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Using the ab initio evolutionary algorithm (implemented in USPEX) and electronic structure
calculations we investigate the properties of a new thermoelectric material FeSbAs, which is a
material analog of the enigmatic thermoelectric FeSb2. We utilize the density functional theory and
the Gutzwiller method to check the energetics. We find that FeSbAs can be made thermodynamically
stable above ∼30 GPa. We investigate the electronic structure and thermoelectric properties of
FeSbAs based on the density functional theory and compare with those of FeSb2. Above 50 K,
FeSbAs has higher Seebeck coefficients than FeSb2. Upon doping, the figure of merit becomes
larger for FeSbAs than for FeSb2. Another material analog FeSbP, was also investigated, and found
thermodynamically unstable even at very high pressure. Regarding FeSb2 as a member of a family
of compounds (FeSb2, FeSbAs, and FeSbP) we elucidate what are the chemical handles that control
the gaps in this series. We also investigate solubility (As or P for Sb in FeSb2) we found As to be
more soluble. Finally, we study a two-band model for thermoelectric properties and find that the
temperature dependent chemical potential and the presence of the ionized impurities are important
to explain the extremum in the Seebeck coefficient exhibited in experiments for FeSb2.

PACS numbers:

INTRODUCTION

The search for thermoelectric materials having large
Seebeck coefficients has attracted lots of interest during
the past several decades. Since these materials have effi-
ciency for converting temperature differences in electric
voltages, it could be used to make refrigerators or power
generators [1]. Correlated semiconductors and Kondo in-
sulators containing rare-earth or transition metal atoms
have been regarded as the possible candidates for good
thermoelectric materials due to a sharp singularity in the
density of states very near to the chemical potential [2–5].

In order to get high efficiency or performance in the
thermoelectric materials for applications, it is necessary
to increase the (dimensionless) figure of merit as much as
possible

ZT =
σS2

κe + κl
T, (1)

where σ is the electrical conductivity, S is the Seebeck
coefficient (also known as thermoelectric power), κe and
κl are the thermal conductivities that are contributed
from the electronic part and the lattice part, respectively.
Note that the numerator in Eq. (1) is called as the ther-
moelectric power factor (PF = σS2). Therefore, the
large thermoelectric power factor with the small thermal
conductivities gives the high figure of merit.

A correlated semiconductor FeSb2 was reported to
have a gigantic Seebeck coefficient S = −45 mV/K at
∼12 K [6, 7], which results in the largest PF ever found
(∼65 times larger than the PF of the state-of-the-art
thermoelectric Bi2Te3-based material [3]). However, the
lattice thermal conductivity κl reaches a maximum as

large as ∼500 Wm−1K−1 at ∼15 K [6, 7]. It leads to a
quite small ZT value of 0.005 at the maximum of the PF .
Considering the fact that any material with ZT > 1 is of
great technological interest, it is worth to try to reduce
κl significantly without seriously affecting the PF .

The previous theoretical studies of FeSb2 reported that
the gigantic Seebeck coefficient at low temperature could
not be described within both the density functional the-
ory (DFT) level and a local electronic picture [8, 9], sug-
gesting the substantial effect due to phonon drag [10, 11]
or the importance of vertex corrections [8], the latter was
attributed to the impurity band [12]. In this article, we
have focused on the moderate temperature range (above
∼ 50 K) where vertex corrections or phonon drag effect
are not so important and could be safely ignored. Our
aim in this work is to explore structural analogs of FeSb2.
A natural question is, what will be the effect of substi-
tuting Sb by P or As? We find that the As substitution
is much more favorable. At ambient pressure As is more
soluble than P. High pressure can stabilize FeSbAs, but
FeSbP is not stable even at very high pressure. P substi-
tution decreases the gap and the thermoelectric proper-
ties, however, As substitution increases the gap and the
Seebeck coefficient and is a good target for synthesis. In
the process of designing these materials we identify the
octahedral rotations that control the size of the band gap
in the marcasite structure.

Modern theoretical methods of structure prediction
have been very successful in finding new interesting ma-
terials experimentally. Even though DFT has compu-
tational errors to determine the formation energy of a
compound [13, 14], various corrections have been de-
signed and implemented in searchable repositories of
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DFT databases such as Material Project [15], OQMD
[14], and AFLOWlib [16]. They give useful guideline
to experiments for material synthesis and design. No-
table recent successes are the prediction of the 112 fam-
ily of iron based superconductors [17–19] and the pre-
diction of superconductivity of hydrogen sulfide that
has the highest critical temperature under high pres-
sure [20, 21]. Other successes of theory guided mate-
rial searches are the prediction and synthesis of unre-
ported missing half-Heusler compounds, which are po-
tential transparent conductors, thermoelectric materials
and topological semimetals [22–24]. In addition, new
high-pressure phase materials such as FeO2 [25], calcium
carbides [26], and Na2He [27] were predicted by theory
and confirmed to exist by experiment. (For details of
computational predictions based on DFT, see the review
[28].) This undoubtedly very partial list of accomplish-
ments and references, shows the speed at which theory
is becoming predictive and playing an important role in
the search for new materials, and here we employ this
methodology to enlarge the family of iron based marca-
sites and related structures.

METHOD

To obtain the stable structural phase of FeSbAs, we
employ the ab initio evolutionary algorithm [29] imple-
mented in USPEX [30] combined with DFT pseudopoten-
tial code VASP [31, 32]. The initial structures are ran-
domly generated according to possible space groups. In
these calculations, the structural optimization of all the
newly generated structures are carried out by VASP with
an energy cutoff of 500 eV and the exchange-correlation

TABLE I: Relaxed structural parameters of FeSb2 (space
group: Pnnm), FeSbAs (space group: Pmn21), and FeSbP
(space group: Pmn21). The crystal axes for FeSbAs and
FeSbP are reoriented to have the space group of Pn21m in
order to compare with Pnnm easily.

FeSb2 FeSbAs FeSbP
P = 0 P = 0 (40 GPa) P = 0

Space group Pnnm Pn21m Pn21m
a(Å) 5.761 5.555 (5.250) 5.366
b(Å) 6.512 6.265 (5.884) 6.097
c(Å) 3.297 3.051 (2.797) 3.001

Wyckoff positions
Fe 2a 2a 2a

x = 0.000 x = 0.774 (0.772) x = 0.792
y = 0.000 y = 0.000 (0.000) y = 0.000

Sb 4g 2a 2a
x = 0.198 x = 0.571 (0.574) x = 0.578
y = 0.355 y = 0.365 (0.364) y = 0.375

As (P) − 2a 2a
x = 0.942 (0.937) x = 0.945
y = 0.651 (0.653) y = 0.656

functional of generalized gradient approximation (GGA)
of Perdew-Burke-Ernzerhof (PBE) [33] with the projec-
tor augmented wave (PAW) method [34, 35]. After stable
structural phases are obtained, corresponding formation
energies are calculated with the Monkhorst-Pack sam-
pling grid with a uniform density of 3,000 k-point per
atom for the k-space integrations.

To check the energetics more precisely but relatively
cheap, we utilized the Gutzwiller method [36, 37] com-
bined with the all-electron full-potential linearized aug-
mented plane-wave (FLAPW) method implemented in
WIEN2k [38]. We employ the general Slater-Condon
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FIG. 1: (Color Online) (a) Crystal structure of FeSb2. The
space group is Pnnm (No. 58). (b) Crystal structure of FeS-
bAs. The space group is Pmn21 (No. 31). The crystal axes
are reoriented for easily comparison with the crystal structure
of FeSb2. The black lines represent the unit cell in both (a)
and (b). (c) Group table related to the Marcasite structure
(Pnnm). The structural phase transition between Pnnm and
Pmn21 is related to the (d) Γ−

3 or (e) Γ−
4 symmetries of the

lattice distortions. The arrows indicate atomic displacements
in the reference structure of Pnnm.
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TABLE II: Enthalpy for each material exhibited in Figs. 2(a)
and (b) at P = 0 or 32 GPa calculated by VASP GGA(PBE)
functional.

Enthalpy H = E + PV (eV/atom)
P = 0 GPa P = 32 GPa

Fe -8.236 -6.100
Sb -4.138 1.185
As -4.672 -0.784

FeSb -6.171 -2.962
FeSb2 -5.534 -1.855
FeSb3 -5.189 -1.134
FeAs -6.681 -4.181
FeAs2 -6.123 -3.313

FeSbAs -5.801 -2.586
P -5.404 -1.242

Fe3P -7.797 -5.754
Fe2P -7.767 -5.718
FeP -7.425 -5.294
FeP2 -6.886 -4.522
FeP4 -6.345 -3.664

FeSbP -6.125 -3.132

parametrization of the on-site interaction with U = 5
and a Hund’s coupling constant J = 0.7 eV, which were
turned out to be reliable parameters in Fe compounds
[39, 40].

Both LDA (local-density approximation) and
GGA(PBE) functionals tend to underestimate band gaps
of semiconductors. To obtain the electronic structures
with a reasonable band gap, we utilized the modified
Becke-John (mBJ) exchange potential [41], which is
rather accurate and computationally cheaper than GW
method. We sampled the entire Brillouin zone (BZ)
with 18×16×32 k points.

The calculation of transport properties was performed
using a denser mesh of 45×40×80 k points of the BZ.
The semiclassical Boltzmann theory as implemented in
the transport code BOLTZTRAP [42] has been used to
compute the electrical transport coefficients.

COMPUTATIONAL RESULTS AND DISCUSSION

Crystal structure and phase stability

The crystal structure of FeSb2 is shown in Fig. 1(a),
which has the orthorhombic marcasite structure (space
group: Pnnm) where a Fe ion is surrounded octahedrally
by six Sb anions [43]. The Fe octahedron has corner shar-
ing with the neighboring Fe octahedron in an x-y plane,
however it has edge sharing along the z direction. There-
fore, it is expected to have larger band dispersion along
the z direction than x or y directions (see Fig. 3). The
crystal structure of FeSbAs at ambient or under pressures
founded by USPEX has a space group Pmn21, and it can
be interpreted as the structural phase transition from the

space group Pnnm with the Γ−3 or Γ−4 symmetries of the
lattice distortions as shown in Fig. 1(c). These Γ−3 or Γ−4
lattice distortions are confined within the x-y plane and
lead to break the inversion symmetry (the replacement of
three Sb with three As atoms breaks the inversion sym-
metry as well). The structural information on FeSbAs at
ambient or under pressure could be found in TABLE I
along with FeSb2 for comparison.

FeSbAs at ambient pressure is thermodynamically un-
stable and decomposed into FeAs and Sb compounds.
The energy above hull is 32.2 meV/atom. We have
checked the phase stability of FeSbAs under pressures
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FIG. 2: (Color Online) (a) Ternary phase diagram for FeSbAs
under the pressure of 32 GPa. FeSbAs is thermodynamically
unstable at ambient pressure and is only stable at high pres-
sures (P ≥ 30 GPa). (b) Ternary phase diagram for FeSbP
at ambient pressure. Red and blue dots represent thermody-
namically stable and unstable phase, respectively. The energy
above hull for FeSbP is 204.6 meV/atom. Ternary phase di-
agrams are generated by pymatgen [44–46]. (c) Enthalpy of
formation for FeSbAs. In order to obtain the enthalpy of
formation as a function of pressure, several lattice volumes
including the optimized one were calculated, and then the
Murnaghan fitting was applied to extract the enthalpy of for-
mation at any pressure. The relevant reaction for the sta-
bility of FeSbAs is FeSb2 + FeAs2 → 2 FeSbAs. We also
checked the stability of this reaction by using the GGA(PBE)
+ Gutzwiller (GUTZ) method. The GUTZ method describes
the smaller pressure to stabilize FeSbAs compared to DFT
GGA(PBE) method.
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FIG. 3: (Color Online) Band structures of (a) FeSb2, (b) FeSbAs, and (c) FeSbP calculated by the mBJ method. Inset shows
the bulk Brillouin zone. The considered crystal structures are provided in TABLE. I. For FeSbAs, the crystal structure at high
pressure P = 40 GPa was chosen.

dealing with the enthalpy H = E + PV , where E is the
total electronic energy, P is the external pressure, and
V is the crystal volume. Three relevant reactions for
FeSbAs under pressures are shown in Fig. 2(c), where
the enthalpy of formation ∆H is plotted as a function
of pressure. The positive or negative enthalpy of forma-
tion indicates that FeSbAs is thermodynamically unsta-
ble or stable, respectively. Two reactions such as FeSb3

+ FeAs2 + FeAs → 3 FeSbAs and FeAs + Sb → FeS-
bAs are stable above ∼8 GPa, however FeSb2 + FeAs2
→ 2 FeSbAs is only stable at high pressure (P ≥ 30
GPa). Therefore, the reaction process of FeSb2 + FeAs2
→ 2 FeSbAs is an indicator of the phase stability of FeS-
bAs (the detail enthalpy for each material is listed in
TABLE. II). We also checked the phase stability of FeS-
bAs with the GGA(PBE) + Gutzwiller (GUTZ), which
is the advanced but relatively cheap method for doing
energetics. The GGA + GUTZ method describes the
smaller pressure to stabilize FeSbAs compared to DFT
GGA(PBE) method. The LDA + GUTZ method is also
tested because LDA + GUTZ gives better energetics than
GGA + GUTZ. With LDA + GUTZ, it gives the stable
phase of FeSbAs above 30 GPa, which is quite close to
the DFT GGA(PBE) result (not shown). Hence, it is
safe to mention that FeSbAs is only stable above P ∼ 30
GPa, and FeSbAs is decomposed into FeSb2 and FeAs2
compounds below the pressure.

Even though FeSbAs is thermodynamically stable
only at high pressure (above ∼30 GPa), we checked
the phonon dispersion of FeSbAs at ambient pressure
and found that it is mechanically stable (no imaginary
phonon softening). It is the similar situation in diamond:
diamond is less thermodynamically stable than graphite,
however is mechanically stable at ambient pressure. Once
FeSbAs is synthesized at high pressures, it could be re-
leased into ambient pressure without decomposing into
other substances (assuming that the conversion rate from
FeSbAs to other substances is negligible at standard con-
ditions).

Another material analog FeSbP is also tested. First,
USPEX was performed to search the crystal structure for
FeSbP. The space group Pmn21 (No. 31) was obtained,
which is same as one for FeSbAs. FeSbP at ambient pres-
sure is thermodynamically unstable and decomposed into
FeP and Sb compounds (Fig. 2(b)). The energy above
hull is 204.6 meV/atom, which is much larger than that
for FeSbAs at ambient pressure. It indicates that FeSbP
is more thermodynamically unstable than FeSbAs. We
have checked the phase stability of FeSbP under pres-
sures and found that FeSbP is unstable over the whole
pressure range (even at high pressure).

Hereafter, we will discuss the electronic structure and
thermoelectric properties for FeSbAs at high pressure P
= 40 GPa unless otherwise noted. For FeSbP, there is
no any pressure to stabilize it, but the ambient pres-
sure phase is chosen to study the electronic structure and
thermoelectric properties in order to compare with other
material analogs.

Electronic structure

Figure 3 shows band structures of FeSb2, FeSbAs, and
FeSbP with the structural parameters exhibited in TA-
BLE I. All the materials FeSb2, FeSbAs, and FeSbP show
the metallic phase based on the GGA(PBE) functional.
The standard DFT describes severe underestimation of a
bulk band gap, so that DFT + U , hybrid functional, or
GW are required to obtain the proper bulk band gap.

First, we checked the GGA + U (the on-site Coulomb
repulsion parameter) method with an effective Ueff =
U − J parameter setting J = 0. For Ueff = 4 eV,
the band gap of FeSb2 is 166 meV, which is almost 5
times larger than the experimental band gap of ∼30 meV
[6, 47, 48]. While FeSb2 is paramagnetic in experiments,
the GGA + U method describes that the ferromagnetic
solution has the lower energy than the nonmagnetic solu-
tion [49]. Therefore, the GGA + U method is not suitable
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FIG. 4: (Color Online) Hypothetical crystal structure of
FeSb2 with an octahedron rotation angle (a) θ = 0 and (b) θ =
20 deg with keeping the space group Pnnm (No. 58). Fe (Sb)
atoms are located in the center (corner) of the green-colored
octahedrons. The corresponding electronic band structures
of (a) and (b) calculated by the mBJ method are shown in
(c) and (d), respectively. The band gap in (d) is indirect and
its magnitude is 0.48 eV. (e) Energy vs. rotation angle θ for
FeSb2, FeSbAs, and FeSbP calculated by the mBJ method.
Energy for θ = 0 for each material is set to be zero as reference
energy. Equilibrium rotation angles for FeSb2, FeSbAs, and
FeSbP are 15.2, 18.2, and 19.1 degrees, respectively. (f) Band
gap vs. rotation angle θ for FeSb2, FeSbAs, and FeSbP calcu-
lated by the mBJ method. The band gap could be controlled
by the octahedron rotation.

to study the electronic structure of FeSb2.
The mBJ method was thoroughly tested for many

semiconductors and insulators to obtain band gaps close
to the experimental ones [41]. The band gap of FeSb2

described in mBJ is 19 meV, which is very close to the
experimental data of ∼30 meV. Thus, in view of a much
reduced computational time compared to the GW [8],
mBJ is indeed an efficient method to get a reasonable
band gap and proper thermoelectric properties at the
moderate temperature range above 50 K. (At low tem-
perature, the vertex correction is inevitable to get the
reasonable thermoelectric power. Here, we have focused
on the moderate temperature range above 50 K where
the vertex correction or phonon-phonon interaction are
not so important.) For the case of FeSbAs, mBJ gives
the band gap of 146 meV, which is quite large compared

TABLE III: Physical parameters for FeSb2, FeSbAs, and
FeSbP. Effective masses of valence (m∗

V ) and conduction (m∗
C)

bands are calculated from the relation (m∗)−1
ij = 1

~2
∂2E(k)
∂kikj

in the unit of the rest mass of an electron. Average effective
masses m∗

V and m∗
C are obtained via the harmonic mean. The

Debye temperatures θD are obtained from the first-principle
phonon calculations [50]. The sound velocities vs are calcu-
lated from a Debye model. A phonon mean free path lp is
assumed to be proportional to an average lattice constant,
that is, lp ∝ 3

√
V , where V is the unit cell volume. Given lp

= 350 µm for FeSb2 [6], lp for FeSbAs and FeSbP could be
obtained.

FeSb2 FeSbAs FeSbP
(m∗

V )xx -0.21 -0.40 -0.79
(m∗

V )yy -0.34 -0.46 -0.51
(m∗

V )zz -0.43 -0.44 -8.97
m∗

V -0.30 -0.43 -0.90
(m∗

C)xx 1.43 0.82 1.19
(m∗

C)yy 3.64 2.44 4.85
(m∗

C)zz 1.39 0.96 1.86
m∗

C 1.77 1.12 1.90
θD (K) 286 476 420
vs (m/s) 2634 3890 3581
lp (µm) 350 311 324

to the FeSb2 case. On the other hand, FeSbP is a com-
pensated semimetal within the mBJ scheme. The valence
band along Γ-X and the conduction band along Γ-Z cross
the Fermi level, which results in giving hole and electron
pockets, respectively.

The size of the band gap is closely related to a rotation
angle θ (Fig. 4(b)) of the Fe octahedron around the z
axis. At zero rotation angle, the band gap is closed as
shown in Fig. 4(c) due to large hopping integrals between
Fe and Sb atoms. The band gap begins to open at a
certain amount of the rotation angle (so-called θ0), and it
increases further to get the maximum and then decreases
as the rotation angle increases. The rotation angle θ0
could differ depending on the anion size and the crystal
unit cell volume. The rotation angles in the equilibrium
structures for FeSb2, FeSbAs, and FeSbP are 15.2, 18.2,
and 19.1 degrees, respectively (Fig. 4(e)). If the rotation
angle is increased further to be 20 deg in FeSb2, the band
gap is also increased further and its magnitude is 0.48 eV
(Figs. 4(d) and (f)). For FeSbP, the band gap starts to
open at θ0 ≈ 20 deg, which is larger than θ0 for other
two materials as shown in Fig. 4(f).

Since a larger bulk gap material usually gives a larger
high temperature thermoelectric power [8], it is expected
that the thermoelectric power for FeSbAs is the largest,
FeSb2 is the second, and FeSbP is the smallest among
them.
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Thermoelectric properties

The theoretically calculated thermoelectric power for
FeSb2 as a function of temperature is shown in Fig. 5(a)
with the experimental data for comparison. We set the
chemical potential to be the middle of the band gap.
At low temperature below 50 K, the theoretically calcu-
lated thermoelectric power could not describe the gigan-
tic thermoelectric power observed in experiments. This
suggests that vertex corrections and nonlocal correlation
effects that we neglect are important. The presence of a
substantial phonon-drag effect could also give the huge
inconsistency between experiments and the current the-
ory.

Above ∼80 K, the calculated thermoelectric powers are
well matched with the experiment in the sense that the
thermoelectric powers described by both theory and ex-
periment have the same order of magnitude (except for zz
component) and have the same increasing tendency, that
it, the same positive slope in the thermoelectric power
versus temperature curve. However, there is a discrep-
ancy in the thermoelectric power along zz direction (Szz)
between mBJ and the experiment: mBJ describes Szz
several times (from ∼4 to ∼8 times) larger than the ex-
periment at the temperature range between 100 and 300
K. This discrepancy might come from the fixed chemi-
cal potential over the temperature range in the calcula-
tion. In addition, the several types of impurities such as
electron donor or hole acceptor impurities could be also
important to give better consistency between theory and
experiment. We will discuss the temperature behavior
of the thermoelectric power with the chemical potential
varied with temperature and the effect of the presence of
impurities in Appendix.

The thermoelectric power for FeSbAs is also calculated
and shown in Fig. 5(b). The thermoelectric power for
FeSbAs is much enhanced compared to FeSb2: ∼6.7,
∼6.9, and ∼2.3 times enhanced in a magnitude along xx,
yy, and zz directions, respectively, at T = 100 K. The
Seebeck coefficients could be enhanced by the shift of
the chemical potential, supposing that electron or hole
doping does not alter the electronic structure heavily.
The maximum value of the Seebeck coefficient could be
achieved with 0.01 ∼ 0.02 eV shift in the chemical poten-
tial. Then the Seebeck coefficient is about 4 times larger
for FeSbAs than for FeSb2 (see Fig. 7(a)). Hence, the
newly proposed material FeSbAs has larger thermoelec-
tric powers than FeSb2 above 50 K.

Power factors (PF s) divided by the relaxation time (τ)
calculated within mBJ for FeSb2 are larger than those for
FeSbAs above 50 K (Fig. 6). For example, at T = 300 K,
they are 0.022 (0.03), 1.05 (0.88), and 3.05 (0.48) ×1012

W/(cm K2 s) for xx, yy, and zz directions, respectively,
for FeSb2 (FeSbAs). Even though Seebeck coefficients for
FeSbAs are larger than for FeSb2 above 50 K, the electri-
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FIG. 5: (Color Online) (a) Thermoelectric power of FeSb2 as
a function of temperature. Experimental data from Ref. [6]
are shown for comparison with DFT (mBJ potential method)
results. Thermoelectric powers of (b) FeSbAs and (c) FeSbP
calculated by DFT (mBJ method) as a function of tempera-
ture. The temperature range from 0 to 50 K is the unreliable
region within the current theoretical approach (see main text
for details), so that the moderate temperature region above
50 K is focused in this study.

cal conductivity (σ) for FeSbAs is smaller than for FeSb2

due to the larger band gap, so that the resulting PF/τ
(=σS2/τ) for FeSbAs is smaller than for FeSb2. How-
ever, if the chemical potential could be shifted through
the doping without altering the electronic structure heav-
ily, PF/τ for both FeSbAs and FeSb2 are quite compara-
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FIG. 6: (Color Online) Power factors divided by the relax-
ation time (PF/τ) (calculated by the mBJ scheme) for (a)
FeSb2, (b) FeSbAs, and (c) FeSbP as a function of tempera-
ture.

ble at around 0.1 or around -0.1 eV shift of the chemical
potential.

Since FeSbP has the metallic phase within the mBJ
method, the linear temperature dependent thermoelec-
tric power (S ∼ T ) is demonstrated at low temperature
as shown in Fig. 5(c). The thermoelectric powers for
FeSbP along xx, yy, and zz directions are confined be-
low ∼100 µV/K in magnitude at the temperature range
between 50 and 300 K. They are much reduced compared
to those for FeSbAs but are similar in size with those for
FeSb2 except for the zz component. FeSb2 has the larger

-800

-400

0

400

800

T = 100 K

0

0.5

1

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

ZT

FeSb2

FeSbAs
FeSbP

S 
(μ

V
/K

)

Chemical potential μ (eV)

(a)

(b)

FIG. 7: (Color Online) Comparison in thermoelectric proper-
ties (calculated by the mBJ scheme) among FeSb2, FeSbAs,
and FeSbP materials at T = 100 K. (a) Seebeck coefficients
and (d) figure of merits ZT (without considering the lattice
thermal conductivities) are shown as a function of the chem-
ical potential. These two thermoelectric properties are aver-
aged over the three x, y, and z directions.

zz component than FeSbP and it leads to the larger av-
erage thermoelectric power for FeSb2 than for FeSbP as
shown in Fig. 7(a).

Even though thermoelectric powers for FeSbP are
smaller than those for FeSbAs, PF/τ for FeSbP is much
larger than that for FeSbAs (∼13 times larger at T = 300
K for the zz component) due to the larger σ of metallic
FeSbP than that of insulating FeSbAs. However, PF/τ
for both FeSbAs and FeSbP are quite comparable for the
chemical potential shift larger than +0.1 eV.

Figure 7(b) shows the figure of merit ZT (here, the
only electronic contribution to the thermal conductivity
is considered) as a function of the chemical potential for
three different materials FeSb2, FeSbAs, and FeSbP. The
figure of merit for FeSbAs is almost 2 times enhanced
compared to that for FeSb2. Considering that PF/τ for
FeSbAs is smaller than for FeSb2, this enhancement is
due to the smaller electronic thermal conductivity (κe)
in FeSbAs than in FeSb2. (Since FeSbAs has a larger
band gap than FeSb2, it makes both σ and κe of FeSbAs
smaller than those of FeSb2.) For FeSbP, both σ and κe
are large due to the metallic phase. It leads to a quite
small figure of merit for FeSbP.

The electronic thermal conductivity could be cal-
culated from the electrical conductivity by using the
Wiedemann-Franz law with the Lorenz number L0 =
2.44 × 10−8 WΩK−2. From electrical conductivities of
FeSb2 measured at 100 K [6], electronic thermal conduc-
tivities of FeSb2 at 100 K along xx, yy, and zz directions
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FIG. 8: (Color Online) Figure of merits ZT at T = 100
K (with considering the lattice thermal conductivities) are
shown as a function of the chemical potential.

are 0.168, 0.127, and 0.110 (0.262 for a different sample)
Wm−1K−1, respectively. Compared to the lattice ther-
mal conductivity (κl) of FeSb2 measured at 100 K, which
is about 20 ∼ 30 Wm−1K−1 [6, 7], κe is much smaller
than κl. Taking into account κl, ZT is much reduced to
have the order of magnitude of 10−4 ∼ 10−5. Therefore,
reducing κl is an ultimate goal for increasing ZT . Sun
et al. reported that a slight substitution of As in FeSb2,
FeSb2−xAsx (x = 0.03), reduces the thermal conductiv-
ity much more up to by a factor of 5 [7]. The reduction
is due to the effect of substitutional disorder.

We can estimate κl from the kinetic formula κl =
1/3 C(T ) · vs · lp, where C(T ), vs, and lp are the lattice
specific heat, sound velocity, and phonon mean free path,
respectively. The lattice specific heat C(T ) and sound ve-
locity vs could be calculated from a Debye model with
the Debye temperature listed in TABLE. III. With the
phonon mean free path provided in TABLE. III, the es-
timated lattice thermal conductivities of FeSb2, FeSbAs,
and FeSbP at 5 K are 257, 105, and 129 Wm−1K−1, re-
spectively. Scaling the measured κl of FeSb2 at 100 K
by the ratio of the estimated lattice thermal conductivi-
ties at 5 K, we can roughly estimate the lattice thermal
conductivities of FeSbAs and FeSbP at 100 K to be ∼10
and ∼12 Wm−1K−1, respectively. Using these values,
ZT at 100 K [53] is plotted in Fig. 8. Again, the newly
proposed material FeSbAs has a higher ZT than FeSb2

with a chemical potential shift, which is accomplished by
electron or hole doping.

We also checked the electronic structure and thermo-
electric properties of FeSbAs at ambient pressure. The
insulating phase cannot be obtained in the GGA(PBE)
functional. The mBJ method describes the insulating
phase with the band gap of 297 meV. This value is al-
most two times larger than that at high pressure P = 40
GPa. The thermoelectric power at ambient pressure is as
∼3.3 times large as that at high pressure (at T ≈ 80 K),
however the electrical conductivity is reduced due to the
larger band gap. It results in no substantial enhancement
in PF/τ at ambient pressure.

Miscibility gap at ambient pressure

Since FeSb1.97As0.03 was experimentally synthesized
and was reported to have the much more reduced ther-
mal conductivity compared to FeSb2 [7], we investigate
the miscibility of FeSb2 and FeAs2 at ambient pressure
theoretically. We take into account the miscibility of
FeSb2 and FeP2 as well. Considering a mixture of (1−x)
mole fractions of FeSb2 and x mole fractions of FeAs2
(FeP2) producing the resultant material FeSb2−2xAs2x
(FeSb2−2xP2x), the mixing energy, which is required to
obtain the resultant material, is

∆Emix(x) = Ef (FeSb2−2xX2x)

−
(

(1− x) · Ef (FeSb2) + x · Ef (FeX2)
)
,

(where X = As or P), (2)

where Ef are formation energies for the given compounds
[54]. Together with the material-independent entropy of

mixing S = −R3
(
x ln(x) + (1− x) ln(1− x)

)
, where R is

the gas constant, the mixing Gibbs free energy is

∆Gmix(x, T ) = ∆Emix(x)

+
RT

3

(
x ln(x) + (1− x) ln(1− x)

)
.(3)

The boundary of a miscibility gap [55, 56], at which
the entropy gain compensates the energy cost of mixing,
could be obtained by minimizing Eq. (3).

Since the energy above hull for FeSbAs (32.2
meV/atom) is much smaller than that for FeSbP (204.6
meV/atom), the miscibility gap region of FeSb2−2xAs2x
is quite smaller than that of FeSb2−2xP2x. We would
like to note that the maximal temperature of boundary
of miscibility gap for FeSb2−2xAs2x and FeSb2−2xP2x are
∼1914 and ∼5980 K, respectively. It indicates that the
substitution of As for Sb in FeSb2 is more favorable than
the substitution of P for Sb in FeSb2.

SUMMARY AND CONCLUSIONS

We investigated the new thermoelectric material FeS-
bAs, which is analogous to FeSb2 in chemical and struc-
tural point of views. We checked the phase stability of
FeSbAs and found that it can be made thermodynami-
cally stable at high pressure above ∼30 GPa. Another
material analog FeSbP has the same crystal structure as
FeSbAs, however it is more thermodynamically unsta-
ble than FeSbAs and could not be stable even at high
pressure. We also investigated electronic structures of
three material analogs FeSb2, FeSbAs, and FeSbP by us-
ing the mBJ method. Considering the band gap found in
FeSb2 experimentally, the mBJ method gives the reason-
able electronic structure. Regarding FeSb2 as a member
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of a family of compounds (FeSb2, FeSbAs, and FeSbP)
we identified that the octahedral rotations could control
the size of the band gap in this series. We also studied
the thermoelectric properties of three material analogs
within our theoretical framework and found that FeS-
bAs has the largest Seebeck coefficient among them above
50 K. FeSbAs could also have a higher ZT than FeSb2

with electron or hole doping. Hence FeSbAs should be
searched experimentally. More generally, the isovalent
substituting Sb with P or As should be studied. P is
predicted to be much less soluble than As which indeed
has been reported in the literature [7].
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APPENDIX: MODEL CALCULATION FOR
TRANSPORT PROPERTIES

In our DFT simulations for temperature dependent
transport properties, the chemical potential was fixed to
the middle of the band gap. However, the chemical po-
tential is a function of temperature. In semiconducting
materials, the impurity effect also affects the tempera-
ture dependence of the chemical potential. In Appendix,
we discuss the temperature behavior of the chemical po-
tential in the presence of the impurities and the corre-
sponding thermoelectric power [57]. We also discuss the
extremum in the Seebeck coefficient versus temperature
curve observed in experiments for FeSb2 at low temper-
ature.

Brief review: One-band model with a fixed chemical
potential

First, we briefly review the one-band model with a
fixed chemical potential introduced in Ref. [59]. Since the
measured thermoelectric power for FeSb2 has a negative
sign below 50 K, the dominant charge carrier is electron-
type. For simplicity, the authors of Ref. [59] considered
a single conduction band model with electron-type car-
riers. Furthermore, they assumed a fixed (temperature
independent) chemical potential µ = −∆ (where ∆ is the
activation energy) and an isotropic parabolic conduction

band dispersion

εk =
~2k2

2m∗
, (4)

where m∗ is the effective mass. Then the band velocity
is obtained by the following relation

vαk =
1

~
∂εk
∂kα

=
~
m∗

kα, (5)

where α = x, y, z. Transport properties can be computed
within the Boltzmann theory by the following expres-
sions:

σxx =
2e2

V

∑
k

(
− ∂f
∂εk

)
vxkv

x
kτk, (6)

αxx = − 2e

V T

∑
k

(
− ∂f
∂εk

)
vxkv

x
k(εk − µ)τk, (7)

where f and τk are the Fermi-Dirac distribution func-
tion and the relaxation time, respectively. The Seebeck
coefficient can then easily be calculated

S =
αxx
σxx

. (8)

Using the fact that the summation of k could be
changed into the integral of energy ε with the density

of states D(ε), that is,
∑
k

→
∫ ∞
−∞

dεD(ε), Eqs. (6) and

(7) could be rewritten as

σxx =
4e2

3V

τ0
m∗

∫ ∞
−∞

dεD(ε)

(
−∂f
∂ε

)
ε, (9)

αxx = − 4e

3V T

τ0
m∗

∫ ∞
−∞

dεD(ε)

(
−∂f
∂ε

)
ε(ε+ ∆),(10)

where the (direction independent) constant relaxation
time approximation τk ≈ τ0 is used. The density of states
for the parabolic energy dispersion of Eq. (4) is

D(ε) = V
(2m∗)3/2

2π2~3
ε1/2 (ε > 0), (11)

hence we can estimate Eqs. (9) and (10) for two different
limiting cases: ∆� kBT and ∆� kBT .

(i) When ∆� kBT ,

σxx '
(
kBT

π

)3/2
e2(2m∗)1/2τ0

~3
exp

(
−∆

kBT

)
,

αxx ' −
e(2m∗)1/2τ0
π3/2~3T

(kBT )
5/2

exp

(
−∆

kBT

)(
∆

kBT
+

5

2

)
,

S ' −kB
e

(
∆

kBT
+

5

2

)
. (12)

(ii) When ∆� kBT ,
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σxx '
(
kBT

π

)3/2
e2(m∗)1/2τ0

~3
(√

2− 1
)
ζ

(
3

2

)
,

αxx ' −
(
kBT

π

)3/2
e(m∗)1/2τ0

~3T

[ (√
2− 1

)
ζ

(
3

2

)
∆

+
5

4

(
2
√

2− 1
)
ζ

(
5

2

)
kBT

]
,

S ' −kB
e

(
∆

kBT
+

5
(
2
√

2− 1
)
ζ (5/2)

4
(√

2− 1
)
ζ (3/2)

)

' −kB
e

(
∆

kBT
+ 2.833442009 . . .

)
, (13)

where ζ(x) is the Riemann zeta function. Note that the
Seebeck coefficient S is independent of the relaxation
time τ0 in this approximation.

For both limiting cases, the Seebeck coefficient is pro-
portional to the inverse of temperature and does not show
the extremum, whereas it does in experiments.

Two-band model

In this subsection, we discuss the two-band model con-
sisting of one valence and one conduction band with a
band gap of Eg. For convenience, we assume simple
parabolic band dispersions for both valence and conduc-
tion bands and positions of the valence band maximum
and the conduction band minimum are −Eg/2 and Eg/2,
respectively, in order for the middle point of the band
gap to be zero. Then, the valence and conduction band
dispersions are

εVB
k = −Eg/2−

~2k2

2m∗VB

,

εCB
k = Eg/2 +

~2k2

2m∗CB

, (14)

where m∗VB and m∗CB are the valence and conduction
band effective mass, respectively, and density of states
for the valence and conduction bands are

DVB(ε) = V
(2m∗VB)3/2

2π2~3
(−ε− Eg/2)1/2,

DCB(ε) = V
(2m∗CB)3/2

2π2~3
(ε− Eg/2)1/2. (15)

To demonstrate that the Seebeck coefficient of FeSb2

has a negative sign and the extremum at low tempera-
ture in experiments, we allow the temperature dependent
chemical potential and the presence of ionized donor im-
purities. (The ionized acceptor impurities make the See-
beck coefficient positive at low temperature, which is not
the case for FeSb2.) The occupation of ionized donor
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FIG. 9: (Color Online) Two-band model for thermoelectric
properties with ionized donor impurities. We set a band gap
Eg = 0.2 eV, donor impurity level Ed = 95 meV, valence
and conduction band effective masses m∗

VB = 10 m0, m∗
CB

= m0 (where m0 is the electron rest mass), and cell volume

V = 123.673 Å
3
. (a) Chemical potential µ and (b) Seebeck

coefficient as a function of temperature for different donor
impurity concentrations.

impurities is

Nd+ =
Nd

1 + 2 exp
(
− (Ed − µ)/kBT

) (16)

with donor concentration Nd and donor impurity level
Ed.

Occupations of electron (n) and hole (p) are

n =

∫ ∞
Eg/2

dεDCB(ε)f(ε),

p =

∫ −Eg/2

−∞
dεDVB(ε)

(
1− f(ε)

)
. (17)

Then the condition of the charge neutrality n = p +
Nd+ determines the position of the chemical potential µ,
which is usually as a function of temperature as shown
in Figs. 9(a) and 10(a). In the intrinsic case, Nd = 0,
the chemical potential is almost temperature indepen-
dent and very close to the middle of the band gap at low
temperature. Above a certain temperature, the chemi-
cal potential shows the linear dependence of temperature
and its slope is determined by the valence and conduction
band effective masses m∗VB and m∗CB. When m∗VB > m∗CB

(see Fig. 9(a)), the linear slope is positive, hence the
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FIG. 10: (Color Online) Same as Fig. 9 except for different
valence and conduction band effective masses in the two-band
model. We set m∗

VB = m0 and m∗
CB = 10 m0.

chemical potential is close to the conduction band upon
heating. On the other hand, when m∗VB < m∗CB (see
Fig. 10(a)), the linear slope is negative, that is, the chem-
ical potential is far away from the conduction band upon
heating.

The presence of the ionized donor impurity makes the
chemical potential close to the conduction band at low
temperature. Up to a certain temperature the chemical
potential goes down to the middle of the band gap upon
heating, and then follows the intrinsic high-temperature
slope regardless of the donor impurity concentrations.

Using the obtained temperature dependent chemical
potential and Eqs. (6-8), we can obtain the Seebeck co-
efficient as a function of temperature and the result is
shown in Figs. 9(b) and 10(b). At finite donor impu-
rity concentrations, the Seebeck coefficients show an ex-
tremum and the position of the extremum is changed de-
pending on the impurity concentration. The remarkable
difference between Figs. 9(b) and 10(b) is that at finite
impurity concentrations the Seebeck coefficient changes
the sign only for m∗VB < m∗CB and shows another ex-
tremum upon heating [60].
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Phys. Rev. B 81, 144302 (2010).

[59] P. Sun, W. Xu, J. M. Tomczak, G. Kotliar, M.
Søndergaard, B. B. Iversen, and F. Steglich, Phys. Rev.
B 88, 245203 (2013).

[60] In case of the presence of the ionized acceptor impurity
(p-type doping), the opposite behavior is expected. When
m∗

VB > m∗
CB, the Seebeck coefficient changes the sign

from a positive to a negative value upon heating. When
m∗

VB < m∗
CB, the Seebeck coefficient always has a posi-

tive value for a finite impurity concentration.


