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Abstract

We apply machine learning (ML) methods to a database of 390 experimentally reported ABO3

compounds to construct two statistical models that predict possible new perovskite materials and

possible new cubic perovskites. The first ML model classified the 390 compounds into 254 per-

ovskites and 136 that are not perovskites with a 90% average cross-validation (CV) accuracy; the

perovskites are further classified by a second ML model into 22 known cubic perovskites and 232

known non-cubic perovskites with a 94% average CV accuracy. We find that the most effective

chemical descriptors affecting our classification include largely geometric constructs such as the A

and B Shannon ionic radii, the tolerance and octahedral factors, the A-O and B-O bond length,

and the A and B Villars’ Mendeleev numbers. We then construct an additional list of 625 ABO3

compounds assembled from charge conserving combinations of A and B atoms absent from our list

of known compounds. Then, using the two ML models constructed on the known compounds we

predict that 235 of the 625 exist in a perovskite structure with a confidence greater than 50% and

among them that 20 exist in the cubic structure (albeit, the latter with only ∼50% confidence).

We find that the new perovskites are most likely to occur when the A and B atoms are a lanthanide

or actinide, when the A atom is an alkali, alkali earth, or late transition metal atom, or when the

B atom is a p-block atom. We also compare the ML findings with the density functional theory

calculations and convex hull analyses in the Open Quantum Materials Database (OQMD), which

predicts the T=0 K ground state stability of all the ABO3 compounds. We find that OQMD

predicts 186 of 254 of the perovskites in the experimental database to be thermodynamically sta-

ble within 100 meV/atom of the convex hull and predicts 87 of the 235 ML-predicted perovskite

compounds to be thermodynamically stable within 100 meV/atom of the convex hull, including 6

of these to be in cubic structures. We suggest these 87 as the most promising candidates for future

experimental synthesis of novel perovskites.
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I. INTRODUCTION

The ABO3 compounds, particularly those with a perovskite structure hold a special

place in the arena of design and discovery of new materials with interesting and technology-

enabling target functionalities1–3 because of the range of elements involved, the variety of

crystal structures possible, and the breadth of important physical properties they exhibit.

The perovskite crystal structures can exist not only in the cubic “undistorted” structure,

but also in a wide variety of structural distortions.4 Common to all is the ABO3 chemical for-

mula where the A atom is 9- to 12-fold coordinated by oxygen, whereas the B atom is 6-fold

coordinated by oxygen, and most importantly, the BO6 octahedra are corner-connected in

all three directions. Perovskite structures include space groups that are subclasses of cubic,

orthorhombic, tetragonal, rhombohedral, monoclinic, and triclinic crystals. We adopt the

definition of Zhang et al.5 who limit these space groups to the 15 unique structures, noted

by Lufaso and Woodward.4 There are about 254 experimentally synthesized inorganic per-

ovskites, of which 22 are cubic and 232 non-cubic (Tables I and II, Supplemental Material6).

A number of interesting physical properties of ABO3 compounds depend on whether they

have a perovskite structure or not, and also if they have a perovskite structure, whether

they are cubic perovskites or non-cubic perovskites. The perovskite structure, for exam-

ple, is characteristic of high temperature superconductors,7 colossal magneto-resistors,8 and

multiferroic materials.9 Cubic perovskites are important as ionic conductors10 and as a new

class of topological insulators.11,12 Accordingly, there is both an interest and need to design

and discover new perovskites.

In this paper we apply two machine learning (ML) methods to (a) train a ML model

to classify the ABO3 compounds, which were assembled from the experimental literature

as “perovskites or not,” (b) train another ML model to classify experimentally known per-

ovskites as “cubic or not” and then (c) use these models to predict whether members of

a proposed set of ABO3 compounds (not included in the training set) are perovskites. Fi-

nally (d), we compare our ML predictions for the proposed ABO3 compounds with density

functional theory (DFT) and a convex hull (CH) analysis of stability with respect to de-

composition into other phases, using the Open Quantum Materials Database (OQMD).13–15

Items (c) and (d) are the new findings presented in this paper where we report predictions of

possible new formable and stable ABO3 perovskite compounds. ML and DFT-based convex
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hull (DFT-CH) methods provide complementary insights into whether an ABO3 compound

can exist in a perovskite structure.

We also consider a list of 625 ABO3 compounds (given in Tables III and IV, Supplemental

Material6) that are not present in the training set and assembled from charge conserving

combinations of A and B atoms, and predict from ML that 235 compounds might be per-

ovskites, including 20 in cubic structure, the latter albeit with only ∼50% confidence (only

as good as random guessing). We predict from ML that new perovskites are most likely to

occur when the A and B atoms are a lanthanide or actinide, or when the A atom is an alkali,

alkali earth, or late transition metal atom, and when the B atom is a p-block atom. The

DFT-CH description, as implemented in the OQMD, predicts 87 of the 235 ML-predicted

perovskite compounds to be thermodynamically stable within 100 meV/atom of the CH,

(which is our threshold for either decomposition or comparison to other ABO3 structures

with the same composition), including 6 of these to be in cubic structures. The predictions

of a number of possible interlanthanides and interactinides are noteworthy as compounds

in these classes are generally difficult to calculate accurately with ab initio methods but

present no computational challenge for the ML methods.

The OQMD database was built from DFT calculations at zero temperature and pressure

and can automatically construct the ground state CH13–15 of a given A-B-O system, including

all possible combinations of competing phases. An ABO3 compound is stable in a given

structure if it lies on the CH. However, metastable phases can often be synthesized, and

hence we consider also a reasonable range of “degree of metastability” (DOM), whereby

a structure predicted to lie near, but somewhat above the CH (< 100 meV/atom) will

also be a candidate for metastable formability (See Section III C).16 While the question of

formability can be experimentally validated by synthesizing the compounds in the laboratory,

validation of stability is expected to be non-trivial due to the existence of potentially many

energetically competing metastable structures and complex kinetic pathways before reaching

the final stable state. Our hypothesis, supported by other analyses,16 is that if a compound

is predicted to be thermodynamically stable then it should be synthesizeable. If a compound

has a small, but positive, DOM (0-100 meV/atom), then it could possibly be formable. We

acknowledge that whether a given stoichiometry will form a compound or not will depend on

synthesis conditions, which we cannot predict. Out of the 235 compounds predicted by ML

to be in a perovskite structure, 87 are found to be OQMD stable or nearly stable in these
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structures. We thus suggest that these 87 are most likely formable (see Appendix). Some of

the notable ABO3 perovskites that we predict by superimposing the ML predictions with the

DFT-based CH analysis are EuIrO3, BiVO3, EuVO3, NdRuO3, and EuMnO3. Validating

our suggestions is a challenge we propose to experimentalists.

II. BACKGROUND

A. Classification of materials by ML

ML is a statistical approach which can be applied to the identification of classes of new

materials based on existing knowledge of already formed members. For decades, researchers

have used diagrammatic classification of the previously measured structure types of broad

chemical groups of synthesized compounds in terms of phenomenological chemical coordi-

nates describing the constituent elements (such as the atomic radii, quantum orbital radii,

electronegativities, etc). The historical precursors to ML were “structure plots,” i.e., scatter

plots of two chemical coordinates of a material class having one or more targeted properties

(generally, the crystal structure type). Straight lines were often drawn on the plot by hand

to group materials with similar characteristics. Such plots often capture trends in materials

behavior reflecting trends in the periodic table. Possible new materials are defined by the

vacant regions of the plot. One looks for materials to occupy these regions in the vicinity

of those whose properties one is seeking to enhance. Likely, the best known of the earliest

structure plots are those of Mooser and Pearson, Phillips and Chelikowsky for binary AB

octet compounds, Zunger for octet and non-octet structures and those of Villars and Pettifor

for classifying ternary phases.17–20

As the databases of compounds subject to such classification queries has increased in size

[for example, the growth of the Inorganic Crystal Structure Database (ICSD)]21,22 and the

number of pertinent chemical coordinates diversified, ML methods have become a popular

extension of the two-dimensional structure plot. Such methods have been applied to AB,

AB2 and ABO3 materials with improved accuracy in predicted capabilities relative to the

traditional structure plots23–29 as well as to compounds with arbitrary stoichiometries.30,31

Many of these ML applications start with materials known to exist and construct statistical

models that predict expected properties of materials not yet known to exist. Since the
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FIG. 1. Our ML workflow for the prediction of new ABO3 cubic perovskites. We build two

independent ML models for (a) the classification of ABO3 perovskite or not (Machine Learning 1).

We assembled a dataset of 390 ABO3 compounds from surveying the literature, which included 254

perovskites and 136 non-perovskites. (b) Classification of cubic and non-cubic ABO3 perovskites

(Machine Learning 2). Out of the 254 perovskites, there were 232 in the non-cubic structures (e.g.,

orthorhombic, monoclinic, tetragonal, rhombohedral etc.) and 22 in the cubic structure (space

group, Pm3̄m). To predict whether a new ABO3 compound will have a cubic perovskite structure

or not, we utilize these two ML models in a hierarchical manner [as shown in (c)]. We assembled a

list of 625 possible ABO3 compounds that were not present in the training set. Machine Learning

1 predicted 235 as possible in the perovskite structure. Machine Learning 2 further predicted 215

ABO3 compounds in the non-cubic perovskite structures and 20 in the cubic perovskite structure.
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input to the learning process consists of previously synthesized compounds, the ensuing ML

predictions provide insights into chemistries in a given stoichiometry that are probable in a

crystal structure type without commenting on whether they are thermodynamically stable

or not.

B. Predicting new ABO3 perovskites by ML

Our overarching ML strategy is shown in Figure 1. We first demonstrate that the ML

models can classify the known 390 ABO3 compounds into the 254 perovskites and 136

that are not perovskites with 90% average cross-validation (CV) accuracy determined by

the stratified CV procedure (Figure 1a). This success in part requires identifying effec-

tive chemical descriptors (features) that enable such classification. Then, we build another

set of ML models to classify all formable 254 perovskite structures into the 22 known cu-

bic perovskites and 232 known non-cubic perovskites finding similarly 94% CV accuracy

(Figure 1b). We interpret that the misclassification of our models are more a source of

important physical information than they are failings of the model. For example, KTaO3

and SrVO3 were classified as non-cubic perovskite by ML whereas they were reported to be

formed as cubic perovskite. They are likely poised to undergo a structural transition from

the experimentally observed cubic to non-cubic perovskite. This possibility remains to be

experimentally validated (discussed in subsection IV C).

We next apply the trained ML models constructed from these classifications of known

compounds to predict whether they would be in cubic or non-cubic perovskite crystal struc-

tures for a list of 625 possible ABO3 stoichiometries (Figure 1c), which are not in our current

compilations of perovskite materials and are generated from charge conserving combinations

of A and B cations. It is unknown to the ML models whether any of the 625 assembled

stoichiometries is chemically stable at this stage because stability data was not included in

the ML training. Stability will be assessed by DFT below. We formulate this prediction

problem as a two-step task. In the first step, we use our trained ML models (Figure 1a) to

screen for compounds and classify them into perovskites and those that are not perovskites.

Only those ABO3 compounds that are classified as perovskites reach the second step, where

new ML models are trained (Figure 1b) then used to classify cubic from non-cubic per-

ovskites. Using this strategy, we predict a total of 235 ABO3 compounds (not present in the
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training set) in the perovskite structure, including 20 in the cubic perovskite structure. We

also identify chemical trends in the A-B element pairs that are predicted to be perovskites.

They are: (i) When the A and B atoms are interlanthanides and interactinides, then the

resulting ABO3 compound is predicted to be a perovskite, i.e., lanthanides and actinides

appear to substitute for each other relatively easily. (ii) When the A atom is an alkali, alka-

line earth, or late transition metal atom then there is a strong likelihood for the compound

to be in a perovskite structure. (iii) Similarly, when the B atom is a p-block atom then it

favors the perovskite structure. These specific trends are consistent with previous ML,26 to

some extent the HT-DFT studies of Emery et al.,15 and with the recent analyses of known

compounds of various structures and element sets.32,33

C. Predicting stability of compounds by DFT convex hull construction

Our ML models can predict whether a particular ABO3 compound will have a perovskite

crystal structure or not and if it is a perovskite then whether it is cubic or not. However,

the models lacks the thermodynamical stability insights, i.e., they cannot indicate whether

those compounds are stable or not, or whether it would readily decompose to other products.

This is mainly because our training dataset lacks such detailed thermodynamic information.

This question can be addressed by first principles based total energy calculations and CH

analysis, which can indicate the degree to which a hypothetical compound is on or above

the equilibrium CH. One can thus retain both stable compounds and those with a degree of

metastability (DOM) energy not higher than a reasonable threshold value. One generally

expects that compounds formed in the laboratory by near equilibrium growth methods (such

as melt or solution growth, but not via artificial layer-by-layer growth methods from the gas

phase such as molecular beam epitaxy, or Pulse Laser Deposition) are thermodynamically

stable or weakly metastable. However, not all synthesizeable compounds are stable. Many

metastable compounds that are known to form are protected from decomposition by insur-

mountable kinetic barriers.34 Also, stable compounds may have thus far escaped successful

synthesis (for example, because the right experimental conditions have not yet been found),

and such combinations may also be used to (mis)train ML, whereas DFT will identify them

as stable.

First principles calculations based on DFT provide a means to identify stable, or weakly
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metastable materials. A particular implementation is based on “high-throughput calcu-

lations” in which a large series of DFT calculations are evaluated in an automatic high-

throughput (HT) fashion. The total energy data for the compounds in the HT-DFT dataset

can then be used to perform a CH analysis in which the lowest energy combination of phases

can be identified for an arbitrary stoichiometry (say, ABO3) and the structure type (or types)

that leads to the lowest energy from a group of pre-selected competing phases is identified.

The pre-selected competing phases include (i) alternative crystal structures of the target

compound ABO3 itself (i.e., non-perovskite ABO3) and (ii) decomposition products of the

target compound (such as A+B+3/2O2, or AO+BO2). A target compound with an energy

lower than those in the combined groups (i) and (ii) is declared a stable ground state struc-

ture. If its energy is higher, then it is declared unstable. If unstable, but close to the CH,

the compound might still be potentially formable as a metastable phase with a reasonable

level of DOM.

A number of open source implementations of the DFT-CH approach to predicting com-

pound stability are available.14,35,36 In the analysis that follows, we used the results of the

predictions available from the OQMD. Instead of referring to these results as DFT-CH, we

refer to them as OQMD to be specific about the source of the DFT-CH predictions. Dif-

ferent open sources databases can give different predictions depending on the details of the

DFT and the construction of the CH.

III. INPUTS AND METHODS

A. Database of known ABO3 compounds

Our database of ABO3 compounds consists of 390 compounds and was created via an

augmentation of the database of 354 ABO3 compounds explored earlier by Pilania et al..26

This data included that compiled by Zhang et al.5 who gathered their data from a number

of resources, including the Inorganic Crystal Structure Database (ICSD) and published

literature data. We added to our earlier 354 compounds 36 new ABO3 compounds taken

from the literature37 and those compiled by Emery et al .15 We note that in all 390 compounds

the sum of the valences of A and B adds to 6 so these are “charge balanced compounds.”

For example, each A-B pair has nominal I-V, II-IV or III-III valences. No A-B pairs in
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this set have IV-II or V-I valences. Each previously documented ABO3 compound has a

label signifying whether it is a perovskite or not. Compounds with the ABO3 formula that

satisfy the definition of “perovskite” (given in the Introduction) are labeled “Perovskite”.

Compounds with the ABO3 formula that do not satisfy the definition, for example, ones

whose octahedra are not corner-sharing and ones that decompose into constituents without

forming any ABO3 compound (failed synthesis37), are labelled “Non-perovskites.” This

definition is consistent with that of Zhang et al .5 Of the 390 compounds, 254 are perovskites

and 136 are not perovskites (Table I, Supplemental Material). We changed the label for

BaRuO3 from non-perovskite to perovskite (but not cubic), following the work of Jin et

al .38 Each perovskite is also labeled signifying whether it is cubic or not. 22 perovskites are

cubic and 232 are non-cubic perovskites.

The structures for most materials were experimentally determined at ambient conditions;

however, some were determined under other non-ambient conditions. Those designated as

a perovskite are single-phase materials and could be either thermodynamically stable or

metastable. Those designated as non-perovskite could be a single phase or mixed phase

material that is thermodynamically stable or metastable. Our database lacks this more

descriptive information.

For each compound, we include values of various chemical coordinates (features) asso-

ciated with their A and B atoms or the chemical bonds. Initially, our database had 30

features. Most were classical chemical constructs obtained independently of structure clas-

sification such as atomic radii, orbital radii, and electronegativities. Other chemical scales,

the Mendeleev numbers, were selected explicitly for structural classification without at-

tributing intrinsic, independent chemical significance to these numbers. Our preprocessing

however showed that many features in the database were not as influential in classifying the

compounds as Perovskite or Not or as Cubic or Not as 4 sets of feature pairs previously

used in structure plots.5,39–41 These pairs are: The Shannon ionic radii42 of the A and B

atoms, the tolerance and octahedral factors, the bond valence theory estimates of the A-O

and B-O bond lengths,43 and the Villars’ Mendeleev numbers.44 With the exception of the

Mendeleev numbers, these feature pairs provide a geometric characterization of a hard-core

ionic sphere model of the crystal structure. The values of these features for each compound

in our database are given in Table I of the Supplemental Material.

The Shannon radii are well-used estimates of an element’s ionic hard-sphere radii ex-
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tracted from experiment. With them, we computed the octahedral and Goldschmidt toler-

ance factors. These dimensionless numbers are commonly used metrics in studies involving

perovskite or non-perovskite structures of materials. They measure ionic misfit of the B

atom and the deviation of the structure from an ideal cubic geometry. The octahedral

factor for an ABO3 solid is

O = rB/rO,

where rB and rO are the Shannon radii for the B atom and oxygen. We used rO = 1.4Å.

The tolerance factor is defined as:

t =
rA + rO√
2(rB + rO)

.

From empirical studies of stable ABO3 solids,5,39–41 it is well known that hexagonal structures

are favored if t > 1, cubic, if 0.9 < t < 1.0, and orthorhombic, if 0.75 < t < 0.9. If t < 0.75,

the compound is generally not a perovskite. If t = 1, the material is perfectly cubic. Six-

fold co-ordination seems to require 0.414 < O < 0.732. O = 0.435 corresponds to the

arrangement where hard sphere B and O ions are touching in a close-packed arrangement.

Empirical studies have also correlated crystal structures with ranges of rA and rB values:

Generally, we must have rA > rB. The A atoms are in a 12-fold coordinated site if rA > 0.9Å

and in a 6-fold coordinated (octahedral) site if rA < 0.8Å, as long as rB < 0.7Å.

In bond valence theory, a valence

Vi =
∑

i

νij

is assigned to an ion (cation or anion) as the sum of valences

νij = exp (d0 − dij)/b

associated with its chemical bonds with neighboring ions of opposite charges. dij is the bond

length, and d0 and b are parameters fit to experimental data. d0 depends on the cation-anion

pair. b has a nearly universal value of 1.4Å. If νij is taken to be the nominal valence of atom

i divided by the number of its nearest neighbors, then the dij bond length is easily computed

from (4). The Zhang et al. database has two features, the bond valence theory predictions,

which accounts for a bond length increasing or decreasing to accommodate the changes in
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the valence of ion pairs due to charge transfer among the ions, of the A-O and B-O bond

lengths dAO and dBO.

Whereas the best known Mendeleev numbers are due to Pettifor20 (replacing the atomic

numbers by numbers determined by their ability to fit the observed crystal structure in

a structure map), we use here the Mendeleev numbers of Villars et al..44 These numbers

sequence the elements in structurally similar groups. Villars labels the elements sequentially

in their columns always from top to bottom. The s-block elements are in {1,10}, Sc=11,

Y=12, the f -block elements (lanthanides and actinides) are in the interval {13,42}, the d-

block elements are in {43,66}, and the p-block elements are in {67,10}. The lanthanides and

actinides are regarded as 10 columns as opposed to two rows. The message from Pettifor,

Villars, and others who proposed permutations of the atomic numbers of the elements to

accentuate grouping of materials is that chemical trends in atomic co-ordination and crystal

structure are best seen by grouping elements by column as opposed to grouping by rows.

The structure plots for each of the 4 feature pairs are given in Fig. 2. A black dot marks a

perovskite; a red dot, a non-perovskite. These plots clearly illustrate the difficulty one would

have drawing a single few-sided polygon to separate cleanly the perovskites from those that

are not. These plots illustrate the challenges confronting ML.

B. Technical details on ML Classifiers

Classification is a form of supervised learning, meaning the predictions of one variable

(the class label) is based on the values of the other variables (the features). We used the

random forest (RFC)45 and gradient tree boosting (GTBC)46 classifiers, as implemented in

the open-source software package scikit learn,47 to build our ML models. These classifiers

are ensemble methods, meaning they use a combination of many models, each trained on

the data, to produce the final model. At the core, RFC and GTBC use a decision tree

classifier. A random forest is a simple average of the sum of many classifiers, each a decision

tree fit to a bootstrap sample of the training data. Gradient tree boosting is a weighted

sum of many decision trees of shallow depth, which makes the model a weak classifier of

the data. The individual weak classifiers are built recursively such that in constructing the

new classifier from the current one, the data is reweighted. Thus, what was misclassified

by the present classifier is weighted more heavily in the construction of the new classifier.
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FIG. 2. The perovskite (black) or not (red) structure plots of the known ABO3 compounds for

the four features pairs we adopted for our analysis. The top left is the structure plot when the

Villars’ Mendeleev numbers are used; top right, the Shannon radii for the A and B atoms (divided

by Shannon’s ionic radii for oxygen); bottom left, for the bond valence theory A-O and B-O bond

lengths; and bottom right, the tolerance and octahedral factors.

To set the hyperparameters in the models we used a stratified shuffle split cross-validation

scheme where we created our training and test data sets on the basis of a 50/50 split, formed

randomly but in such manner that the percentage of perovskites was the same in each split

as it was in the entire data set, and for the cubic or not case, the percentage of cubics was

the same in each split as it was in the perovskite subset of the database. In this scheme

we create the model and perform its testing on sub-databases having similar populations.

While a 50/50 split means building the model with a smaller database, we found the adopted

scheme useful for the cubic or not case. The cubics are only 10% of the perovskite data. A

more conventional 75/25 or 90/10 split has large fluctuations in the number of cubics in the
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training and test sets and subsequently larger variances in the predictions. The 50/50 spilt

seemed to help control the means and variances of the test set predictions.

The relevant hyperparameters for random forests were the number of bootstrap samples,

which we set at 200, and the maximum tree depth, which we set at 6 for the perovskite or not

case and at 4 for the cubic or not case. For gradient tree boosting, we set the subsampling

of the training data at 50%, the number of ensembles at 2500 for the perovskite or not

case and 2000 for the cubic or not case, and the learning rate at 0.001. In the RFC case,

deep tree depths resulted in a significant overfitting of the training data, often approaching

100% accuracy but with a large variance. We simply decreased the depth, observing the

accuracy of the predictions on the test data increasing and the variance decreasing. When

the mean accuracy started to decrease, we stopped. We adjusted the hyperparameters for

GTBC similarly but set the maximum tree depth of its trees to 3 to make the classifier weak.

We made these adjustments for the octahedral and tolerance factor case, whose model gave

the initial highest accuracy and hence had the greatest likelihood being overfit, and applied

them to the classifiers for the other feature pair cases.

In Table I, we give the mean and standard deviations of the different model predictions

for the test data. We computed these on the basis of 100 runs for each classifier (model)

built. The histograms of the predicted accuracy were reasonably symmetric with the median

of the predictions nearly equal to the mean. By accuracy of the predictions, we mean the

number of times the model predicted correctly the entries in the training or the test data

divided by the number of data in the given sub-dataset.

C. Technical details on DFT calculations of stability of different ABO3 compounds

The OQMD13,14 calculations were performed using the Vienna ab initio simulation

package (VASP)48,49 using projector-augmented wave method potentials (PAW)50 and the

Perdew-Burke-Ernzerhof (PBE)51 generalized gradient approximation to the exchange-

correlation functional. DFT+U52,53 was used for some elements (V, Cr, Mn, Fe, Co, Ni, Cu,

Th, U, Np, Pu, see Table II) and calculations containing 3d transition elements (Sc-Cu) or

actinides are spin-polarized with ferromagnetic alignment of spins.

For all calculations, Γ-centred k-point meshes are used. The electronic self-consistency

(for a given set of ion positions) is converged to within 10−4 eV/atom. Any calculation
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TABLE I. The mean accuracy and the standard deviation (STD) of the predictions of our RFC and

GTBC models on the test data. These quantities were computed on the basis of 100 repetitions of

the machine learning fits. We give these statistical quantities for each pair of features used in this

paper.

Perovskite or Not Cubic or Not

RFC GTBC RFC GTBC

Feature Pair Mean STD Mean STD Mean STD Mean STD

MA,MB 0.860 0.028 0.841 0.024 0.913 0.016 0.914 0.016

dAO, dBO 0.859 0.022 0.848 0.024 0.918 0.016 0.928 0.016

rA/rO, rB/rO 0.903 0.017 0.899 0.020 0.933 0.015 0.937 0.016

O, t 0.898 0.017 0.900 0.018 0.933 0.016 0.933 0.015

containing d-block or actinide elements are spin polarized with a ferromagnetic alignment

of spins to capture possible magnetism, with initial magnetic moments of 5 and 7 µB for

the d-block and actinide elements, respectively. It should be noted that this approach will

not capture more complex magnetic ordering, such as antiferromagnetism. For several 3d-

and f -block elements, the GGA+U approach is implemented to improve the exchange and

correlation description of the localized charge density when these elements are in compounds

with oxygen.

All calculations were completed in a two-step scheme. First, the structures were fully

relaxed, followed by a static calculation. The relaxation calculations are performed at a

plane-wave basis-set energy cutoff at the energy recommended in the VASP potentials of the

elements in the structure, and 6,000 k-points per reciprocal atom. The quasi-Newton scheme

is used to optimize the structure to within 10−3 eV/atom. The final static calculation of the

structure is performed at an energy cutoff of 520 eV using tetrahedral k-point integration.

The 520 eV cutoff is chosen because it is 25% higher than the highest recommended energy

cutoff over all of the potentials used. This constant cutoff for all calculations ensures that all

the energies calculated in OQMD are compatible, and can be used to evaluate the formation

energies of compounds and T=0 K ground-state phase diagrams. More details on the OQMD

DFT framework can be found in Kirklin et al.14
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TABLE II. U -values for 11 elements used in the high-throughput density functional theory calcu-

lations.

Element U -value (eV)

V 3.1

Cr 3.5

Mn 3.8

Fe 4.0

Co 3.3

Ni 6.4

Cu 4.0

Th 4.0

U 4.0

Np 4.0

Pu 4.0

The OQMD currently contains over 470,000 DFT calculations consisting of ∼40,000 ex-

perimentally observed compounds from the ICSD21,22 and ∼430,000 hypothetical structures.

Among those hypothetical structures, the OQMD contains 5329 ABO3 cubic perovskite and

2162 rhombohedral, tetragonal and orthorhombic perovskites that were calculated in a pre-

vious HT-DFT study.15,54 Those 3 distortions, in addition to the cubic phase, are the most

common perovskite structures found in the ICSD and in the literature. From OQMD we

extract two quantities, ∆H (in eV/atom) and ∆E (in meV/atom), which refers to formation

enthalpy and distance from the CH, respectively.

Thus, OQMD contains DFT calculations of both experimentally observed compounds

from ICSD plus those for hypothetical compounds that are not found in the ICSD. To

construct the convex hull for a given A-B-O element set, it uses the total energy data

computed by DFT of all compounds in the dataset-both existing and hypothetical. As a

result, if we have an ABO3 compound which is already in the OQMD (because it is in the

ICSD), then the distance from the convex hull will be either a positive value or zero. On

the other hand, if we have a new, hypothetical ABO3 compound (not in the OQMD), then
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its distance from the convex hull will be evaluated with respect to the stable compounds in

the OQMD. In this case, the distance from the convex hull can take either a positive (the

hypothetical ABO3 compound is metastable or unstable) or negative value (the hypothetical

ABO3 compound is more stable than other compounds that lie on the convex hull). The

routines for extracting these data are available through a web interface on www.oqmd.org

or through the qmpy python package (https://github.com/wolverton-research-group/qmpy).

We note an alternate way to define the convex hull distance is just the energy of the

compound minus the energy of the convex hull for all compounds in question, including the

proposed compound. Under this definition the convex hull for a stable compound is zero,

and there can be no negative value of the convex hull distance. The definition we adopted

gives more information about whether a compound is “barely” on the convex hull or whether

it breaks through the hull significantly.

Hypothetical prototypes are generated by a combinatorial analysis of possible combi-

nations of atoms satisfying certain constraints with respect to valence, compatibility with

certain crystal structures, etc. Both the OQMD and ICSD databases are constantly evolving

as new compounds are added to ICSD and new prototypes are added to OQMD. Out of the

390 compounds in our database, the stability of 387 were computed in OQMD, and out of

the 625 compounds in our list of possibilities, 598 were computed in OQMD.

D. Phonon Calculations

We also performed spot DFT calculations to provide additional information to address

the discrepancy in the predictions of new cubic perovskites between ML and OQMD. To

accomplish this, we could have compared the total energy of ABO3 in cubic structure to

that of the other 14 perovskite structures. Another approach is to examine if at T=0 K an

assumed structure has dynamically unstable phonons. If it does, then another structure will

need to replace the cubic structure at some temperature if the compound is to be stable.

We note that these calculations are not part of the data stored in the OQMD database.

For these phonon calculations, we used the plane wave pseudopotential code, Quantum

ESPRESSO (QE).55 A plane-wave cutoff of 60 Ry was used during the ionic and electronic re-

laxation steps. We explored two flavors of the Generalized Gradient Approximation (GGA),

namely PBE and PBE for solids (PBEsol), to calculate the total energies. Within the PBE56
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and PBEsol functionals,57 we used the Projector Augmented-Wave (PAW)58 and Ultra-soft

method59 for generating the pseudopotentials, respectively.60 We used PBE PAW with QE

for establishing a direct comparison with OQMD, which also uses PBE PAW functionals

but with VASP. We also performed calculations using PBE Ultra-soft functional with QE

and found negligible difference in the results (lattice constant of the cubic ABO3 perovskites

and the phonon spectra) between PBE Ultra-soft and PBE PAW functionals with QE. In

addition, we explored the PBEsol Ultra-soft functional because it provides an improved de-

scription of the crystal structure for solids.61–70 Having learned that PAW and Ultra-soft

produce comparable results with negligible differences, we chose the PBEsol Ultra-soft for

our calculations. Our spot calculations involving vanadium (e.g., BaVO3) were performed

within the DFT+U formalism71 with a ferromagnetic spin-order imposed on the V-atom.

An effective Hubbard-U of 2 eV was chosen. In calculations involving Rhenium (Re) atom,

we explored DFT, DFT+U (U=1.5 eV), spin-polarized (ferromagnetic spin order) and non

spin-polarized calculations. All Re-containing calculations converged to a non-magnetic

ground state and therefore, we only report the results from non-spin-polarized DFT calcu-

lations. The DFT optimized lattice constants for the ABO3 compounds in the Pm3̄m cubic

structure is given in Table V in the Supplemental Material.6

To determine the dynamical stability, we performed frozen phonon calculations using

PHONOPY code72 that uses the DFT forces from QE as input for calculating the dynamical

matrices and interatomic force constants. We employed a supercell of size 2×2×2 with 40

atoms for the frozen phonon calculations. Our DFT phonon calculations were performed by

assuming a ferromagnetic spin-order imposed on the V atom.

IV. RESULTS

Using the two classifiers (random forest and gradient tree boosting), built from the four

different feature pairs (Mendeleev numbers of the A and B atoms, the bond valence theory A-

O and B-O bond lengths, the Shannon ionic radii of the A and B atoms, and the tolerance and

octahedral factors), and applying them to the case of perovskite or not and cubic perovskite

or not yields 16 sets of results. In Figs. 1 through 8 of the Supplemental Material,6 we give

results for all 16 sets. Here we present two sets of representative results, both obtained by

the gradient tree boosting method.
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Because of their length, we provide comprehensive tables of the ML classification and

the OQMD DFT-CH description of the 390 known ABO3 perovskites, cubic perovskites

and non-perovskites as well as the 625 corresponding cases for compounds not included in

the learning set in the Supplementary Materials (Tables II, III, and IV). All these Tables

represent the state-of-the art understanding of the capabilities and possible shortcomings of

the two leading approaches to predictive theories of structures – ML based on learning from

experiment and ab initio DFT-CH T=0 K thermodynamics.

A. ML classification of experimentally synthesized Perovskite vs Non-perovskites

We first consider the ML classification of the known formed ABO3 compounds into a

perovskite or non-perovskite. In Fig. 3, we present for octahedral and tolerance factor

feature pair the compounds that GTBC misclassifies and for each the number of times the

misclassification was a false positive or false negative. For the false positives, the solid was

classified as a perovskite but is listed in the data as not being a perovskite. For the false

negatives, the solid was classified as not being a perovskite but is listed in the data as being

a perovskite. Compounds not listed on these figures were always classified correctly as a

perovskite or non-perovskite. A total of 100 classification attempts were made, each with a

different random stratified 50/50 spilt into training and test data. Because of the stochastic

nature of the analysis, some of the ABO3 compounds are generally weakly misclassified

as a consequence of statistical fluctuations producing an outlier. Ones that are strongly

misclassified point to a possible mislabeling of the data or a material that had or is about to

have a structural transition if the temperature or pressure is varied from ambient conditions.

Alternatively, it could also be a ML error due to either insufficient representative samples

in the training set or the lack of meaningful features in representing that specific chemical

space. Within statistical fluctuations the misclassification plots for the other feature pairs

are very similar to Fig. 3. In general, the same false positives and false negatives reoccur.

The frequency at which a particular misclassification occurs is what principally changes.

The number of compounds in the training set that are classified as non-perovskites by ML

is 125 (out of which 118 are in agreement with the experimentally determined label). The

ABO3 compounds that are classified as non-perovskites by ML, but that are experimentally

known to be perovskites are the I-V valence compound NaIO3, the II-IV compounds CaSiO3,
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MgSiO3, PbGeO3, and the III-III compounds ScAlO3, ScCrO3 and DyInO3. On the other

hand, compounds classified by ML as perovskites that are actually non-perovskites, are the

I-V members AgBiO3, AgSbO3, LiNbO3, LiSbO3, LiTaO3, LiVO3, NaBiO3, NaVO3, KBiO3,

the II-IV members CdPbO3, CdTeO3, HgTeO3, MnSnO3, MnTiO3, and the III-III members

SrThO3, CeErO3, InFeO3, and InMnO3.

B. ML predictions Perovskite vs Non-perovskites of new compounds

Next, we use our ML models created from the data of known ABO3 compounds, to

predict possible new perovskite compounds. For the experimentally observed compounds,

41 elements occur as A atoms and 54 as B atoms. Using these elements, we created 625

possible combinations of ABO3 compounds consistent with the requirements that the sum

of the valences of the A and B atoms was 6 and the pair was not already in our database.

By imposing the constraint that the sum of the valences equal 6, we are omitting cases that

are potentially stable with other valences. However, our initial data set of 390 compounds

does follow this constraint with no exception. For several A atoms, such as Fe, Eu, and Tl,
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FIG. 4. For octahedral and tolerance factor feature pair case, the structure plot for the predictions

plotted as a function of the Mendeleev number of the A and B atoms. Black dots mark predicted

perovskites; red dots, predicted non-perovskites.
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we admitted multiple valence states of +2/+3, +2/+3, and +1/+2, meaning these atoms

occurred as A atoms with two different sets of B atoms. This combinatorial exercise yielded

our list of possible ABO3 solids not present in our training set. We next generated the

feature set for each proposed compound. These solids had no label assignment. Predicting

their labels is the task of the ML model constructed from the labeled data.

Out of 625 possible ABO3 compounds, ML classifies 235 as perovskite and 390 as non-

perovskites. Figure 4 is the predicted structure plot for the new compounds for each oc-

tahedral and tolerance factor feature pair. Although predicted for a model constructed for

this feature pair, we chose to present the result as a function of the Mendeleev numbers

(M) for easier chemical identification and to promote the grouping of chemically similar

solids. Apart from statistical fluctuations the predictions for the other three feature pairs

are quite similar and are given in the Supplemental Material. The octahedral and tolerance

factor feature pair model predicts more perovskites forM in the interval {51, 71} than other

models that are built from other feature pairs.

Figure 4 places possible perovskites into vacant spaces near other perovskites in the

Mendeleev structure plot of Fig. 2. Very generally, perovskites exist or are predicted to exist

for A atoms being an s-block or lanthanide atom. Some additional perovskites are predicted

when the A atom is from the d-block and the B atom is from the d- or f -blocks. These

generalizations are consistent with our past ML analysis26 and the substitution probability

analysis32,33 as well as some of the prior HT-DFT15 results. With respect to Fig. 2, for ease

of convenient reference, M = 25, 55, 76, 81, and 86 are Eu, Fe, Tl, Pb, and Bi. With the

exception of Fe, the other 4 are predicted to form a perovskite with a variety of B atoms

spread across the periodic table.

Our ML methods also estimate empirically the probabilities of the predictions. Figure 5

shows these estimated probabilities for the octahedral and tolerance factor pair case. The

classifiers label their predictions as a perovskite if the probability is 0.5 or greater (black

dots) and a non-perovskite if the probability is less than 0.5 (red dots). From the plot, one

sees most of the predictions have a probability well below or well above 0.5. The others are

basically “coin flip” cases. The octahedral and tolerance factor feature pair model is more

optimistic in some of its predictions than the other three models which tend to be more

consistent with each other.
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FIG. 5. For the octahedral ratio and tolerance factor feature pair case, the probabilities for the

predictions in Fig. 4 plotted as a function of the Mendeleev numbers. Black dots marked materials

predicted to be a perovskite with probability greater than 0.5; red dots for those predicted to be

a perovskite with probability less than 0.5.

C. ML classification of Cubic vs Non-Cubic perovskites of known compounds

The cubic or not case is a more difficult ML problem than the perovskite or not case

because only 10% of the perovskite data are cubic and hence there are just a few from which

to learn. Furthermore, cubic phases are often high-T phases, and some are classified as

cubic only because the synthesis was performed at high-T following by quenching to low-T.

Figure 6 shows the structure plots for the known data as function of our four sets of feature

pairs. In each case a black dot marks a cubic perovskite; a red dot, a non-cubic perovskite.

In Fig. 7, we present for the Shannon radii of the A and B atoms feature pair the

ABO3 solids that are misclassified by the GTBC method. In addition, we also show for

each misclassified ABO3 compound, the number of times the misclassification was as a false

positive or false negative. For the false positives, the compound was classified as cubic but

is listed in the data as not being cubic, and vice versa for the false negatives. Compounds

not listed on these figures were always classified correctly as a cubic perovskite or not. As in

the perovskite or not case, the models built with the different feature pairs showed similar
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FIG. 6. The cubic perovskite (black) or non-cubic perovskite (red) structure plots of the known

perovskite compounds for the four features pairs we adopted for our analysis. The top left is the

structure plot when the Villars’ Mendeleev numbers are used; top right, the Shannon radii for the

A and B atoms (divided by Shannon’s ionic radii for oxygen); bottom left, for the bond valence

theory A-O and B-O bond lengths; and bottom right, the tolerance and octahedral factors.

misclassification.

What distinguishes this case from the perovskite or not case is the misclassification tends

to have mainly the A atom being Sr or Ba (M = 8 or 9) and with less frequently being K

or Rb (M = 3 or 4). This points to the fact that the feature pairs used for the classifiers

not capturing a trend that would enable a more accurate classification. Other features,

such as Born charge and Villars elemental property parameters,73 were explored without

any significant improvement in the predictions.

The number of compounds in the training set that are classified as non-cubic perovskites

by ML is 246, out of which 225 are correct. There are 232 non-cubic perovskites in the
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database. The number of compounds classified by ML as cubic perovskites is 19 (out of

which 19 are correct). There are 22 cubic perovskites in the database. There were no notable

ABO3 compounds that are classified as cubic perovskites by ML, but are actually determined

as non-cubic perovskites or non-perovskites from experiments. Notable compounds classified

as non-cubic perovskites by ML that are actually cubic perovskites include only three cases:

KTaO3, BaMoO3, and SrVO3. We note that the cubic phase is stable at high temperatures

and often transforms at low temperature into other non-cubic phases. So, it is possible

that the above misclassified compounds pertain to phases that may transform at lower

temperature to non-cubic. For example, consider KTaO3. Feng et al.40 note KTaO3 as

formable in cubic perovskite structure. Phonon calculations from density functional theory

(DFT) also find no phonon instability in the bulk cubic KTaO3 structure at T= 0 K.74

Therefore, we assign a cubic label to KTaO3 in our dataset of 254 formable perovskites. After

training our ML models using this dataset, we find that ML “misclassifies” KTaO3 as non-

cubic with about 65% confidence. Experimentally, KTaO3 has been shown as an incipient

ferroelectric with anomalous dielectric behavior,75 indicating that it is poised to undergo a

ferroelectric phase transition below a critical temperature, so the ML classification as non-

cubic could pertain to a low-T phase. Intriguingly, HT-DFT data in OQMD predicts KTaO3

as a cubic perovskite. Similarly, our trained ML models also classify SrVO3 as a non-cubic

perovskite with greater than 90% confidence. The HT-DFT data in OQMD also predicts

SrVO3 as stable in the orthorhombic (Pnma) perovskite structure. But, the observation

based on high temperature synthesis conditions (1000◦ C) under reduction atmosphere is

cubic.76 We recommend low temperature X-ray diffraction studies to find if this compound

is non-cubic at low-T and resolve the discrepancy. In Table III we summarize the training

performance of the ML (for the t and O features), where the sum of the entries across a row

equals the total number of non-cubic perovskites, non-perovskites, and cubic perovskites

in the experimental dataset. Similarly, sum of the entries down a column equals the total

number of non-cubic perovskites, non-perovskites, and cubic perovskites as classified by

ML after training. Diagonal entries are the number of cases where ML exactly captures

the experimental data. For example, down the ML: non-cubic column ML classifies 225

compounds in agreement with the experimental data, and only 18 of its non-cubic predictions

are experimentally non-perovskites and 3 are cubic perovskites in the data. The experimental

data had a total of 232 non-cubic perovskites.
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TABLE III. Comparison of the classifications of experimentally synthesized ABO3 compounds

(referred to as “DATA” in the table) with those predicted from ML.predicted from the OQMD

database. Out of the 390 compounds in our database, the stability of 387 were computed in OQMD.

The word “cubics” refers to a perovskite in the cubic structure (Pm3̄m). Similarly, “non-cubics”

refers to a perovskite in a structure other than cubic. Finally, “non-perovskites” refers to all other

cases.

ML: cubics ML: non-cubics ML: non-perovskites

DATA: cubics 19 3 0 22

DATA: non-cubics 0 225 7 232

DATA: non-perovskites 0 18 118 136

19 246 125
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FIG. 8. For the Shannon radii feature pair case, the structure plot for the cubic perovskite pre-

dictions plotted as a function of the Mendeleev number of the A and B atoms. Black dots mark

predicted cubic perovskites; red dots, predicted non-cubic perovskites.

D. ML predictions of new cubic perovskites

Recall that of 625 possibilities, 235 are predicted to be in the perovskite structure by

ML. Our ML models here used the Shannon’s ionic radii as features and predicts a total of
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20 new cubic perovskites. They are: BaVO3, CsBiO3, CsPaO3, CsReO3, CsSbO3, CsTaO3,

CsUO3, CsWO3, KReO3, KWO3, RbBiO3, RbReO3, RbSbO3, RbWO3, TlBiO3, TlNbO3,

TlPaO3, TlReO3, TlTaO3, and TlUO3. Most of the new cubics predicted by ML have the

A atom being an alkali atom (K, Rb, Cs). About a third are TlXO3 solids with element

X sprinkled across the periodic table. Figure 8 is the structure plot for the predicted new

cubic perovskites. Although predicted for models constructed for the selected feature pair

variables, we again chose to present the results as a function of the Mendeleev numbers for

easier chemical identification and better similar solid grouping. The model for the Shannon

radii is the most optimistic one as it predicts about 5 times the number of cubics as the

model for the Mendeleev number feature pair and twice the number as the model for the

bond length pair (Fig. 7 of the Supplemental Material). The model for the octahedral and

tolerance factor feature pair predicts no new cubic perovskites. Figure 9 shows the ML

estimated probabilities for the cubic or not predictions. About half the predicted cubics

are in the coin-flip range (around 50% confidence); however, the probabilities of the cubics

predicted by the models constructed from the other feature pairs (Fig. 8 of the Supplemental

Material) are almost all coin-flips and generally involve an alkali A atom; that is, the other

feature pairs predict few if any cubic zinc-based perovskites. Because of this disagreement

among the predictions of the different feature pair models, we believe the probabilities of

our predicted new cubics should be regarded as coin-flips.

Thus, there is a striking contrast whereby ML predicts 20 and OQMD predicts 6 cubic

perovskite compounds, which are also included in the 20 as predicted by ML. The 6 com-

pounds include CsPaO3, CsUO3, KReO3, KWO3, TlPaO3, and TlUO3. We checked the

dynamical stability of the remaining 14 compounds predicted by ML to be in cubic per-

ovskite structure by using phonon calculations. The results are given in Table IV. We find

that 5 to 6 compounds (depending on the pseudopotential and functional used) have imag-

inary frequencies at one or more high-symmetry points in the irreducible Brillouin zones

indicating that they are dynamically unstable as a cubic (in disagreement with ML that

says they should be cubic) whereas 7 are locally dynamically stable as cubic (in agreement

with ML, which predicts them as cubic). However, even if they are dynamically stable, the

DFT-CH calculations in OQMD predict that they are statically unstable, i.e., in the OQMD

database, these 14 compounds are either predicted as non-perovskite or they are predicted

to decompose (data given in Table III in the Supplemental Material).
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FIG. 9. For the Shannon radii feature pair case, the probabilities for the predictions in Fig. 8

plotted as a function of the Mendeleev numbers. Black dots marked materials predicted to be

a cubic perovskite with probability greater than 0.5; red dots for those predicted to be a cubic

perovskite with a probability less than 0.5.

E. Comparison of ML and OQMD classifications and predictions

The stability predictions of OQMD offer a complementary means to evaluate the ML pre-

diction of new materials. We first compare OQMD predictions of stability in the non-cubic

perovskites, cubic perovskites and non-perovskites with the classifications of the experimen-

tal data for the synthesized compounds. A summary of these comparisons is given in Table V

(Tables II, III and IV in the Supplemental Material give the full details). In Table V of the

manuscript, the sum of the entries across a row equals the total number of non-cubic per-

ovskites, non-perovskites, and cubic perovskites in the experimental dataset. The sum of the

entries down a column equals the total number of non-cubic perovskites, non-perovskites,

and cubic perovskites predicted stable by OQMD. Diagonal entries are the number of cases

where DFT T=0 K stability agrees with experimental data. The sum of the diagonal entries

divided by the total number of entries is the estimated fraction of experimentally synthe-

sized phases that are thermodynamically stable. For example, down the OQMD: non-cubic

column OQMD predicts 163 stable, non-cubics in agreement with the experimental data,
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TABLE IV. Examination of the cubic versus not cubic ML predictions by DFT phonon calculations

for 14 ABO3 compounds that are classified as cubic perovskite by ML. We explored two flavors of

GGA (PBEsol and PBE) and two different pseudopotentials (ultra-soft and PAW). “Not cubic”

indicates that the phonon calculations found the corresponding ABO3 compound to be dynamically

unstable in the cubic perovskite crystal structure. “Cubic” means that the phonons of the cubic

phase at T = 0 are normal.

Compound Phonon calculations (QE)

PBEsol ultra-soft PBE PAW

BaVO3 Cubic Not cubic

CsBiO3 Cubic Cubic

CsReO3 Cubic Cubic

CsSbO3 Cubic Cubic

CsTaO3 Not cubic Not cubic

CsWO3 Cubic Cubic

RbBiO3 Not cubic Cubic

RbReO3 Cubic Cubic

RbSbO3 Not cubic Cubic

RbWO3 Cubic Cubic

TlBiO3 Not cubic Not cubic

TlNbO3 Not cubic Not cubic

TlReO3 Cubic Cubic

TlTaO3 Not cubic Not cubic

and only 14 of its non-cubic predictions are experimentally non-perovskites and 6 are cubic

perovskites in the data. The experimental data had a total of 232 non-cubic perovskites.

Interesting cases comparing OQMD with experiments include,

(a) OQMD predicts non-cubic perovskite as stable whereas synthesized as non-perovskite:

These include NaPO3, BaCO3, HgSeO3, MgCO3, PbCO3, and PbSO3, where the B atom is

an element that is either too small to occupy the octahedral site or acting as a cation whereas

it belongs to normally anionic species. This could reflect either an insufficient number of

non-perovskite structural candidates, experimental error or the compounds synthesized at
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TABLE V. Comparison of the classifications of experimentally synthesized ABO3 compounds (re-

ferred to as “DATA” in the table) with the stability predicted from the OQMD database. Out

of the 390 compounds in our database, the stability of 387 were computed in OQMD. The word

“cubics” refers to a perovskite in the cubic structure (Pm3̄m). Similarly, “non-cubics” refers to a

perovskite in a structure other than cubic. Finally, “non-perovskites” refers to all other cases.

OQMD: cubics OQMD: non-cubics OQMD: non-perovskites

DATA: cubics 10 6 5 21

DATA: non-cubics 7 163 61 231

DATA: non-perovskites 0 14 121 135

17 183 187

non-ambient conditions (i.e., high-T or high-P).

(b) OQMD finds non-perovskite as stable but non-cubic perovskite synthesized: Examples

for the I-V cases include KNbO3, RbNbO3, RbTaO3, and AgNbO3, the II-IV cases include

CaIrO3, CaMnO3, CaPbO3, CaSiO3, BaIrO3, BaRuO3, BaTiO3, MgSiO3, PbGeO3, PbZrO3,

SrMnO3, and HgTiO3, the III-III cases include BiAlO3, BiFeO3, DyMnO3, and YGaO3.

These cases reflect examples of experimentally synthesized metastable perovskite phases

rather than a failure of the DFT calculations.

(c) OQMD predicts cubic perovskite as stable and non-cubic perovskite or non-perovskite

synthesized: Examples are EuAlO3, EuNiO3, SrMoO3, SrTiO3, and YbAlO3. These could

correspond to non-cubic structural distortions missing from the OQMD database.

(d) OQMD predicts non-cubic perovskite as stable and cubic perovskite synthesized:

These cases are NaWO3, BaNpO3, BaPaO3, BaThO3, and BaUO3. This could reflect the

fact that OQMD determines the ground state T=0 K stability, whereas cubic perovskite is

often a high temperature phase.

(e) OQMD perovskite compounds that are predicted solidly unstable (>100 meV above

the CH), that is, predicted to decompose to other phases, yet they are experimentally

formable: Notable cases include compounds with a single actinide or lanthanide element

in the A or B positions: CaUO3, CeYbO3, PbCeO3, SmYO3, TmYO3, YbYO3, or inter

lanthanides NdDyO3, NdYbO3, PrDyO3, PrHoO3 and PrYbO3. In addition, a few other

examples include InCrO3, InRhO3, CoSiO3, and CoTeO3. These cases might reflect either
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TABLE VI. Comparison of the classifications of possible new ABO3 compounds as predicted by

ML and from the OQMD database. Out of the 625 compounds in our list of possibilities, 598

were computed in OQMD. predicted from the OQMD database. Out of the 390 compounds in our

database, the stability of 387 were computed in OQMD. The word “cubics” refers to a perovskite

in the cubic structure (Pm3̄m). Similarly, “non-cubics” refers to a perovskite in a structure other

than cubic. Finally, “non-perovskites” refers to all other cases.

OQMD: cubics OQMD: non-cubics OQMD: non-perovskites

ML: cubics 6 0 14 11

ML: non-cubics. 3 78 129 210

ML: non-perovskites 2 22 344 368

11 100 487

intrinsic DFT errors in exchange-correlation functional, or CH errors (insufficient number of

trial ABO3 structures especially for the rare cases of lanthanides), or that some metastable

compounds can form despite having an energy much above the stability limit.

From Table V, we see that in many cases the OQMD predicts synthesized perovskites to

be metastable (i.e., stable as non-perovskite). For instance, the 61 compositions, which are

experimentally observed to form perovskites (albeit non-cubic), are predicted by OQMD to

be stable but in different structures, i.e., (non-cubic) non-perovskites. The DFT calculations

are performed at T=0 K, where a lower-energy non-perovskite structure can exist, whereas

at the T>0 K synthesis temperature a perovskite phase can be stabilized relative to a non-

perovskite phase. More details on to the stability of each compound are given in Table III

in the Supplementary Material.6 On the other hand, if OQMD predicts a compound to be

stable in a perovskite crystal structure (cubic or non-cubic), then it is very likely it can also

be experimentally synthesized. This is consistent with our hypothesis that stable compounds

can often be synthesized.

Table VI compares the predictions of ML with OQMD for our list of possible new

compounds. Out of 235 compounds that are predicted by ML as perovskite, 87 are also

OQMD stable. Examples of OQMD predicted unstable compounds, which ML predicts as

perovskites include compounds where the B position is a rare earth (actinide or lanthanide).
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In the Appendix we list all 87 compounds predicted to be stable by DFT and as perovskite

by ML. These compounds we regard as the most likely candidates for experimental synthesis

of new perovskites. Those with ∆E ≤ 0 are more likely to be stable than those with ∆E >

0.

Out of 390 new compounds that are predicted by ML as non-perovskites, only 24 are

OQMD stable (DOM=100 meV/atom) in one of the perovskite structures. The agree-

ments are CuMoO3, CuPaO3, CuUO3, ErCuO3, EuNpO3, EuThO3, HoCuO3, LiPaO3,

LiUO3, LiWO3, LuCuO3, MnPaO3, PbCrO3, PbMnO3, PuFeO3, PuNiO3, PuScO3, TlAlO3,

TlCuO3, TmCuO3, YCuO3, ZnPaO3, EuIINiIVO3 and EuSiO3. Amongst these 24 com-

pounds, 11 have an actinide element (Pa, U, Np, Th or Pu) in either A or B site of the

perovskite lattice. Even with respect to known materials the tendency of OQMD is to

predict the compound to be other than a perovskite.

We also note that from OQMD we obtain a more detailed description of its classifications

and predictions than implied by Tables V and VI. OQMD predicts whether the compound

is in a stable perovskite structure and if so, whether that structure is cubic, is in a stable

structure but one that is not a perovskite structure, or decomposes into some mixed phase

of other compounds or possibly a single phase with a chemistry other than ABO3 (Table III

and IV, Supplemental Material). In Figure 10, we summarize the key outcomes from both

ML and OQMD in terms of their relative performances with respect to the experimental

data (training set for ML) and those that were not included in training the ML models.

F. Validation of ML and OQMD predictions for recently synthesized ABO3 per-

ovskites

We now directly evaluate the predictive capabilities of ML and OQMD stability using

BaVO3, PbMoO3, KWO3, and CaCoO3 compounds. We note that BaVO3, PbMoO3, KWO3,

and CaCoO3 were not part of our ML training dataset. Nishimura et al.77 recently exper-

imentally synthesized pure BaVO3 perovskite in the cubic structure using high-pressure

synthesis conditions. This experimental synthesis is in agreement with our ML predictions.

Further, our phonon calculations using PBEsol predict a locally stable cubic phase for BaVO3

(Table IV). OQMD, on the other hand, gives a ∆E of +105 meV/atom for BaVO3 in the

cubic (Pm3̄m) perovskite structure, but it predicts the ground state of BaVO3 as a non-
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FIG. 10. Summary of the key outcome related to data from this work. (a) Out of the known 390

ABO3 compounds, there are 254 Perovskites and 136 Non-perovskites. Our ML models, that were

trained using the 390 ABO3 compounds, classified 247 and 118 as Perovskites and Non-perovskites,

respectively. On the other hand, OQMD predicts 186 and 121 as Perovskites and Non-perovskites,

respectively. Similarly, among the 254 ABO3 Perovskites, there are 22 compounds in the Cubic

structure and 232 in the Non-cubic structures. ML classified 19 in the Cubic and 228 in the

Non-cubic structures. OQMD, on the other hand, predicted 10 and 163 in the Cubic and Non-

cubic structures, respectively. Not all known compounds were accurately captured by both ML

and OQMD, which we discuss in detail in the Results section. (b) We enumerated a total of

625 compounds that were not present in the training set and then used our trained ML models

and DFT-CH data in the OQMD to predict if there are potential perovskite compounds among

them for synthesis. ML predicts 235 compounds in the perovskite structure, which in turn can be

further subdivided into 20 and 215 Cubic and Non-cubic structures, respectively. On the other

hand, OQMD predicts 111 ABO3 compounds in stable perovskite structure, including 11 and 100

in the Cubic and Non-cubic structures, respectively. In total, we have 87 ABO3 compounds that

are predicted to be perovskite by both ML and OQMD of which both methods predict that 6 are

Cubic and 77 are Non-cubic (details given in the Appendix). We identify these 87 compounds

as promising for synthesis. We note that because of different methodologies involved, a direct

comparison between ML and OQMD may not be appropriate.
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perovskite. Similarly, Takatsu et al.78 very recently synthesized PbMoO3 in cubic perovskite

structure by high-pressure and high temperature synthesis methods. Our ML models pre-

dict PbMoO3 as perovskite, but with non-cubic crystal structure. The ∆E from OQMD

for PbMoO3 in the cubic Pm3̄m perovskite structure is +137 meV/atom, indicating that

the compound will likely decompose at P=0 and T=0 K. In both cases, the instability pre-

dicted by T=0 K DFT-CH is entirely consistent with the need for non-ambient conditions

in experimental synthesis.

Ikeuchi et al.79 recently synthesized KWO3 in cubic perovskite structure by using a

high pressure (7 GPa) and high temperature (1600◦ C) synthesis route. Both ML mod-

els and DFT-CH calculations in OQMD also predict KWO3 in the cubic perovskite struc-

ture. More recently, Osaka et al.80 synthesized CaCoO3 in non-cubic perovskite structure

using high-pressure oxygen annealing. ML and OQMD predict that this compound is a

weakly metastable perovskite. Both also predict that this will be non-cubic, in agreement

with the experimental work. More such comparisons are warranted to fully understand the

advantages and limitations of ML and DFT-CH stability analysis.

V. CONCLUSIONS

We performed a ML analysis of experimental data of ABO3 solids known to be a per-

ovskite or not and known to be a cubic perovskite or a non-cubic perovskite. From a list

of possible new ABO3 solids, we obtained similar perovskite or not and cubic or not pre-

dictions from two different ML methods. For additional consistency, we used the same

cross-validation procedure for both the perovskite or not and the cubic or not cases. In

choosing the cross-validation procedure, we were mainly targeting consistent performance

for the cubic or not case which was difficult to achieve because so few cubics are in the data.

In particular, we were finding that other cross-validation techniques were giving predictions

that sometimes had large variances most likely due to overfitting the training data.

We emphasize our ML analyses and predictions are statistical in nature and hence are

always subject to changes caused by fluctuations. Further, other ML approaches might

produce results with higher accuracy if they were to use more features and optimize their

hyperparameters for each case considered as opposed to our selecting just two features and

using a one-size-fits-all setting of the hyperparameters. In another paper,26 for example,
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we demonstrated that using more than just pairs from the set of four feature pairs we

could increase the accuracy of the predictions to nearly 95%. However, similar predictions

of possible new perovskites were still made. In part, this improved accuracy is likely a

consequence of using more parameters to fit the data as opposed to using features that

delineate trends in the data better. Increasing the number of cubics in the database should

improve the probability estimate of a predicted new cubic.

The feature pairs we considered were known beforehand to predict the formability of

perovskites well. We did observe that in our training of the ML models for the cubic or

not case, known perovskites with the A atom being Sr or Ba were misclassified as false

positives or false negatives frequently. This systematic misclassification occurred to a lesser

extent for compounds with the A atom being K or Rb. As already mentioned, all these

misclassifications point to the need for at least one more feature with a chemical trend

correlated with the labels in the database to improve classification accuracy with respect to

this sub-class of compounds.

In closing, we note our use of OQMD and ML has produced a relatively large list of

possible new perovskite compounds. While DFT-CH and ML are not predicting the same

thing, we have made a hypothesis that when their predictions agree, the suggested com-

pounds merit experimental study. While we are asserting that for many DFT-CH predictions

T=0 K stability is a sufficient indicator for synthesizeability (i.e., most stable phases can

be synthesized), we remark that it is not a necessary condition (i.e., a compound does not

need to be stable in order to be synthesized). Now, we comment on the issues that warrant

a better understanding and shed light on the plausible reasons that may have caused the

DFT-CH and ML predictions to disagree on a relatively large number of known and possible

new perovskites.

We first emphasize that what is known experimentally certainly includes a number of

metastable compounds, something that DFT-CH can only address through including as

possibly synthesizeable compounds those with a positive distance [a degree of metastability

(DOM)] from our definition of the convex hull. Indeed, increasing the DOM from 0 to

100 meV/atom increased the OQMD agreement with known compounds from 60% to 70%.

Other reasons for the discrepancies between the experimental observations and OQMD

predictions are common to all DFT-CH analyses and have at least two types of origins:

physical and computational: (i) Physical origins mean that the synthesized compound could
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correspond to a metastable structure of the element set A + B + O, i.e., what forms in

synthesis is not the lowest energy compound for these elements, but instead is a composition

and structure kinetically trapped in a particular reaction path. Different synthesis methods

and even different reaction protocols for the same synthesis method often produce different

final products. (ii) Computational origins pertain to imperfections in the prediction en-

gine. For example, the outcome of high throughput calculations depends on how versatile

is the set of prototype structures used to gauge the stability of the target structure (here,

ABO3). If the set of competing constituent phases (components into which ABO3 can de-

compose) is restricted, the calculations might predict a false positive stability of ABO3, or if

the set of candidate structures of the target phase ABO3 is restricted, they might predict a

false negative instability. An imperfect exchange correlation functional or an inappropriate

assignment of a magnetic configuration (such as ferromagnetic, anti-ferromagnetic or para-

magnetic) may sway a stability prediction to reactants instead of products or vice versa.

Although one could research type (ii) discrepancies methodically by studying different ap-

proximations in a low-throughput manner, at this time we cannot determine how many of the

present discrepancies are due to metastable synthesis conditions versus imperfect theoretical

predictions.

For the present work, there might be a more material specific reason for some of the

discrepancies. What we learned from the ML, relative to both the known and possible

compounds, is OQMD and ML have systematic disagreements with respect to known and

possible compounds involving lanthanide and actinide elements. Accurate energy calcula-

tions via DFT+U for such materials, which are typically strongly correlated, can be difficult.

Clearly, with a material class as broad as the perovskites, we suggest that it is important to

consider computational variations within a DFT-CH scheme to address the specific classes

of chemical and structural complexity.

There is another aspect for reconciliation that is more difficult to address computation-

ally. A DFT-CH analysis is performed at zero temperature with the expectation that the

CH analysis with a non-zero DOM will adequately embrace what is happening at finite

temperatures. In essence, the CH analysis is providing the likely positions of minima in the

internal energy for different compounds, crystal structures, etc. and finding the one that

is global. What is missing is how the entropic contributions (−TS term) to the free energy

at finite temperatures will shift these positions and change their relative importance. Thus,
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for a number of materials, the DFT-CH approach suffices but for others that are rich in

structural and other phase transitions, such as the perovskites, it might not be so.

As we were concluding our manuscript, we became aware of a just released manuscript by

Legrain et al.81 that has a similar intent and conclusions as ours with respect to prediction

of new materials using ML on data for known compounds versus using HT-DFT and CH

analysis on lists of compounds without exploiting what is known experimentally. These

authors compared the effectiveness of ML and DFT-CH calculations for the discovery of

new half-heuslers compounds instead of perovskites. The predictions of ML and DFT-CH

for compounds not yet known to be formed also showed significant inconsistencies. In these

regards, their experience for the half-heuslers is similar to our experience for the perovskites.

We note that there are some important differences between our and their studies. One is

the number of possible half-heusler structures is three and hence considerably smaller than

the number of possible perovskite structures. In principle, the CH analysis and construction

are less complex. Another difference is the known and predicted new half-heuslers are a

small fraction of the total known and the total number of new possibilities. In this regard,

the prediction task difficulties are similar to our cubic or not case. Nevertheless, Legrain

et al. offer similar reasons for the inconsistencies between ML and HT-DFT, such as too

few structures in the CH analysis and the inherent inaccuracies of DFT calculations. Their

comparisons observed inconsistencies in the predictions of three different HT-DFT studies

and underscores the importance of controlling these issues. Our phonon calculations, yielding

different predictions for DFT calculations using different functionals and pseudopotentials,

also reinforces the importance of controlling these issues.
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VI. APPENDIX

List of 87 promising ABO3 compounds predicted as potentially formable in

the perovskite structure by ML and as thermodynamically stable or nearly

stable (DOM threshold set at 100 meV/atom) in the perovskite structures

by HT-DFT in OQMD. Labels CP and P indicate cubic perovskite and non-

cubic perovskite, respectively. ∆H (in eV/atom) and ∆E (in meV/atom) refer

to formation enthalpy and distance from the CH, respectively; SG stands for

space group number in the International symbol for which the OQMD energetic

data (∆H and ∆E) is reported. Predictions of compounds on the CH are

“stronger predictions” and ones that are near the CH are metastable phases,

which could also be synthesized. In OQMD, the CH distance for each of the

ABO3 compound is calculated in the same manner and thus these distances

are comparable. Additional details can be found in the Supplemental Tables

I–IV.

Formula ML prediction OQMD prediction ∆H ∆E SG
CsPaO3 CP CP -2.87 0 221
CsUO3 CP CP -3.04 10 221
KReO3 CP CP -1.92 8 221
KWO3 CP CP -2.37 0 221
TlPaO3 CP CP -2.56 -358 221
TlUO3 CP CP -2.75 -108 221
EuCuO3 P CP -1.78 60 221
HgPaO3 P CP -2.17 1 221
NaReO3 P CP -1.93 7 221
AgPaO3 P P -2.33 -361 167
AgUO3 P P -2.51 -9 167
BiCrO3 P P -1.96 19 62
BiCuO3 P P -1.06 30 62
BiLuO3 P P -2.69 32 62
BiRhO3 P P -1.18 60 62
BiVO3 P P -2.05 7 62
CaCoO3 P P -1.89 37 167
CaPuO3 P P -3.34 -109 62
CdPaO3 P P -2.37 -13 167
CdPuO3 P P -2.49 4 167
CeCoO3 P P -2.42 -36 62
CeCuO3 P P -2.15 4 167
CeInO3 P P -2.69 -4 62
CeNiO3 P P -2.29 2 167
CeRhO3 P P -2.29 -61 62
CeRuO3 P P -2.29 37 62
CeScO3 P P -3.7 -38 62
DyCuO3 P P -2.28 47 62
DyGaO3 P P -2.97 17 62
ErCoO3 P P -2.55 24 62
ErGaO3 P P -2.99 21 62
EuIICoIVO3 P P -2.14 -38 62
EuIIICoIIIO3 P P -2.14 -38 62
EuCrO3 P P -2.8 -51 62
EuGeO3 P P -2.7 -212 167
EuHfO3 P P -3.84 -182 62
EuIrO3 P P -2.1 -43 62
EuMnO3 P P -2.61 3 167
EuMoO3 P P -2.81 -101 62
EuNbO3 P P -3.21 -53 62
EuPaO3 P P -3.34 -123 62
EuPbO3 P P -2.18 -150 62
EuPuO3 P P -3.5 -187 62
EuIIRuIVO3 P P -2.26 -112 62
EuIIIRuIIIO3 P P -2.26 -112 62
EuSnO3 P P -2.7 -171 62
EuTiO3 P P -3.56 3 167
EuIIVIVO3 P P -3.1 -93 62
EuIIIVIIIO3 P P -3.1 -93 62
EuZrO3 P P -3.69 -152 62
GdCuO3 P P -2.26 43 62
HgHfO3 P P -2.42 67 167
HgPuO3 P P -2.17 -28 167
HgZrO3 P P -2.28 86 167
HoGaO3 P P -2.98 20 62
HoVO3 P P -3.27 1 62
LuCoO3 P P -2.57 35 62
LuGaO3 P P -3 30 62
LuNiO3 P P -2.44 37 62
NdCuO3 P P -2.18 74 62
NdRuO3 P P -2.34 41 62
PbPaO3 P P -2.41 -22 62
PbPuO3 P P -2.54 -55 62
PrCuO3 P P -2.17 3 167
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PrInO3 P P -2.71 5 62
PuGaO3 P P -2.9 -28 62
SmCuO3 P P -2.22 47 62
SmGaO3 P P -2.92 6 62
SmRuO3 P P -2.37 49 62
SrCrO3 P P -2.56 41 62
SrNpO3 P P -3.42 -14 62
SrPaO3 P P -3.18 -144 62
SrUO3 P P -3.49 -18 62
TbCuO3 P P -2.14 -40 62
TbGaO3 P P -2.83 15 62
TbNiO3 P P -2.27 8 62
TbScO3 P P -3.66 19 62
TlMnO3 P P -1.43 51 62
TmCoO3 P P -2.57 27 62
TmGaO3 P P -3 19 62
YbCoO3 P P -2.11 -79 62
YbRhO3 P P -2.11 -89 62
YbRuO3 P P -2.25 -83 62
YbScO3 P P -3.21 98 62
EuErO3 P P -3.21 98 62
EuLuO3 P P -3.26 94 62
EuTmO3 P P -3.23 90 62
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