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Crystalline symmetries can generate exotic band-crossing features, which can lead to unconven-
tional fermionic excitations with interesting physical properties. We show how a cubic Dirac point—a
four-fold-degenerate band-crossing point with cubic dispersion in a plane and a linear dispersion in
the third direction—can be stabilized through the presence of a nonsymmorphic glide mirror sym-
metry in the space group of the crystal. Notably, the cubic Dirac point in our case appears on a
threefold axis, even though it has been believed previously that such a point can only appear on
a sixfold axis. We show that a cubic Dirac point involving a threefold axis can be realized close
to the Fermi level in the non-ferroelectric phase of LiOsO3. Upon lowering temperature, LiOsO3

has been shown experimentally to undergo a structural phase transition from the non-ferroelectric
phase to the ferroelectric phase with spontaneously broken inversion symmetry. Remarkably, we
find that the broken symmetry transforms the cubic Dirac point into three mutually-crossed nodal
rings. There also exist several linear Dirac points in the low-energy band structure of LiOsO3, each
of which is transformed into a single nodal ring across the phase transition.

I. INTRODUCTION

In the past decade, the study of topological phases
of matter has become one of the most active areas
of research in condensed matter physics1–4. Extend-
ing the earlier work on gapped topological phases, such
as topological insulators5–16 and topological supercon-
ductors17–27, the focus has shifted recently to gapless
phases, especially the so-called topological semimetals
(TSMs)28–33.

TSMs are characterized by protected band-crossings in
momentum space, which can be zero-dimensional nodal
points or one-dimensional nodal lines. Around these
band-crossings, electrons behave drastically differently
from the conventional Schrödinger fermions. For exam-
ple, the low-energy electrons in three-dimensional (3D)
Dirac34–38 and Weyl semimetals39–42 resemble the rel-
ativistic Dirac and Weyl fermions with linear disper-
sion, allowing investigation of related exotic phenom-
ena, which have previously belonged to the domain of
high-energy physics, in a desktop materials setting. In
fact, the family of nodal-line semimetals43–55 harbors
an even richer topological structure, and supports nodal
chains56,57, crossing nodal lines58–60 as well as Hopf
links61–66, which have no counterparts in high-energy
physics. In addition to these novel bulk fermionic excita-
tions, TSMs also possess exotic topological surface states
in the form of Fermi arcs in Dirac/Weyl semimetals and
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drumhead surface states in nodal-loop semimetals27,32,39.

Nonsymmorphic crystalline symmetries, i.e. symme-
tries which involve a fractional lattice translation, can
generate TSMs with exotic type of band crossing fea-
tures. For example, a glide mirror or a two-fold screw
axis can give rise to an hourglass dispersion67, hourglass
loop/chain54–57, and 2D spin-orbit Dirac points68,69,
which are robust against spin-orbit coupling (SOC) ef-
fects.

Here, we show that the glide mirror symmetry, com-
bined with symmorphic three-fold rotation, inversion,
and time-reversal symmetries, can generate a cubic Dirac
point. This cubic Dirac point is four-fold degenerate with
an associated band dispersion, which is cubic in a plane
and linear in the third direction normal to the plane. No-
tably, as a result of the nonsymmorphic symmetry, the
cubic Dirac point here appears on a threefold axis, even
though it has been believed previously that such a point
can only appear on a sixfold axis70,71. We further show
that when the inversion symmetry is broken, this cubic
Dirac point transforms into three crossed nodal rings.

Through first-principles electronic structure computa-
tions, we show that LiOsO3 provides a materials plat-
form for realizing the novel topological physics outlined
in the preceding paragraph. LiOsO3 is the first example
of a ferroelectric metal72. In a recent experiment, Shi et
al. report that LiOsO3 undergoes a ferroelectric phase
transition at a critical temperature T ∗ ≈ 140 K73, at
which the material transforms from a centrosymmetric
R3̄c structure to a non-centrosymmetric R3c structure,
while remaining metallic. LiOsO3 thus realizes the sce-
nario proposed in Ref.72. Notably, a related material,
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HgPbO3, has been suggested recently to host a ferroelec-
tric Weyl semi-metal phase74.
Our analysis shows that the non-ferroelectric R3̄c

structure satisfies the symmetry requirements for hosting
a cubic Dirac point. Also, when the inversion symmetry
breaks at the ferroelectric transition, we find that the
cubic Dirac point gives rise to three crossed nodal rings
in the ferroelectric R3c structure. The low-energy band
structure of LiOsO3 further shows the presence of several
linear Dirac nodes, and we show that these nodes turn
into nodal loops during the ferroelectric phase transition.
Our study thus not only discovers a new mechanism for
generating a cubic Dirac point, but it also offers a promis-
ing new materials platform for exploring the interplay
between structural transitions, ferroelectricity, and novel
topological fermions.

II. COMPUTATIONAL METHODS

Our ab-initio calculations were performed by using
the all-electron full-potential linearized augmented plane-
wave code WIEN2k75. Generalized gradient approxima-
tion (GGA) of Perdew, Burke and Ernzerhof (PBE)76

was employed for the exchange-correlation potential. Ex-
perimental lattice constants73 were used in the calcula-
tions and the internal structure was optimized. The self-
consistent iteration process was repeated until the charge,
energy and force converged to less than 0.0001e, 0.00001
Ry, and 1 mRy/a.u, respectively. SOC was included by
using the second variational procedure77. The muffin-
tin radii were set to 1.47, 1.84, and 1.51 a.u. for the
Li, Os, and O atoms, respectively. Rmin

MTKmax = 7 and
a k-point mesh of 4000 in the first Brillouin zone were
used. An effective tight-binding model was constructed
via projection onto the Wannier orbitals78–82 for carry-
ing out topological analysis of the electronic spectrum.We
used the Os d orbitals without performing the maximiz-
ing localization procedure. Surface states were obtained
using the surface Green’s function technique83 applied on
a semi-infinite slab.

III. CRYSTAL STRUCTURE AND SYMMETRY

The non-ferroelectric phase of LiOsO3 has a rhombohe-
dral structure with space group R3̄c (No.167) [Fig. 1(a)].
The Os atom is located at the center between two Li
atoms and also at the symmetric position of two O planes,
which preserves inversion symmetry P . Upon lowering
the temperature below T ∗, the two Os atoms are dis-
placed along the [111] direction, resulting in the loss of
inversion center [Fig. 1(b)]73. The crystal symmetry is
thus lowered to R3c (No.161) in the ferroelectric phase.
We emphasize that the key physics underlying the cu-

bic Dirac point and its transformations in LiOsO3 is con-
trolled by symmetry, and not by the details of the specific
material involved. The important symmetries are as fol-
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FIG. 1: Crystal structures of LiOsO3 (a) The non-ferroelectric
phase and (b) the ferroelectric phase. The insets are
schematic drawings of the oxygen planes (red lines) and the
location of the Os and Li atoms relative to these planes. (c)
Brillouin zone (BZ) of LiOsO3 and the projected (111) surface
BZ.

lows. The R3̄c space group of the non-ferroelectric phase
can be generated by three symmetry elements: the inver-
sion P , the three-fold rotation along [111]-direction (z-
axis) c3z , and the glide mirror with respect to the (1̄10)

plane (xz-plane) M̃y = {My| 12 1
2
1
2
}, which is a nonsym-

morphic symmetry. In the ferroelectric phase, when P is
broken, the generators of the remaining R3c space group

reduce to c3z and M̃y only. Lattices in both phases are
bipartite: there are two sublattices (denoted as A and B)

with a relative displacement of (1
2
, 1
2
, 1
2
). P and M̃y map

between the two sublattices (A↔ B), whereas C3z maps
within each sublattice (A(B) ↔ A(B)). The system pre-
serves the time-reversal symmetry T , since no magnetic
ordering has been observed in either phase73.

IV. BAND STRUCTURES WITHOUT SOC

Without the SOC, the band structures of non-
ferroelectric and ferroelectric phases of LiOsO3 are sim-
ilar as seen in Fig. 2. Both phases exhibit two-fold de-
generate (four-fold if spin-degeneracy is counted) nodal
lines passing through the L and T points of the BZ per-
pendicular to the glide mirror planes. These features of
the band structure can be understood by noting that the
L and T are time-reversal invariant momentum (TRIM)

points, which also reside on the glide mirror planes M̃i

(i = 1, 2, 3) (the other two glide mirrors are related to M̃y

by C3z), see Fig. 1(c). It is easily seen that the line pass-
ing through an L point and normal to the corresponding

mirror plane M̃i is invariant under the anti-unitary sym-

metry operation T M̃i, so that

(T M̃i)
2 = e−ikL

z = −1, (1)

where we have used T 2 = +1 for a spinless system and

kLz is the kz-component of L. The T M̃i symmetry thus
guarantees a two-fold Kramers-like degeneracy on this
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FIG. 2: Electronic band structure of LiOsO3 in the absence
of SOC for (a) the non-ferroelectric phase and, (b) the ferro-
electric phase. (c)-(f) Zoom-in images of the band crossings
at the L and T symmetry points marked by red circles in (a)
and (b).

line. A similar analysis applies to the T point: Since
T lies on the intersection of three glide mirrors, three

such nodal lines pass through T. Moreover, since M̃i+1 =

C3zM̃iC
−1
3z , [C3z, M̃y] 6= 0, which leads to [M̃i, M̃j 6=i] 6= 0.

For an eigenstate |ψ0〉 at T, the three states |ψi=1,2,3〉 =
T M̃i|ψ0〉 must be orthogonal to each other, indicating
a four-fold (eight-fold if counting spin) degeneracy at T.
This analysis is in accord with our DFT band structure
results.

V. BAND STRUCTURES WITH SOC

A. Non-ferroelectric phase: linear and cubic Dirac

points

The band structure including SOC is of greater inter-
est because the low-energy states mainly arise from the
Os-5d orbitals with strong SOC effects. When the SOC is
turned on, the band-crossings in the non-ferroelectricR3̄c
phase evolve from 1D nodal lines into 0D Dirac points,
each with four-fold degeneracy. Fig. 3(a) shows that close

to Fermi level, now we have a linear Dirac node at each
L point (there are three inequivalent L points in the BZ)
[Fig. 3(c) and Fig. 4(a,b)]. The original eight-fold degen-
eracy at T splits under SOC into two Dirac points, where
one is linear [Fig. 3(d)] and the other is cubic [Fig. 3(e)
and Fig. 4(d,e)]. Hence, we may call this phase as a
multi-type Dirac semimetal.
The cubic Dirac point, around which the dispersion

is linear along one direction (kz-axis) and cubic along
the other two directions, has been rarely reported in
real materials70. In previous work, it was believed that
such a Dirac point can only appear on a sixfold axis70,71

and is possible only for two space groups (No. 176 and
No. 192)70. Our results clearly demonstrate that it can
also occur on a threefold axis in the presence of the ad-
ditional nonsymmorphic (glide mirror) symmetry. In the
following, we shall show that the cubic Dirac point is
indeed protected by the glide mirror together with the
symmorphic crystal symmetries.
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FIG. 3: Electronic band structure for (a) the non-ferroelectric
phase and (b) the ferroelectric phase where SOC is included.
(c)-(h) Zoom-in images of the band crossings at the L and T
points marked by red circles in (a) and (b).

The following points may be noted in connection with
symmetry considerations. (1) In the non-ferroelectric
phase, the presence of both T and P symmetries forces
the two-fold spin-degeneracy of each band. Hence the
crossing between the bands must be at least 4-fold degen-
erate (i.e. Dirac type). (2) All states at T and L symme-
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FIG. 4: Top and middle panels show the dispersions around
the L and T points. (a), (b), (d) and (e) are for the non-
ferroelectric phase, while (c) and (f) are for the ferroelectric
phase. (g, h) Schematic diagrams showing the band-crossings
in the non-ferroelectric (g) and ferroelectric (h) phases.

try points must be degenerate quadruplets. This reason
is that Kramers degeneracy at TRIM points requires the
eigenvalues of P to be paired as (1, 1) or (−1,−1). In
contrast, at T and L,

[P , M̃y] 6= 0, (2)

implying that the degenerate states generated by M̃y will
have P eigenvalues paired as (1,−1), which guarantees
the four-fold degeneracy at T and L points. (3) The na-
ture of the Dirac point (linear or cubic) strongly relies on
the additional rotational symmetry C3z , which is present
at T but not at L, as we will explicitly demonstrate be-
low.
As we already pointed out, the low-energy bands are

mainly derived from the Os-5d orbitals. Under trigonal
prismatic coordination, the Os d-orbitals split into two
groups: A1g (dz2) and Eg {(dx2−y2 , dxy), (dxz, dyz)}. Un-
der SOC, these states can be combined into the follow-
ing spin-orbit-coupled symmetry-adapted basis, keeping
in mind that each unit cell contains two Os atoms, one
in each sublattice:

φτ0,s = |dτz2,s〉, (3)

φτ±,s =
1√
2
(sinλ|dτxz,s±isdτyz,s〉+cosλ|dτx2−y2,s∓is2dτxy,s〉),

(4)
where τ labels the two sublattices A and B, s labels the
spin, and λ is a normalization coefficient.

At the T point, Kramers degeneracy requires that the
four basis functions φτi,s with a fixed i = 0,± are cou-
pled together into a quadruplet. Consider first the two
quadruplet basis Ψ0/− = (φA

0/−,↑, φ
A
0/−,↓, φ

B
0/−,↑, φ

B
0/−,↓),

for which the symmetry operations at T take the follow-
ing representations:

T = −τ3 ⊗ s2K , P = −τ2,
M̃y = e−iqz/2τ1 ⊗ s2 , C3z = τ0 ⊗ e±iπ

3
s3 . (5)

Here τ and s are Pauli matrices acting on the sublattice
and spin spaces, respectively, and q is the wave-vector
measured from T. These expressions fix the k · p Hamil-
tonian at T expressed using Γ matrices, which we define
here as γ1 = τ3s1, γ

2 = τ3s2, γ
3 = τ1s0, γ

4 = τ2s0, and
γ5 = τ3s3. Then, to the lowest order, we find that

Hlinear
T (q) = α1(qxγ

1 ± qyγ
2) + α2qzγ

3 + α3qzγ
5, (6)

where α’s are the expansion coefficients, and the sign ± is
for the two basis Ψ0/−. This model describes the linear
Dirac points at T, which can be viewed as consisting
of two Weyl points with Chern numbers 1 and −1. As
expected, the total Chern number for a closed surface
surrounding the Dirac points vanishes.
As for the other quadruplet basis, Ψ+ =

(φA+,↑, φ
A
+,↓, φ

B
+,↑, φ

B
+,↓), the representations of the

symmetry operations are the same as in Eq. (5) except
that C3z = −τ0⊗s0. Due to this different transformation
behavior of the basis under C3z , the related effective
Hamiltonian is different from (6), where the diagonal
terms proportional to τ0s0 have been dropped:

Hcubic
T (q) =

(
h11 h12

h
†
12 −h11

)
, (7)

where

h11 = [c1(q
3
+ + q3−) + b1(q+q−qz) + a1qz]s1

+ic2(q
3
+ − q3−)s2

+[c3(q
3
+ + q3−) + b2(q+q−qz) + a2qz]s3,

h12 = [c4(q
3
+ + q3−) + b3(q+q−qz) + a3qz]s0.

Here q± = qx±iqy, and ai, bi, and ci are the expansion co-
efficients. We find that the band-crossing at T described
by Eq. (7) to be a cubic Dirac point, with cubic disper-
sion in the qx-qy plane. The diagonal blocks describe two
triple-Weyl fermions with Chern numbers ±3. The cubic
Dirac point can be viewed as being composed of the two
triple-Weyl points.
We emphasize that when only symmorphic symmetries

are considered, cubic Dirac points require the presence
of a six-fold axis. 70,71 Our case, however, involves a
nonsymmorphic glide mirror, which plays a crucial role in
realizing the cubic Dirac point on a three-fold axis. Our
analysis indicates that a sufficient condition for realizing
a cubic Dirac point is the presence of P, T, a glide mirror,
and a c3-axis within the mirror. P, T, and the glide
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FIG. 5: Accidental band crossing points along the Γ-T sym-
metry line. (a) Band structure with SOC for the non-
ferroelectric phase. (b) Band structure with SOC for the fer-
roelectric phase. (c,d) Zoom-in images of the band-crossing
points marked by green circles in (a). (e,f) Zoom-in images of
the band-crossing points in (b). Each band in (c,d) is two-fold
degenerate, so that the crossing points are four-fold degener-
ate. The crossing points in (e,f) lie between a non-degenerate
and a two-fold degenerate band, so that these points are triply
degenerate.

mirror only protect a four-fold degeneracy; the presence
of an additional three-fold rotation then yields the cubic
in-plane dispersion.

A similar analysis for the L point at (0, 0, 1
2
) leads to

the following effective Hamiltonian:

HL(q) =
∑

i=1,3,5

(βx,iqx + βz,iqz)γ
i + βyqyγ

2. (8)

Here q is measured from L, and the β’s are the expansion
coefficients. This demonstrates that the crossings at L
are linear Dirac points.

The linear and cubic Dirac points discussed above are
essential in the sense that their appearance at the high-
symmetry TRIM points T and L is mandated by the sym-
metry operations of the system. In addition, we note the
presence of accidental Dirac points, which appear in pairs
along the primary rotation axis Γ-T. There are three such
pairs around the Fermi level, one of these is seen to be
of type-II with an over-tilted dispersion. Zoom-in images
of these Dirac points are shown in Figs. 5(a,c,d).

B. Ferroelectric phase: crossed nodal rings

In going across the ferroelectric R3c phase transition,
the loss of inversion symmetry induces profound changes
in the band structure, see Fig. 3(b). The spin-degeneracy
of the bands gets lifted, and the Dirac points in the non-
ferroelectric phase become unstable. We find that each
linear Dirac point at L develops into a nodal ring on the
glide mirror plane, which encloses the L point [Figs. 3(f)
and 4(c)]. Also, the cubic Dirac point at T is transformed
into three mutually-crossed nodal rings, each lying on a
glide mirror plane [Figs. 3(h) and 4(f)]. This topological
phase may thus be called a crossed-nodal-ring semimetal.
The transformations of these band-crossings across the
phase transition are illustrated in Fig. 4(g,h).
The occurrence of the preceding nodal rings in the

band structure is also essential in that it is solely de-
termined by symmetry considerations. Note that the
glide eigenvalues are ±i at Γ1 ∈ {Γ,X}, and ±1 at
Γ2 ∈ {T,L}. The presence of T here requires that the
Kramers pairs at the above TRIM points carry complex-
conjugated eigenvalues, i.e. (i,−i) at Γ1; and (1, 1) or
(−1,−1) at Γ2. Hence, along any path connecting Γ1 and
Γ2 in the glide plane, the evolution of the glide eigen-
values drives a switching of Kramers partners. During
this switching, two bands with opposite glide eigenvalues
must produce a crossing. As this argument holds for any
in-plane path, a nodal loop separating Γ1 and Γ2 must
appear. This symmetry analysis highlights the impor-
tance of the nonsymmorphic glide mirror in producing
these essential band-crossings.
The transformations described above can also be cap-

tured in the effective models. For example, at the T
point, starting from the model of Eq. 7 for the cubic
Dirac point, the leading order perturbation δτ1s2 when
the P is broken, so that a minimal model may be ex-
pressed as

HCNR
T (q) = Hcubic

T (q) + δτ1s2. (9)

It is straightforward to verify that this model gives three
mutually-crossed nodal rings like the DFT calculations.
Similarly, the nodal ring around the L point can be de-
rived from the model of Eq. 8 as follows

HNR
L (q) = HL(q) + δ′τ1s2. (10)

Note that the linear Dirac points at T are still pre-
served [Figs. 3(g)], which can be attributed to the non-

commutativity of C3z and M̃y in the corresponding basis.
The three pairs of accidental Dirac points residing on the
primary rotational axis are, however, turned into triply-
degenerate nodes as shown in Fig. 5(b,e,f).
Unlike Weyl points, the essential Dirac points may or

may not give rise to nontrivial surface states71. In Fig. 6,
we plot the surface spectrum of the (111)-surface for
both the non-ferroelectric and ferroelectric phases. Both
phases are seen to support surface bands connecting the
two surface-projected L points.
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FIG. 6: Surface states of LiOsO3 in the non-ferroelectric (up-
per panel) and ferroelectric (lower panel) phases in the pro-
jected spectra of the (111) surface. SOC is included. (a) and
(c) Constant energy surfaces at the band-crossing energy at
L. (d) and (e) Dispersions along the kx-direction at ky = 0.5.

VI. CONCLUSION

We emphasize a number of points in closing. Firstly,
the Dirac nodes at the TRIM points and the multiple
nodal rings surrounding these points discussed here are
essential band-crossings in the sense that the presence of
these features is solely dictated by the nonsymmorphic
space group symmetries (plus T ) of the system. Their
existence is thus guaranteed as long as these symmetries
are preserved. Our analysis of symmetry considerations
underlying cubic Dirac points and crossed nodal rings
will provide a useful guide in searching for exotic band
crossings in realistic material systems more generally.
Secondly, our analysis clearly indicates that LiOsO3

will provide a useful platform for exploring exotic topo-
logical phases and their interplay with ferroelectric or-
dering. The unique advantages of LiOsO3 are as follows.
(i) The essential band-crossings are close to the Fermi
level, so that the associated topological physics will be
reflected in various electronic properties. (ii) The two
topological phases that coexist in the same material are
connected via a ferroelectric phase transition, which is
tunable by varying temperature73. And, (iii) the ma-
terial has already been realized experimentally and its
ferroelectric phase transition has been observed. The in-

teresting transformations in the band-crossings across the
phase transition, which we have predicted here, could be
detected by ARPES experiments.

Thirdly, we have identified the first case of an ex-
perimentally realized material, which harbors a cubic
Dirac point in a 3D material. Such a Dirac point has
been predicted previously only in quasi-1D molybdenum
monochalcogenide compounds70, where an experimental
verification is still lacking. Our work offers a new route
for realizing cubic Dirac points, extending the range of
materials in search of cubic Dirac fermions.

Finally, our study opens a new pathway for exploring
a variety of novel effects associated with the various non-
trivial band-crossings. For example, a linear Dirac point
may exhibit negative magnetoresistance84,85, a special
magnetic oscillation frequency driven by surface Fermi
arcs86, and an artificial gravity field via strain modula-
tion87. A cubic Dirac point can exhibit unusual quan-
tum interference contributions to magneto-transport88,
stronger screening of interactions, and possible presence
of continuous quantum phase transitions driven by in-
teractions89. A nodal ring may yield strong anisotropy
in electrical transport47, unusual optical response90 and
circular dichroism91, and possible surface magnetism and
superconductivity92.
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