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To extend materials design and discovery into the space of metastable polymorphs, rapid and
reliable assessment of transformation kinetics to lower energy structures is essential. Herein we focus
on diffusionless polymorphic transformations and investigate routes to assess their kinetics using
solely crystallographic arguments. As part of this investigation we developed a general algorithm to
map crystal structures onto each other, and ascertain the low-energy (fast-kinetics) transformation
pathways between them. Pathways with minimal dissociation of chemical bonds, along which the
number of bonds (in ionic systems the first-shell coordination) does not decrease below that in
the end structures, are shown to always be the fast-kinetics pathways. These findings enable the
rapid assessment of the kinetics of polymorphic transformation and the identification of long-lived
metastable structures. The utility is demonstrated on a number of transformations including those
between high-pressure SnO2 phases, which lack a detailed atomic-level understanding.
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I. INTRODUCTION

The strong dependence of physical properties on crys-
tal structure offers compelling opportunities for discov-
ering new functional materials among metastable poly-
morphs. The search for new and useful metastable struc-
tures however, critically requires: (i) accurate and ef-
ficient structure and property prediction algorithms to
screen the potential energy surface (PES) for polymorphs
with desirable properties, and (ii) rapid and reliable as-
sessment of the kinetics of transformations to lower en-
ergy states to identify long-lived polymorphs among the
multitude of possible low-energy structures. With the
advent of total energy methods considerable efforts have
been devoted to the former problem. As a result, a range
of structure prediction methods were developed1–3 and
successfully combined with property predictions4–11.

In the context of metastability and polymorphism,
identification of bonafide metastable structures among
tens if not hundreds of low-energy structures that typi-
cally result from structure predictions12,13 remains a sig-
nificant challenge14. Recently discovered correlation be-
tween volumes of configuration space occupied by dif-
ferent PES local minima (their basins of attraction)

and experimentally realized metastable structures15–17

offers guidance in narrowing down the list of candi-
date metastable structures. However, when targeting
metastable forms of matter, knowledge of the kinetics
of transformations to lower energy states is invaluable.

Kinetics of polymorphic transformations is often de-
scribed in terms of the minimum energy transforma-
tion pathways and associated activation energies, that
is, energies of the saddle points (transition states) along
the pathway. Efforts in developing computational ap-
proaches to predict minimum energy pathways between
periodic structures, find saddle points and their en-
ergy have also been (and still are) under development.
The generalized solid-state nudged elastic band (ssNEB)
formalism18–20 enables a unified description of the atomic
and structural degrees of freedom along a polymorphic
transformation pathway. While the ssNEB algorithm it-
self can be efficient, the computational cost of the under-
lying electronic structure calculations and complexities in
choosing the best initial pathway limit its use for rapid
identification of long-lived, metastable polymorphs.

A method that could examine large sets of poly-
morphs, even if offering only a semi-quantitative assess-
ment, would greatly benefit metastable polymorph dis-
covery. One such attempt can be found in the work of
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Buerger21, who classified polymorphic transformations as
slow or rapid using mainly crystallographic arguments. In
short, the existence of a diffusionless (displacive or dilata-
tional) transformation between two structures is, accord-
ing to Buerger, a signature of fast kinetics. One trans-
formation that disobeys this classification is diamond to
graphite for which Buerger devised an additional class of
transformations of the bond type, covalent to metallic in
this case, which he argued should be slow irrespective of
geometry. The main limitation of the Buerger’s classifi-
cation scheme is that it can only be applied to transfor-
mations for which the mechanism is already known.

Motivated by the Buerger’s work, we investigate in
this paper routes to assess kinetics of polymorphic trans-
formations using solely crystallographic arguments. The
key component of our work is an algorithm to map crystal
structures onto each other, and find diffusionless trans-
formations between them (see Fig. 1). The algorithm re-
lies on two basic principles: (a) minimization of the total
Euclidian distance atoms need to travel between the end
structures, and (b) minimization of the change in coordi-
nation of atoms in the first coordination shell (number of
atoms in the first shell) along the map. In other words,
the goal is to find an optimal mapping that is diffusionless
in nature and which minimizes dissociation of chemical
bonds. The developed algorithm successfully reproduces
known transformation pathways including fcc → bcc,
diamond → graphite, CsCl-type → rocksalt, etc. Be-
yond simple and well studied transformations, we applied
our mapping algorithm to study polymorphic transfor-
mations between various SnO2 high-pressure phases for
which a detailed atomistic picture is presently elusive.

We will show that if only a qualitative classification
into slow or rapid (à la Buerger) is sufficient, the condi-
tion of minimal dissociation of chemical bonds along the
pathway can be used as a signature of fast kinetics. More
precisely, if a diffusionless pathway can be found along
which the number of chemical bonds never decreases be-
low the number of bonds in the end structures, the ki-
netics of the transformation between the corresponding
polymorphs can reliably be classified as rapid. Lastly, if
a more accurate assessment is necessary, our mapping al-
gorithm is demonstrated to provide a good starting point
for subsequent solid-state nudged elastic band (ssNEB)
calculations.

Similarly to other methods18–20,22, in our work we
draw conclusions about the kinetics of polymorphic
transformations from the assumed collective (concerted)
motion of atoms. While phase transitions in solids occur
mainly via nucleation and growth, we adopt the view that
the features of collective transformations can provide use-
ful insights into the overall kinetics and can serve as the
starting point for more realistic modeling of nucleation
processes.

FIG. 1. Schematics of the two step, structure mapping
algorithm developed in this work (see text for details).

II. METHODS

A. Structure mapping algorithm

The developed structure mapping algorithm consists
of two steps as illustrated in Fig. 1. In the first step the
algorithm searches for the most compatible representa-
tions of the two structures, that is the optimal mapping
of their unit cells. This is done in the following way. The
two primitive unit cells are brought to the same – least
common multiple – number of atoms by constructing all
symmetry inequivalent supercells. The enumeration of
the symmetry inequivalent supercells given the number
of atoms is done using Hart-Forcade theory23. The most
compatible representations are then defined by the pair
of supercells that minimizes the strain between them, or,
in other words, the two supercells with the largest spatial
(volumetric) overlap. This condition can be formulated
as searching for the pair of unit cells that minimizes the
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metric defined as the weighted sum of the absolute dif-
ferences in unit cell parameters (a, b, c, α, β, γ) and the
total surface areas (S) of the two cells:

d(cell1, cell2) =
∑

q=a,b,c,
α,β,γ,S

Cq |q1 − q2|, (1)

where Cq represent positive weights of quantities q that
are introduced solely to make the numerical values the
same order of magnitude. The search is accomplished by
transforming the cells to the corresponding (unique) re-
duced cell according to the formulation of Niggli-Santoro-
Gruber24–26, which allows implicitly exploring all permu-
tations of the unit cell vectors and all isometric transfor-
mations of the two cells (rigid rotations and reflections)
to bring them to the positions of largest spatial overlap,
as shown in Fig. 1.

In the second step, the atoms are placed back inside
the two cells. The optimal atom-to-atom mapping is then
searched for by performing the following operations on
the two sets of atomic positions: (i) all symmetry opera-
tions of the parent Bravais lattices, (ii) translations of the
origin of coordinate frame to each atom site, and (iii) per-
mutations of indices of chemically identical atoms. Every
choice of symmetry operation, position of the origin, and
the permutation of atom indices defines a single mapping
between the two end structures and a pathway in config-
uration space that connects the atoms with same indices
and continuously deforms the unit cell.

Out of many possible atom-to-atom mappings our al-
gorithm selects as the optimal mapping the solution that
yields minimal dissociation of chemical bonds, i.e., the co-
ordination of atoms along the pathway does not decrease
below the coordinations in the end structures. If such a
mapping cannot be found, then the one that minimizes
the sum of Euclidian distances between the correspond-
ing atoms in the two structures is chosen. Finally, if more
than one solution is found with the appropriate change
in coordination then the sum of distances between the
atoms is used to rank them and narrow down the choice.
To achieve this, the described operations are performed
using Hart-Forcade theory23 that allows enumeration of
the symmetry inequivalent atom sites. The Hungarian
Algorithm of Kuhn and Munkres27 is used to find the op-
timal permutation of atom indices (job scheduling prob-
lem) in polynomial time.

Ideally, the globally best atom-to-atom mapping would
always be found in the unit cell pairing with highest over-
lap, but this is not the case in general. Therefore, in the
first step, we form a list of the top N unit cell pairing (e.g.
N=10) and perform the second step on all of them. In
practice this has been found to yield the desired globally
optimal atom-to-atom mapping.

A similar approach was developed previously by
Sadeghi and Goedecker28 for the purpose of measuring
configuration space distances between non-periodic sys-
tems. Also, Lonie and Zurek29 developed a search algo-
rithm designed to identify identical (duplicate) periodic

structures which involves mapping of the unit cells. An-
other class of recently developed approaches utilize the
descriptor/feature based fingerprinting to quantify sim-
ilarity of different periodic structures by comparing se-
lected set of features (not atom-by-atom). These include
the work of Yang et al.30 and Zhu et al.31. Our map-
ping of the unit cells can be viewed as a generalization
of the ideas of Lonie and Zurek29 to the case where in-
put structures are presumed to be different and where
the goal is to discover the optimal alignment of the two
structures. Concerning the atom-to-atom mapping, we
extended the algorithm of Sadeghi and Goedecker28 to
periodic systems. Another important distinguishing fea-
ture of our approach is the new objective function, which
includes the physical principle of the minimal dissociation
of chemical bonds.

Our structure mapping algorithm is available via
github as part of the pylada software package32.

B. Coordination analysis

Along the transformation pathways the symmetry of
the end structures is broken, and the distances between
the atoms and their first neighbors are not all the same.
This poses problems when determining first shell coordi-
nation of atoms for intermediate structures. The calcu-
lated number of neighbors will in general depend on the
cutoff radii and/or tolerances imposed on the distances.
In this work we focus on binary ionic systems for which
we define the first coordination shell as consisting of the
atoms of the type other than the central atom that are all
separated from the central atom within a certain toler-
ance. In other words, the tolerance factor represents the
thickness of a spherical shell around the central atom.
The first shell is then defined as the number of atoms
of the other type that are found inside this shell. The
counting starts from the closest atom and stops if either
the tolerance or the atom of the same type as the central
one is reached, whichever comes first. We check the sta-
bility of all our results by varying the tolerance between
0.1 and 0.5 Å.

C. Total energy and ssNEB calculations

All calculations were performed by employing rela-
tively standard DFT computations explained in details
elsewhere33. In short, the PBE form of the exchange-
correlation functional34 was used within the projector
augmented wave (PAW) method35 as implemented in the
VASP code36. In case of elemental carbon, the VASP
code implementation of the optB86 exchange-correlation
functional37, which includes contributions arising from
van der Waalls interactions, was employed. To generate
energy profiles along the mapping (pathway) all initial
and final structures were fully relaxed (volume, cell shape
and atomic coordinates), whereas only the static calcu-



4

lations were performed for the intermediate structures
along the pathway.

The solid state nudged elastic band (ssNEB) calcu-
lations were performed using the implementation in the
Transition State Tools for VASP (VTST) code developed
by the Henkelman group at UT Austin.19 Each ssNEB
calculation was initialized with an approximately 20 im-
age band determined by taking an interpolation of the
entire desired polymorphic transformation generated by
the mapping algorithm discussed in this paper. The ini-
tial pathway is relaxed until the forces on all images were
less than 0.01 eV/Å. If any intermediates appeared along
the ssNEB, these were relaxed using a standard geome-
try relaxation, and the ssNEB path was split, taking the
intermediate as a new end point for one ssNEB, and a
starting point for another. This was done so that each
ssNEB calculation would only have a single local max-
imum. Images were either added or removed from the
chain so that each intermediate ssNEB had 10-12 im-
ages. Once the NEB images were relaxed, the climbing
image NEB method was used to better identify the true
saddle point.38

III. RESULTS AND DISCUSSION

We tested our structure mapping algorithm on a num-
ber of well-studied polymorphic transformations in ele-
mental and simple binary systems, some of which are
listed in Table I. The space groups of the lowest sym-
metry structures that occur along the pathway are also
shown. The transformation pathways from Table I re-
produce well the maximal symmetry transition paths for
the reconstructive phase transitions derived by Capillas
et al.22. Further, our algorithm often finds the path-
way that preserves the largest common subgroup of the
two structures. This is a consequence of the supercell
sizes chosen to accommodate the least common multiple
number of atoms. If this condition is relaxed and larger
supercells with compatible numbers of atoms are con-
sidered, our algorithm would also find lower symmetry
pathways, some of which have been discussed previously
for the transformations from Table I. The details of the
transformations from Table I are provided in the supple-
mentary materials.

A. Ionic systems: Change in the coordination of
atoms and its relevance to the magnitude of kinetic

barriers

Another important finding that emerged during the
development of our algorithm is that the two conditions,
minimal distance between the corresponding atoms in the
two structures and minimal change in coordination, do
not always coincide. The test cases from Table I revealed
the critical significance of the change in coordination. For
example, minimizing the distance alone does not neces-

TABLE I. List of studied polymorphic transformations in ele-
mental and simple binary systems. Space groups of the initial
and final structures are given together with lowest symmetry
intermediate structures.

FCC (Fm3̄m) → I4/mmm → BCC (Im3̄m)

BCC (Im3̄m) → Cmcm → HCP (P63/mmc)

diamond (Fd3̄m) → C2/m → graphite (P63/mmc)

CsCl-type (Pm3̄m) → R3̄m → rocksalt (Fm3̄m)

rocksalt (Fm3̄m) → Cmc21 → wurtzite (P63mc)

zincblende (F4̄3m) → Imm2 → rocksalt (Fm3̄m)

sarily result in the best pathway in the case of bcc to hcp
transformation as there are multiple possible mappings
with nearly degenerate distance values, but different co-
ordination of atoms along the pathway. The transfor-
mations between the ground state and high temperature
tin-sulfide polymorphs, Pnma and Cmcm, also exhibit
similar features (see supplementary materials). The con-
dition itself has been referred to previously in case-by-
case studies (e.g. Refs.39,40) and has a relatively sim-
ple physical interpretation. It reflects the requirement of
minimizing the number of broken bonds in going from
one end structure to the other, which is expected to be
correlated with the magnitude of the kinetic barriers.

We illustrate the correlation between the change in the
first shell coordination and the potential energy profile
by analyzing the rocksalt (Fm3̄m) → wurtzite (P63mc)
transformation in binary ionic systems GaN, ZnO, MgO,
and CdO. In the upper part of Fig. 2 five snapshots along
the pathway are shown viewed from the wurtzite c-axis.
In the middle part, potential energy profiles along the
pathway are shown. They are calculated using density
functional theory (DFT). The energy axis is relative to
each ground state structure, wurtzite for GaN and ZnO
and rocksalt for MgO and CdO. For every chemical com-
position the end structures are fully relaxed (volume,
cell shape and atomic positions), while the total ener-
gies of the snapshots along the pathway are computed
without any relaxations. For each system the pathways
are discretized into 100 equally spaced successive snap-
shots shown in Fig. 2. We employ a relatively standard
DFT-GGA numerical setup described in Section II C.

As evident from Fig. 2 for all four systems calculated
energy profiles exhibit relatively small barriers for trans-
formation from the higher energy into the correspond-
ing ground state state structure, which corresponds well
to the known, fast kinetics of this transformation41,42.
The highest energy points along the pathways are all be-
low 100 meV/atom, which is usually considered low ac-
tivation energy43. Because the calculated energy profiles
can be thought of as providing the upper bounds for the
true activation energies, this result shows that irrespec-
tive of the chemistry, this particular transformation is
associated with relatively low energy barriers. In addi-
tion, the change in coordination of the atoms from the
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FIG. 2. Five snapshots along the rocksalt (Fm3̄m) →
wurtzite (P63mc) transformation are shown (upper) together
with the energy profiles (middle) and the change in coordi-
nation along the pathway (lower). The invisible x-axis repre-
sents normalized reaction coordinate.

6-fold coordinated rocksalt phase to 4-fold coordinated is
evidently monotonic, i.e. only the absolutely necessary
number of bonds dissociate along the pathway, which is
consistent with the above discussion. Similar results are
obtained for other transformations from Table I includ-
ing: BCC → HCP in metallic titanium for which we
find a nearly barrierless energy profile in line with previ-
ous findings43; CsCl-type → rocksalt in CsCl, with the
monotonic change in coordinations and the upper bound
for the activation energy of 13 meV/atom. Moreover,
for the zincblende → rocksalt transformation in SiC our
algorithm confirms previously discussed energetic pref-
erence of the orthorhombic (Imm2) pathway relative to
the R3m mechanism because of the monotonic change in
the coordination of atoms from four to six39,40. The cal-
culated energy profiles peak at 112 and 250 meV/atom
for the pathways passing through the Imm2 and R3m,
respectively, in agreement with previous studies.

FIG. 3. Snapshots along the diamond to graphite transfor-
mation are shown together with the space group symmetry,
calculated energy profiles and the evolution of the coordina-
tion number. Two energy profiles calculated using the dis-
cretized pathway produced by our algorithm (black) and the
ssNEB result (grey) are shown as well as the corresponding
coordination numbers colored in the same way.

B. Covalent systems: Diamond → Graphite
transformation

Our results also confirm the exception to the rule, the
cubic diamond → hexagonal graphite transformation for
which our algorithm finds the same transformation path-
way as the one discussed in Refs.44,45 that is accompa-
nied by a monotonic change in coordination of atoms (see
Fig. 3) and yet, the maximal energy point along the path-
way is ∼ 470 meV/atom above the diamond structure.
Similar to other systems studied herein, the calculations
were performed by discretizing the pathway constructed
by our algorithm (interpolation). Fig. 3 also illustrates
the energy profile in grey, which resulted from the ssNEB
calculation that used our mapping algorithm pathway as
the initial pathway. As expected, the calculated ssNEB
energy barrier is lower, but the qualitative picture does
not change. The transformation is slow despite the mono-
tonic change in coordination reproduced by both sets of
calculations.

So, why is elemental carbon different? As correctly
observed by Buerger, the diamond to graphite transfor-
mation requires a change in chemical bonding. In the
diamond structure the four carbon sp3 hybrid atomic or-
bitals form four strong σ bonds per carbon atom. These
are replaced in the graphite structure by three sp2 hy-
brids, which form three σ bonds per carbon, and a pz
orbital, which forms one weaker, resonating π bond per
carbon. Relatively weak Van der Waals interactions be-
tween the layers further stabilize the graphite structure.
If one counts the number of chemical bonds per atom
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rather than the geometric coordination, then both di-
amond and graphite have four bonds per carbon atom
and the transformation from diamond to graphite would
imply dissociation and formation of one bond per C. Con-
sistent with the previous discussion, the intermediate de-
crease in the number of chemical bonds to three from
four in the end structures would lead to a high barrier.

In ionic systems on the other hand, significant con-
tribution to the energy differences between different
atomic configurations comes form purely electrostatic
interactions46,47. Hence, the increase in energy along the
pathway is influenced by the changes in the charge distri-
bution and to a lesser extent is due to vanishing overlaps
of atomic overlaps. The evidence of the remaining charge
transfer along the pathways are the non-vanishing band-
gaps for all ionic systems studied here. Therefore, the ar-
gument here is that the geometric coordination of atoms
along the pathway is more appropriate when trying to
understand the kinetics of polymorphic transformations
in ionic systems, while in covalent systems it needs to be
replaced by a chemical bonding analysis. In both cases
however, the condition of minimal dissociation of chemi-
cal bonds serves as a signature of rapid transformations.

C. SnO2 polymorphs

To further validate the previous discussion we extend
our study to SnO2, a partially ionic system for which
a number of polymorphs have been realized under pres-
sure. With increasing pressure the structures appear in
the following sequence: P42/mnm → Pnnm → Pbcn →
Pa3→ Pbca→ Fm3̄m48,49. Upon releasing the pressure,
however, all phases either relax back to the ground state
rutile (P42/mnm) structure following the same sequence
or to a phase mixture between rutile and the Pbcn struc-
ture (α-PbO2 structure type)49,50. So, the only phase
that survives at ambient conditions is P42/mnm, occa-
sionally in combination with small amounts of Pbcn. A
previous study16 has shown that these two SnO2 struc-
tures, P42/mnm and Pbcn, have the “largest” local min-
ima, that is, they occupy larger regions of configuration
space than any other. Here, we extend this result by in-
vestigating transition pathways between different SnO2

polymorphs.
In Fig. 4, a chart illustrating the crystal structures of

all six SnO2 polymorphs is shown with thick arrows con-
necting structures for which our structure mapping and
coordination analysis suggest fast polymorphic trans-
formations. The arrows point in the direction of low-
ering total energy. Interestingly, the highest pressure
Fm3̄m phase is connected to all other phases by a fast
polymorphic transformation. The DFT calculated en-
ergy profiles all exhibit energy barriers lower than 30
meV/atom51. Hence, upon releasing the pressure the
Fm3̄m structure can, depending on the actual barriers
and other factors such as how fast the pressure is released
or defects in the material, transform relatively quickly to

FIG. 4. Map of six SnO2 polymorphs. Thick arrows in-
dicate fast polymorphic transformations as predicted by our
structure mapping and coordination analysis. Arrows go in
the direction of lowering energy. Dashed arrows indicate
transformations for which the change in coordination depends
strongly on the distance cutoff used (see text). The missing
arrows correspond to transformations predicted to be slow.

any of the other SnO2 polymorph structures upon re-
leasing pressure. This semi-quantitative assessment is
consistent with the observations from the high-pressure
experiments.49,50

We also find another classe of transformations be-
tween the SnO2 polymorphs, those marked in Fig. 4 by
dashed arrows. For these transformations our classifi-
cation based on the coordination analysis is very sen-
sitive on the tolerance used in evaluating the coordina-
tion of atoms (see Section II B). The dashed arrows in
Fig. 4 represent the transformation pathways that would
either be classified as slow for the smallest tolerance fac-
tor (0.1 Å) and would change to fast upon increasing the
tolerance, or for which the results would be ambiguous,
i.e., the trends in the coordination of different types of
atoms would be different (opposite). The former physi-
cally means that along the pathway some chemical bonds
are strained more than others, but the atoms remain rel-
atively close to each other. The latter means that the
atoms of the same type as the central atom approached
closer to the central atom and intermixed with its first co-
ordination shell and in that way decreased the evaluated
coordination number. Based on the subsequent ssNEB
calculations we argue that it is more appropriate to clas-
sify these types of transformations as likely rapid for the
following reason. Namely, our procedure is based solely
on geometry and does not allow atoms to relax to more
stable configurations as, for example, the ssNEB method
would. Therefore, because of the energy minimization
with respect to atomic positions within the ssNEB the
atoms will have the opportunity to re-bond during the
atomic relaxations, which would then lower the barrier
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FIG. 5. Calculated energy profiles are shown (in red) for the four selected polymorphic transformations from Fig. 4 together
with the space group symmetry, five crystal structure snapshots along the pathway and the average coordination of Sn and O.
The corresponding ssNEB results are shown in grey. The x-axis represents the normalized reaction coordinate.

and imply fast transformation based on the coordination
analysis. Based on this discussion, all dashed-line trans-
formations from Fig. 4 should be classified as rapid.

Finally, the coordination analysis along the Pbca →
P42/mnm and Pbca→ Pnnm pathways clearly shows the
dissociation of chemical bonds and consequently, we do
not connect these structures with arrows. Unlike those
marked by the dashed arrows, the change in coordination
along Pbca → P42/mnm and Pbca → Pnnm does not
depend on the details of how is the first shell coordination
of atoms evaluated.

To better illustrate previous discussion we show in
Fig. 5 calculated energy profiles and the average coor-
dination of atoms along the pathways together with the
ssNEB results for a selected set of transformations from
Fig. 4. We consider Fm3̄m → P42/mnm (thick arrow),
Pbcn → P42/mnm (dashed arrow), Pa3 → P42/mnm
(dashed arrow), and Pbca → P42/mnm (no arrow). The
first transformation, which would be classified as fast ac-

cording to our coordination analysis, clearly indicates the
existence of a low energy barrier. The highest energy
point along the pathway is only 22 meV/atom above the
high-pressure Fm3̄m phase. The transformation is nearly
barrierless in the ssNEB showing a very similar change in
the coordination of atoms. The second and third trans-
formations that are denoted by dashed arrows in Fig. 4
both fall in the category of undetermined based on the
initial coordination analysis. Namely, the coordination
numbers for Sn and O follow opposite trends. While the
coordination of Sn grows along the pathway from six to
seven the average number of first shell Sn atoms sur-
rounding oxygen drops from 3 to 2.5. The reason for
this is already mentioned intermixing of O atoms within
the first shell of other O atoms, which decreases their
first shell coordination number (as defined here) and in-
creases Sn coordination numbers. Minimization of energy
within the ssNEB formalism would allow for some rear-
rangements of atoms and lowering of the energy barriers
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along these pathways. Indeed, the energy barriers cal-
culated from the direct interpolation along our pathways
are about 216 and 124 meV/atom for Pbcn→ P42/mnm
and Pa3 → P42/mnm, respectively. The subsequent ss-
NEB calculations lower the energy barriers in both cases,
but while for the Pbcn → P42/mnm the symmetry of
the initial pathway remains the same with the final bar-
rier of 115 meV/atom, the ssNEB result for the Pa3 →
P42/mnm relaxes from the initial pathway to the one
that has the Pbcn structure as the intermediate. The ss-
NEB energy barrier for the Pa3 → Pbcn transition is 32
meV/atom and is in qualitative agreement with the di-
rect interpolation one of 97 meV/atom. Given that the
Pa3 structure is the next in the sequence of increasing
pressure after the Pbcn, the ssNEB result from Fig. 5
explains the appearance of the Pbcn phase mixed with
the ground-state rutile phase (P42/mnm) upon releasing
pressure. Namely, the barrier of 32 meV/atom implies
Pa3 will transform to Pbcn fairly quickly, while the Pbcn
phase will transform to P42/mnm at a slower rate. In-
terestingly, just from the coordination analysis and the
calculated energy profiles one could conceive the Pa3 →
Pbcn → P42/mnm route instead of the direct Pa3 →
P42/mnm.

Similarly, the ssNEB result for the Pbca → P42/mnm
transformation (see Fig. 5(d)) is clearly consistent with
the conclusions that could be drawn form the coordina-
tion analysis. Namely, from the coordination of atoms
this transformation would undoubtedly be considered
slow, and the lowering of energy from Pbca would likely
proceed along the pathways marked by the arrows in
Fig. 4, that is, either through the Pa3 and then Pbcn, or
directly to the Pbcn structure. As previously discussed
both of these transformations can be considered rapid.
This is exactly what the ssNEB predicts would happen.
The Pbca would, according to ssNEB, transform rapidly
into the Pbcn (barrier of 44 meV/atom) and would then
continue along the Pbcn → P42/mnm path.

As the SnO2 results demonstrate, structure mapping
and careful coordination analysis can offer qualitative
guidance and accelarate the classification of the polymor-
phic transformation into rapid and slow. While replacing
the ssNEB results with just the energy profiles calculated
from the interpolation of our pathways might be tempt-
ing, one needs to remember that the barriers calculated in
this way only represent the upper bounds for the true ac-
tivation energy. The problem occurs if the upper bound
for the activation energy is relatively large. We argue
here that under these circumstances careful coordination
analysis can still be useful in providing qualitative assess-
ment as discussed for the transitions denoted by dashed
lines in Fig. 4. Of course, the ssNEB in these cases would
provide the ultimate answer.

We further tested our mapping algorithm and the qual-
itative conclusions based on coordination analysis using
SiO2 as another case study (see Supplementary Mate-
rials for details). The resulting classification based on
the coordination of atoms shows fast transformations be-

tween α- and β-quartz, α- and β-cristobalite, and α- and
β-tridymite. All other transformations between them
and also including high-pressure moganite and stishovite
would be classified as slow (coordination does not depend
on the tolerance factor). This entirely geometric- and co-
ordination of atoms- based classification reproduces qual-
itatively well the available knowledge of the SiO2 poly-
morphs and the kinetics of polymorphic transformations
between them.

IV. CONCLUSIONS

With the goal of accelerating assessment of kinetics
of polymorphic transformations we present a general al-
gorithm to map crystal structures onto each other and
identify diffusionless pathways between them. The al-
gorithm is based on the physical principles of minimiz-
ing the distance between individual atoms (diffusionless
transformations) and minimizing the change in coordina-
tion of atoms (dissociation of chemical bonds) along the
pathway. Application of the algorithm to well-studied
unary and binary systems reliably reproduces known
transformation pathways and reveals the critical role
the dissociation of chemical bonds plays in identifying
the fast-kinetics mapping. We show that rapid poly-
morphic transformations occur along pathways in which
the number of bonds in the end-member structures is
preserved. In ionic systems the number bonds can be
approximated by the first-shell coordination whereas in
strongly covalent systems, the increased bond direction-
ality necessitates going beyond a geometric analysis to
assess the bonding character along the pathway. These
findings allow qualitative, quick and reliable classifica-
tion of polymorphic transformations into rapid and slow
just from the coordination (or bonding) analysis as we
show on a number of well-studied polymorphic transfor-
mations as well as those between high-pressure phases of
SnO2 for which atomic level understanding is presently
missing. For more quantitative assessments integration
of our algorithm with ssNEB calculations is shown to
provide a robust computational procedure for predict-
ing kinetics of polymorphic transformations. Ultimately,
the methods presented here, in combination with struc-
ture and property predictions, offer a route to identify-
ing novel, realizable and long-lived functional materials
among metastable polymorphs.
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