4×107 V/m11

for VO2.
At 337 K, the whole slab turns into metal with a uni-

formly distributed zero order parameter at ∆V = 0.4 V.
As can be seen in Fig. 1(b), the metallic regions initiated
from the two surfaces first grow gradually to 126 nm
as E increases, and then abruptly spreads throughout
the whole slab, which is in sharp contrast with the
300 K case. This novel behavior essentially rises from
the presence of the metastable metallic phase inside the
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supercooling region. We plot in Fig. 2 the total Lan-
dau potentials Ω̄t =

∫
(Ωt + VFgr)dx/L versus E of the

metal-insulator-metal sandwich formed during growth of
the metallic regions and the metastable metal. Here

Fgr = [κ1(∇η)2 +κ2(∇µ)2]/2 is the gradient energy den-
sity arising from the spatial variance of the order param-
eters18, where κ1 and κ2 are positive constants. As can
be seen in Fig. 2, at small E the total Landau potential
of the metal-insulator-metal sandwich is lower than that
of the metastable metal, which corresponds to the regime
of the gradual growth of the metallic region. When E ex-
ceeds a small threshold value Eth = 4.5 × 105 V/m, the
total Landau potential of the sandwich is higher than
that of the metastable metal, which stabilizes the metal-
lic phase throughout the slab.

The reason why the total Landau potential of the
sandwich could be higher than that of the metastable
metal lies in the energy loss from the two metal-insulator
domain walls in the sandwich, i.e., the metal-insulator
domain wall energy FDW = 2

∫
Fgrdx ∼ 25 mJ/m221.

Although the bulk Landau potential of the sandwich(∫ lM/2
0

Ωt|Rdx+
∫ L−lM/2
lM/2

Ωt|M1dx+
∫ L
L−lM/2 Ωt|Rdx

)
/L

is always lower than that of the metastable metal∫ L
0

Ωt|Rdx/L, the total Landau potential of the
sandwich (including FDW and Frep) and that of the
metastable metal may cross for

2FDW + Frep +

(∫ lM/2

0

dx
Ωt|R
V

+

∫ L−lM/2

lM/2

dx
Ωt|M1

V
+

∫ L

L−lM/2
dx

Ωt|R
V

)
=

∫ L

0

dx
Ωt|R
V

,

or equivalently

∫ L−lM/2

lM/2

dx
Ωt|R − Ωt|M1

V
= 2FDW + Frep, (8)

signaling the genuine resistive transition during which the
stable state of the slab sharply changes from the sand-
wich to the metal22. Eth can be calculated directly from
Eq. (8) together with Eq. (7).

Fig. 3 presents the threshold electric field as a function
of the temperature, showing two distinct regimes sepa-
rated by Ts. Eth drops dramatically at Ts as T increases,
characterizing the similar behavior found experimentally
in the VO2 transistor9. For T < Ts, the metallic regions
initiated from the two surfaces gradually grow and finally
touch each other as the electric field increases, which cor-
responds to the smooth insulating tunnel breakdown. For
T > Ts, the whole slab sharply turns into metal at much
smaller electric fields than those in the former case due to
the competition between the metal-insulator-metal sand-
wich and the metastable metal, which corresponds to the
genuine resistive transition22.

IV. MM PHASE IN THE VO2-VO2−δ BILAYER

As aforementioned, a MM phase was found stabilized
in the VO2-VO2−δ bilayer7. When the VO2 layer and the
VO2−δ layer are separated by an insulating TiO2 layer,
i.e., they are electronically disconnected from each other,
the two layers both undergo the normal IMT as in the
pristine bulk, at critical temperatures Tc1 ∼ 290 K and
Tc2 ∼ 280 K, respectively7. However, when the VO2−δ
layer is epitaxially grown on the VO2 layer, i.e., they
are electronically connected with each other, the phase
transition in the bilayer becomes more complicated than
in the disconnected case. It was found that, while the
VO2−δ layer stays in the R phase between Tc1 and Tc2 as
in the disconnected case, the MM phase is stabilized in
the VO2 layer inside this temperature interval7.

To understand the phenomenon, we first establish a
Landau potential in the same form of Eq. (1) that de-
scribes the phase transition in pristine VO2 thin films.
It is simplified such that the Landau parameters have
already been renormalized by the (fixed) elastic energy
(see details in Ref.7). The stoichiometry of the VO2−δ
layer is accounted for by the simultaneous −10 K shifting
of T0 and T ′0 with respect to the VO2 layer case, which
simply corresponds to Tc2 − Tc1 ∼ −10 K. This is sim-
ple yet sufficient to describe the phase transition in the



5

-0.06 -0.04 -0.02 0

−0.06 0−0.03

μ

η

Ωt (kBTc)

270 280 290 300 310
Temperature (K)

M1
MM R

(a)

(b)

M1
MM
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unit cell) VO2 thin film at various temperatures. (b) Total
Landau potential landscape of the same hole-doped VO2 thin
film at 283 K, showing the stable M1 phase accompanied with
the metastable MM phase.

bilayer, since in the temperature range of interest (Tc1–
Tc2), the VO2−δ layer remains in the R phase, and we are
mainly concerned with the stable phase in the VO2 layer.
In the VO2-VO2−δ bilayer, the first principles calculation
shows that the VO2 layer is hole doped through its touch-
ing with the VO2−δ layer7. By minimizing Eq. (6) with
a typical Na = 5× 10−3 per unit cell (causing a T ′0 shift
∼ −10 K), we calculate the stable and metastable phases
of the independent hole-doped VO2 thin film at various
temperatures, and the results are presented in Fig. 4(a).
As can be seen, the metastable MM phase appears in the
temperature interval 279–292 K, which is totally absent
in the pristine case. Fig. 4(b) presents the Landau po-
tential landscape of the same hole-doped VO2 thin film
at T = 283 K, showing the stable M1 phase accompanied
with the metastable MM phase.

The appearance of the hole-doping induced metastable
MM phase in the VO2 layer may lead to nontrivial phase
transitions in the VO2-VO2−δ bilayer. We propose that
the metastable MM phase in the VO2 layer could fur-
ther be stabilized via the interfacial interaction with the
VO2−δ layer and the size effect. In the temperature in-
terval Tc1–Tc2, the VO2−δ layer stays in the R phase,
and a M1-R interface or a MM-R interface will form be-
tween the VO2 and VO2−δ layers depending on whether
the VO2 layer is in the M1 phase or the MM phase.
The interfacial energy 2

∫
Fgrdz of the MM-R interface

will be smaller than that of the M1-R interface, since
the κ2 term in Fgr almost vanishes for the MM-R inter-
face [with (η ∼ 1, µ ∼ 0)-(η = 0, µ = 0)] while the κ1
and κ2 term are both finite for the M1-R interface [with
(η ∼ 1, µ ∼ −1)-(η = 0, µ = 0)]. This may allow for
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FIG. 5. Total Landau potentials (per unit cell) of the VO2-
VO2−δ bilayer as a function of the VO2 layer thickness at
283 K for the M1-R (blue circles) and MM-R (green squares)
configurations. The lines are guide to eyes. The insets are
the stable profiles of the order parameters for a t < tc and
a t > tc. The bilayer is stacked along the z direction. The
arrows are the two-dimensional order parameter vector (η, µ),

and the color represents its norm
√
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a lower total Landau potential of the MM-R configura-
tion than that of the M1-R configuration for the bilayer
at small VO2 layer thicknesses, at which the interfacial
energy will dominate the total Landau potential. The
critical thickness below which the MM-R configuration
is stable can be expressed as

tc =
2
∫
dz (Fgr|M1-R − Fgr|MM-R)

Ωt|MM − Ωt|M1
,

where z is the coordinate along the direction of the layer
thickness.

To demonstrate this, we set up a VO2-VO2−δ bi-
layer geometry and employ the phase-field method18

to calculate the total Landau potentials Ω̄t =
∫

(Ωt +
VFgr)dz/(t+ t0) of the MM-R and M1-R configurations
as a function of the VO2 layer thickness t at 283 K (t0
is the VO2−δ layer thickness). The results are shown in
Fig. 5. Indeed, our model yields a tc ∼ 9.4 nm, which
is comparable to the metal-insulator domain wall width
∼ 10 nm found in the phase-field simulations. When the
VO2 layer thickness is below tc, the total Landau poten-
tial of the MM-R configuration will be lower than that of
the M1-R configuration, resulting in a stable MM phase
in the VO2 layer.

V. CONCLUSION AND DISCUSSION

We formulated a phase-field model incorporating struc-
tural and electronic order parameters as well as free elec-
trons and holes to describe the IMT in doped VO2 under
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an electric field. The theory reveals that in the VO2

slab under an electric field, the electric breakdown inside
the supercooling region occurs through an abrupt uni-
versal IMT at threshold electric fields much smaller than
those expected in the smooth Landau-Zener breakdown,
in agreement with the experiment9.

A similar phenomenon was also found in a two-orbital
Hubbard model of a slab with ∼ 20 unit cells, inves-
tigated within the dynamical mean-field theory22. Un-
like in the microscale slab that the abrupt IMT occurs
without any precursor on the insulating side22, in our
mesoscale slab (L = 250 nm) the metal-insulator-metal
sandwich does form as a precursor before the genuine re-
sistive transition. This difference essentially results from
the different ratio of the domain wall energy over the to-
tal energy in the two scales. In the microscale slab, the
domain wall energy dominates the total energy once the
domain wall forms, and thus the metal-insulator-metal
sandwich at its onset will have a higher total energy than
the homogeneous metal. Consequently the electric field
will directly change the ground state of the slab from the
homogeneous insulator to the homogeneous metal with-
out any precursor22. However, in the mesoscale slab, the
domain wall energy is not able to boost the total en-
ergy of the sandwich to exceed that of the homogeneous
metal, until the insulating region shrinks by the elec-
tric field to a threshold length Lh [see Fig. 2, in which
Lh = (250 − 126) nm = 124 nm at T = 337 K]. Hence,
when the slab length L is longer than Lh, the ground
state of the slab does not directly change from the homo-
geneous insulator to the homogeneous metal by the elec-
tric field, but instead breaks from the homogeneous insu-
lator to the inhomogeneous metal-insulator-metal sand-
wich before the genuine resistive transition.

When L > Lh, the threshold electric field Eth is scale-
independent, which can be seen through solving Eqs. (7-
8). This qualifies the electric field as a well-defined quan-
tity to characterize the phase diagram for L > Lh. We
note that for L < Lh, however, Eth is scale-dependent.
In this case, the total Landau potentials of the insulator

and the metal cross for
∫ L
0
dx (Ωt|R −Ωt|M1) = 0, giving

the relation that Eth satisfies,

2kBTc
eEthL

sinh

(
eEthL

2kBTc

)
− 1 =

F |R − F |M1√
NcNv(Eg|M1 − Eg|R)

.

It can be seen clearly that Eth ∝ L−1, and that the scale-
independent quantity is the threshold voltage ∆Vth =

EthL. Therefore, the well-defined quantity to character-
ize the phase diagram for L < Lh is the voltage ∆V
instead of the electric field. For this reason we also show
∆Vth corresponding to each value of Eth in the phase
diagram in Fig. 3.

It is clear that these qualitative behaviors found above
by thermodynamic analysis are general for any field-
driven first-order IMT.

In this work we simplified the problem by only con-
sidering a uniform electric field or assuming the charge-
neutrality approximation22–24. This allowed us to ob-
tain some analytical results and interpret the essen-
tial physics more clearly. In the most precise calcula-
tion, the total electric field should be calculated self-
consistently by solving the Poisson equation25,26. The
applied electric field will be partially screened by the
self-field of charged carriers. From the permittivity and
carrier density yielded from capacitance measurements27,
the Debye screening length in VO2 is estimated to be
1× 101 ∼ 2× 102 nm, which may be comparable to L/2
and the threshold lM/2. Therefore, the approximation
of ignoring the self-field of carriers or charge-neutrality
is reasonable. Particularly if the thickness of the VO2

film is of the order of 10 nm as in some experiments9,20,
the screening effect along the thickness direction will be
even less important, and the simplification will be valid
for these experimental setups. The screening effect will
make the calculated threshold electric fields higher than
those calculated without it (thus approaching the exper-
imental value), yet it shall not alter the essential physics
about the resistive transition.

Employing the phase-field model, we also found that
a metastable MM phase might appear in the hole-doped
VO2, which could be stabilized in the VO2-VO2−δ bi-
layer via the geometrical confinement and the size ef-
fect. The result may explain the presence of the stable
MM phase in the VO2-VO2−δ bilayer found in the ex-
periment7. Our work extends the field of the Landau
theory and the phase-field method to strongly correlated
systems and may offer a powerful computational method
for studying the mesoscale mechanisms of IMT.
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