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The electronic band structure of SrTiO3 is investigated in the all-electron QSGW approximation.
Unlike previous pseudopotential based QSGW or single-shot G0W0 calculations, the gap is found
to be significantly overestimated compared to experiment. After putting in a correction for the
underestimate of the screening by the random phase approximation in terms of a 0.8Σ approach,
the gap is still overestimated. The 0.8Σ approach is discussed and justified in terms of various
recent literature results including electron-hole corrections. Adding a lattice polarization correction
(LPC) in the q → 0 limit for the screening of W , agreement with experiment is recovered. The
LPC is alternatively estimated using a polaron model. We apply our approach to the cubic and
tetragonal phases as well as a hypothetical layered post-perovskite structure and find that the LDA
(local density approximation) to GW gap correction is almost independent of structure.

I. INTRODUCTION

It is well known that the density functional theory in
its commonly used local density and generalized gradi-
ent approximations (LDA and GGA) does not provide
accurate electronic band structures and in particular un-
derestimates band gaps. This is by now recognized to be
mostly because the Kohn-Sham eigenvalues in this theory
should not be interpreted as one-electron excitations. To
calculate the latter, a many-body-perturbation theory,
including a dynamical self-energy, such as the GW ap-
proximation, provide a much better justified and more ac-
curate framework. For standard tetrahedral semiconduc-
tors, the GW method has been shown to provide accu-
rate gaps. Still, this depends on details of the implemen-
tation, for example, all-electron results may differ from
pseudopotential results and the level of self-consistency
used in the GW method and its convergence versus var-
ious parameters plays a significant role. For transition
metal and complex oxides, it is still far less clear how well
the GW method performs. Here we consider SrTiO3 as
a case study.

We use the all-electron full-potential linearized muffin-
tin orbital (FP-LMTO) implementation1,2 of the quasi-
particle self-consistent (QS) GW method3,4 and com-
pare its results for SrTiO3 with previous results in
literature.5–8

II. LITERATURE REVIEW

Sponza et al. performed G0W0 calculations of the band
structure starting from a pseudopotential LDA calcula-
tion including Sr 4s, 4p and Ti 3s, 3p semicore states as
valence. They obtain the vertical gap at Γ to be 3.76
in good agreement with experiment, whereas their LDA
calculation gave 2.21 eV. The actual valence band max-
imum (VBM) at R is slightly higher than at Γ resulting
in a smaller indirect gap both in LDA and in GW . The
focus of their paper is on the optical dielectric function
including electron-hole interaction effects.

Hamann and Vanderbilt (HV)6 performed QSGW cal-
culations using maximally localized Wannier functions
(MLWF) to interpolate the self-energy Σ matrix between
k mesh-points on which the QSGW is performed. A sim-
ilar functions is played by the atom centered muffin-tin-
orbitals in our approach. They include only Sr-4p semi-
core states as valence electrons. Both these groups used
the ABINIT package but used somewhat different cut-off
parameters. Their plane-wave cut-off for the basis set
is similar but HV used a smaller number of unoccupied
bands. They obtained the indirect LDA gap of 1.61 and a
GW gap of 3.32 eV. Curiously, the gap correction of HV
(1.71 eV) is larger than that of Sponza et al. (1.55 eV).
They did not mention the direct gap at Γ, but assuming
all LDA calculations considered here get similar value for
this difference, we’ll use our LDA value (0.44 eV) for the
difference between the VBM at R and Γ. HV’s direct
gaps at Γ would then amount to 2.05 eV (LDA) and 3.76
eV (GW ). Thus, these two pseudopotential calculations
are in good agreement with each other in spite of the
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small changes in parameter choices. The main point of
HV’s paper is that the MLWF interpolation works well
and indicates little change in the Wannier functions ex-
tracted from LDA or GW calculations.

A third pseudopotential based GW calculation by
Cappellini et al.7 obtained significantly different results.
They also include Sr 4s, 4p, Ti 3s, 3p as valence electrons
and obtain an LDA gap at Γ of 2.24 eV (indirect R−Γ of
1.90) but GW gaps of 5.42 eV (Γ−Γ) and 5.07 eV (R−Γ).
The reason for this discrepancy is unclear but presumably
is related to the use of a model dielectric function instead
of a consistently calculated one. Finally, a previous FP-
LMTO QSGW calculation by Kotani et al. ,8,9 gives the
indirect gap at Γ of about 4.25 eV but gave few details.

From the above, it appears from the pseudopotential
calculations that the G0W0 gap is close to that of the
QSGW gap, and that both are in good agreement with
experiment. The all-electron QSGW gap however seems
to be about 1 eV larger than experiment. Here we further
investigate this issue.

III. METHODS

The QSGW approximation as implemented in FP-
LMTO was described in detail in Ref. 4. The idea behind
the QSGW method is to make an optimal choice of the
H0 Hamiltonian so that its Kohn-Sham eigenvalues εi are
as close as possible to the quasiparticle energies Ei. To
do this, a hermitian but non-local exchange correlation
potential, specified by its matrix in the basis of the H0

eigenstates,[
V Σ
xc

]
ij

=
1

2
Re[Σij(Ei) + Σij(Ej)], (1)

is used in H0. Here, Σ(ω) is the energy dependent self-
energy calculated from G0(ω), the one-electron Green’s
function corresponding to H0, in the single-shot GW ap-
proximation: Σ = iG0W0. Starting from an LDA H0, Σ
is calculated, V Σ

xc−V LDAxc is added to H0, a new G0 calcu-
lated and so on till self-consistency. The reasons behind
this approach and differences from fully self-consistent
scGW are discussed in Refs. 4, 8, and 10.

For tetrahedral semiconductors, this approach pro-
vides systematically a ∼20 % overestimate of the gap
due to the underestimate of the dielectric screening in
the random phase approximation (RPA) which does not
include electron-hole effects and thus misses ladder di-
agrams in the evaluation of the irreducible polariza-
tion propagator Π0 = −iG0 × G0, which determines W
through W = (1−vΠ0)−1v, where v is the bare Coulomb
interaction and a simplified symbolic operator notation
is used. This has led to the adoption of a universal 0.8Σ
correction factor.9,14,15 This is illustrated in Fig. 1 which
shows the typical underestimate of screening by QSGW
to be 20 % as indicated by the dashed line. Although
it is not clear a priori that this also applies to oxides we
adopt a similar correction factor here.
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FIG. 1. QSGW (blue) and LDA (red) optical dielectric con-
stant ε∞ compared to experiment. Experimental data for
GW(T) is taken at room temperature; for GW(0) 0K data is
used. LDA data for NiO is not shown because it is off the
scale; similarly the narrow gap semiconductors InAs, GaSb,
InSb and Ge where the LDA gap is negative. The dotted
line would indicate perfect agreeement between calculation
and experiment, while the dashed line corresponds to 20 %
underestimate by the calculation.

It is interesting that ε∞ predicted by the LDA is in
sometimes better agreement with experiment. This can
be attributed to a fortutitous cancellation of errors: miss-
ing ladder diagrams tend to cause ε∞ to be underesti-
mated, while the LDA’s gap underestimate contributes
an error of the opposite sign. There is no universal pat-
tern, however, as is already apparent in the data shown
in Fig. 1. Where gap errors are severe the LDA severely
overestimates the ε∞. For example in NiO, the εLDA

∞ >30.
Further justification for the 0.8Σ correction factor can

be obtained from the work of Shishkin, Marsman and
Kresse (SMK)13 and Wei and Pasquarello (WP),11 who
added an exchange-correlation kernel to the screening of
the polarization function Π̃ = [1−(v+fxc)Π

0]−1 using the
nanoquanta kernel or a bootstrap kernel respectively. We
will refer to their approach as QSGW̃ . Although these
kernels primarily address the q → 0 and static (ω = 0)
behavior and might thus not capture the full extent of
the electron-hole effects on renormalizing the screening
in W , and have received some critical discussions,16 it
is useful in the present context to analyze how much
they affect the gaps for a variety of materials. Analyzing
the data in Table I in WP, part of which is reproduced
here in Table I with additional analysis, we find that
[Eg(QSGW̃ ) − Eg(LDA)]/[Eg(QSGW ) − Eg(LDA)] has
an average value of about 0.76 with standard deviation of
0.04 with the largest deviation for NiO, where it is 0.85
and ZnO, 0.68. ZnO, is a notably difficult material to
converge and SMK’s values for the QSGW and QSGW̃
gaps would give 0.77. NiO is a well-known strongly corre-
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TABLE I. LDA, QSGW and QSGW̃ gaps, gap corrections and their ratios from Ref. 11, scGW+vertex from Ref. 12. B and
D refer to two different vertex correction schemes, see text.

Eg ∆Eg Ratio Eg ∆Eg Ratio

LDA QSGW QSGW̃ QSGW -LDA QSGW̃ -LDA
∆EQSGW̃

g

∆E
QSGW
g

scGW B D scGW -LDA B-LDA D-LDA B D

MgO 4.65 9.29 8.30 4.64 3.65 0.79 9.31 8.24 7.96 4.66 3.59 3.31 0.77 0.71

NiO 1.05 4.97 4.40 3.92 3.35 0.85

TiO2 1.90 4.22 3.73 2.32 1.83 0.79

Cu2O 0.53 2.65 2.12 2.12 1.59 0.75

ZnO 0.85 4.61 3.42 3.76 2.57 0.68

C 4.22 6.4 5.9 2.18 1.68 0.77 6.15 5.8 5.73 1.93 1.58 1.51 0.82 0.78

SiC 1.39 2.9 2.52 1.51 1.13 0.77 2.89 2.52 2.42 1.50 1.13 1.03 0.75 0.69

GaAs 0.43 1.75 1.51 1.32 1.08 0.75 2.27 1.80 1.72 1.84 1.37 1.29 0.74 0.70

BN 4.53 7.51 6.67 2.98 2.14 0.74

LiCl 6.52 10.98 9.87 4.46 3.35 0.74

Si 0.57 1.47 1.3 0.9 0.73 0.76 1.55 1.32 1.26 0.98 0.75 0.69 0.77 0.70

LiFa 9.28 15.90 14.50 6.62 5.22 0.79 16.3 15.02 14.39 7.02 5.74 5.11 0.82 0.73

Ge 0.00 0.96 0.82 0.96 0.82 0.76

AlP 1.60 3.1 2.77 1.5 1.17 0.75 2.84 2.53 2.44 1.24 0.93 0.84 0.75 0.68

CdS 1.21 3.41 2.74 2.2 1.53 0.75

Average 0.76 0.78 0.72

Stdv 0.04 0.04 0.04

a From SMK13

lated material and a deviation here is not too unexpected.
We note that multiplying the self-energy operator Σ by
0.8 is not exactly the same as correcting the gap shift by
0.8. A slightly larger gap reduction typically occurs.

Very recently, Kutepov12,17 introduced a way to solve
Hedin’s full set of equations18,19 beyond the GW approx-
imation using systematic diagrammatic approximations
for the vertex function. First of all, his results show fully
self-consistent scGW results differ only slightly from the
QSGW results and tend to overestimate the band gaps
by a similar amount. Secondly, he used two different self-
consistency schemes which both introduce vertex correc-
tions both in G and Π. The results of his scheme B,
which in his notation only includes a first correction to
the vertex Γ1, are close to those of SMK and WP where
comparison for the same material is possible (Si, LiF,
GaAs, SiC, BN, MgO) while his most advanced scheme
including the full ΓGW vertex, give a somewhat larger
reduction of the gap. These are also shown in Table I.
Viewed as percentage of the scGW -GGA (or LDA) cor-
rection they give correction factors of about 0.78 and 0.72
respectively when averaged over various cases. As an ex-
ample for MgO, his scGW gap is 9.31 and his schemes
B and D give 8.24, 7.96 eV while WP ’s QSGW and
QSGW̃ give 9.29, 8.30 eV and SMK obtain 9.16 eV, 8.12
eV respectively. The scheme D agrees almost perfectly
with experiment when a lattice-polarization correction of
0.15 eV added to the experimental volume but the latter
may be somewhat underestimated.20 In any case, these

results also support that the electron-hole correction ef-
fects beyond RPA amount to about a 20 % reduction of
the QSGW gap correction beyond LDA or GGA.

Besides the electron-hole corrections discussed until
now, we also consider a lattice-polarization correction as
suggested by Botti and Marques (BM)21 and revisited re-
cently in Ref. 20. The idea here is that for strongly ionic
materials, with large LO-TO phonon splittings, the W in
the long-wave length limit W (q → 0, ω) should include
the effects of the ionic displacements on the macroscopic
dielectric constant. The macroscopic dielectric constant
enters the calculation of Σ in the special treatment of the
q→ 0 region in the convolution integral over k-space:

Σcnm(k, ω) =
i

2π

∫
dω′

BZ∑
q

all∑
n′

Gn′n′(k− q, ω − ω′)

∑
µν

W c
µν(q, ω′)e−iδω

′

〈ψkn|ψk−qn′Eq
µ〉〈Eq

νψk−qn′ |ψkm〉 (2)

Here, a two-particle mixed product interstitial-plane-
wave basis set Eν diagonalizing the bare Coulomb inter-
action matrix is used4,22 and W c is the correlation part of
W , subtracting the bare exchange. The need for a special
treatment of the q→ 0 region arises from the integrable
divergence of the Coulomb interaction (∝ 1/q2) and is
here treated using the modified offset-Γ method,23 which
in turn is closely related to the analytic k · p scheme of
Friedrich et al.22 This involves the macroscopic dielectric
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tensor L(ω), in their notation eTkL(ω)ek. The projection
along unit vectors ek takes care of the non-analytic (ori-
entation dependent) nature of the k → 0 limit and fully
takes into account any possible anisotropies depending
on the crystal structure. It is this macroscopic dielectric
tensor, usually written ε(ω) which needs to be modified
to take into account the lattice polarization effect. This
is most easily done by means of a Lyddane-Sachs-Teller
factor:

εαtot(q→ 0, ω)

εαel(q→ 0, ω)
=
∏
m

(ωαLOm)
2 − ω2

(ωTOm)
2 − (ω + i0+)2

. (3)

where the superscript α denotes a projection direction of
the tensor, (εα = eTαεeα). It is clear from this expression
that the correction goes to zero for ω � ωL. In practice
we only include it for ω = 0 to avoid the necessity for a
careful integration mesh right near the phonon frequency
poles. As discussed in Ref. 20 the BM approach gives
the long-range or Fröhlich contribution to the Fan-part of
the zero-point motion electron-phonon correction of the
gap. The q-point integration mesh that needs to be used
is a subtle issue discussed in Lambrecht et al.20. The
strength of this contribution, applied only at q = 0 for
convenience, can be estimated from the polaron length
scale, aP =

√
~/2m∗ωL with m∗ the band-edge effective

mass and ωL the relevant LO-phonon frequency. We will
discuss later how to apply this in the present case with
multiple phonons and a degenerate VBM not occurring
at Γ. The polaronic point of view allows us to make an
independent estimate of the corresponding gap reduction.

IV. COMPUTATIONAL DETAILS

We employ a generalized FP-LMTO method1,2 as im-
plemented in the Questaal package.24 The basis set is
specified by two sets of parameters, the smoothing radii
Rsm and decay lengths (κ) of smoothed Hankel function
envelope functions.25 For SrTiO3 we include (spdf , spd)
for Sr, (spd, spd) for Ti and (spd,sp) for O atoms respec-
tively. These indicate the angular momenta included for
each κ. The envelope functions are augmented inside the
spheres in terms of solutions of the Schrödinger equation
and their energy derivative up to an augmentation cut-
off of lmax = 4. In addition, calculations are made with
and without the 4p (3p) local orbitals inside the spheres
for Sr and (Ti).

The Brillouin zone integration k-point convergence
and other convergence parameters of the method were
carefully tested for cubic SrTiO3 and similar criteria were
adopted for the tetragonal and orthorhombic phases. We
also tested result with a larger k-point mesh and found
the band gap is converged within 0.05 eV. Specifically,
we used a 4×4×4 un-shifted mesh for the Brillouin zone
sampling, along with the tetrahedron method for the cu-
bic cases in the LDA self-consistent charge convergence
and for the calculation of the Σ in GW . For the tetrag-
onal phase, the unit cell is larger along the c-direction

TABLE II. Experimental lattice constants (except for or-
thorhombic structure) in Å and Wyckoff position of atoms
SrTiO3 in various structures for cubic and tetragonal (c/a =
1.414 and w=0.241.

Symmetry Lattice constant Wyckoff position

Sr(0,0,0)⇒ 1a

Cubic a=3.905a Ti(0.5,0.5,0.5)⇒ 1b

O(0.5,0.5,0.0)⇒ 3c

Sr(0,0.5,0.25)⇒ 4b

Tetragonal a=5.507b, c=7.796 Ti(0,0,0)⇒ 4c

AFD O(0,0,0.25)⇒ 4a

(w,0.5+w,0)⇒ 8h

Orthorhombic a=3.01 Sr(0,0.2906,0.25)⇒ 4c

post-perovskite b= 12.77 Ti(0,0,0)⇒ 4a

CaIrO3 c= 5.87 O(0,0.4939,0.25)⇒ 4c

O(0,0.1391,0.999)⇒ 8f

a Expt. A. Yu. Abramov and et al.28

b Expt. by W. Jauch and et al.29

than in-plane by a factor
√

2. Thus, we use accordingly
smaller number of k-points, 4× 4× 3 for both LDA and
QSGW calculations.

For the self-consistency cycle, the charge density and
the total energy are converged within the tolerance of
10−5 e/a3

0 and 10−5 Ry respectively. For QSGW , after
several convergence test calculations, we settled the cut-
off above which the self-energy matrix is approximated
by an average diagonal value, Σcut= 3 Ry, including self-
energy calculations up to 3.5 Ryd, the interstitial plane
wave cut-off energy for basis functions Ecut(ψG)=2.6 Ry
and for the auxiliary basis Ecut(ψcoul)=2.8 Ry respec-
tively. In QSGW , the self-consistent iteration was car-
ried until the change in Σ was less than 10−4 Ry.

V. CRYSTAL STRUCTURES

We consider the cubic and tetragonal anti-ferro-
electrically distorted (AFD) I4/mcm structure occurring
at low temperature. In addition we consider the layered
orthorhombic CaIrO3 structure, suggested to occur at
high pressures by Cabaret et al.26 and also known as
the post-perovskite structure. Although we will show
elsewhere27 that this structure is unlikely to occur be-
cause it has a higher equilibrium lattice volume and much
higher total energy, it is of interest to see how the GW
gap corrections compare in such different structures. Fig.
2 shows the crystal structures for cubic, tetragonal and
orthorhombic from left to right respectively. Table II
summaries the structural parameters used in the calcula-
tions, such as the lattice constants and Wyckoff positions.
The relaxed lattice constant for the cubic phase in LDA
is 3.86 Å which is only 1 % underestimated relative to
the experiment.
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a) b) c)

FIG. 2. Crystal structures of SrTiO3 a) cubic, b) tetragonal I4/mcm, and c) layered orthorhombic CaIrO3 view from the
z-axis.

VI. RESULTS

A. Cubic STO

In Fig. 3a we show the band structure of cubic SrTiO3

in the full QSGW approach compared with LDA. A few
states at Γ are symmetry labeled for later reference. In
Table III we summarize the gaps and various other band
structure parameters in different approximations. In Ta-
ble V we show how the different approximations affect
other band states relative to the VBM. This allows us to
assess to what extent the GW correction can be approx-
imated by a k and state independent scissor shift.

First, we see that our LDA gap agrees quite well with
other LDA (or GGA) calculations. Second we see that
the G0W0 gap is significantly lower than the QSGW gap.
Third, unlike the pseudopotential calculations reviewed
in Sec. II, the QSGW gap significantly overestimates
the gap. Even if we use the 0.8Σ approach, they are still
larger than experiment. It is only when we add both the
0.8Σ and lattice polarization correction, that we recover
the experimental values. We also note that the 0.8Σ ap-
proach actually reduces the QSGW-LDA indirect (direct)
gap shifts by about a factor 0.73 (0.74). In agreement
with other calculations and already correctly described
in LDA, the indirect R − Γ gap is about 0.4 eV lower
than the lowest direct Γ − Γ gap. The VBM between
R −M is very flat and in QSGW the actual VBM lies
actually in between R and M and is 0.09 eV above that
at R. Finally we see that the semi-core levels play a more
important role in QSGW than in LDA. Neglecting them,
the gap would be only 0.07 eV lower in LDA but is 0.5
eV lower in QSGW or still 0.2 eV lower in the final LST
and 0.8Σ corrected case.

B. Polaron estimates

Next, we discuss the lattice polarization correction to
the gap in detail. The zero-point motion correction con-

tains a contribution from the long-range Fröhlich type
of electron phonon coupling. The latter is arguably the
largest electron-phonon coupling correction for a strongly
ionic material with large LO-TO splitting because the
other electron-phonon coupling effects tend to be smaller
than 0.1 eV except for systems with all light atoms. To
estimate it we follow the approach of Nery and Allen.35

The main point is that the Fröhlich electron-phonon cou-
pling behaves as 1/q and hence near band edges where
the band difference En(k+ q)−En(k), which enters the
denominator in the Allen-Heine-Cardona expression for
the electron-phonon self-energy, gives a divergent contri-
bution. Nery and Allen showed how it can be integrated
analytically when a simple effective mass approximation
is used for the bands. The length scale for the polaron
effect is aP =

√
~/2m∗ωL and if we assume we need to

integrate the singular behavior only over a region in q-
space of size 1/aP as upper limit, then the polaron shift
of a band is given by20

∆En(k) = −αP~ωL/2

= − e2

4aP

(
1

ε∞
− 1

ε0

)
,

= − e2

4aP ε∞

(
1− ω2

T

ω2
L

)
. (4)

In other words it essentially the change in the Coulomb
interaction calculated at the polaron length scale due to
the change in screening from only electronic screening
to electron plus lattice screening. The extra factor 2
arises from the choice of cut-off in q-space and we have
written the change in macroscopic inverse dielectric con-
stants using the Lyddane-Sachs-Teller relation. In this
way, for a given LO-TO phonon pair, we have a separate
contribution from each phonon, since both aP and the
dielectric constant factor depend on the phonon consid-
ered. We can thus estimate the effect for each phonon
and add them, thereby generalizing Nery and Allen’s sim-
ple model to the case of multiple phonons. In SrTiO3,
there are three optically active phonons.
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TABLE III. Band gap in eV of cubic SrTiO3. Here no semi-core means Sr−4p and Ti−3p semi-core states are not included.

basis-sets k point LDA G0W0 QSGW 0.8Σ-QSGW QSGW+LP QSGW+LP+0.8Σ Expt.

with Sr4p,Ti3p Γ− Γ 2.15,2.24a,2.21b 4.1 4.83,3.76b5.42c 4.14 4.28 3.7 3.75d

no semi-core 2.08 3.85 4.31 3.8 3.83 3.5

with Sr4p,Ti3p R− Γ 1.74 3.65 4.34,5.07c,3.32d 3.64 3.78 3.2 3.25e,3.2f

no semi-coreg 1.65 3.37 3.82 3.3 3.35 3

with Sr4p,Ti3p Γ-VBM 1.74 3.52 4.25 3.52 3.69 3.15

a First principle calculation by Cai Meng-Qui et al.30,31

b Sponza et al.5
c Cappellini et al.7
d Hamann and Vanderbilt6

e Fundamental gap in the valence electron-loss spectroscopy32,33

f Fundamental absorption edge in reflectivity measurement of SrTiO3
34

g Without local orbital VBM is at R

TABLE IV. Polaron band shift estimates. The estimate in each row corresponds to a given LO-TO phonon pair. The final row
gives the sum of them. The masses are in units of free electron mass, the phonon frequencies in cm−1, the polaron lengths in
Bohr, the band shifts in meV.

mle mhe me mhh mlh mh ωL ωT aPe aPh ε∞ ∆Ec ∆Ev ∆Eg

0.33 2.65 1.10 5.08 0.67 2.14 795 547 11.19 8.03 5.52 58 81 134

0.33 2.65 1.10 5.08 0.67 2.14 474 170 14.49 10.40 5.52 74 103 177

0.33 2.65 1.10 5.08 0.67 2.14 171 91 24.12 17.32 5.52 37 51 88

Total 169 235 404

The second point is that this predicts a correction near
each band edge. The conduction band at Γ and the VBM
at R are both three-fold degenerate and anisotropic, so
to apply the theory in its simple form, we need to average
the effective masses in some way to extract the polaron
length scale. At both points we could exploit the cu-
bic symmetry to write a Kohn-Luttinger type of effective
Hamiltonian. In our previous work20 for simple di-atomic
cubic compounds, we just used an average of the heavy
and light masses in the cubic direction, according to the
corresponding band’s degeneracy. Following the same ap-
proach here, the band structure shows that it would be
appropriate to usemh = (mhh+2mlh)/3 for holes and the
same for the electrons, me = (mhe + 2mle)/3 where we
use the masses in the Γ−X and R−M directions, which
are both simple cubic x directions. Thus,we obtain sepa-
rate electron and hole polaron length scales aPe and aPh.
Since the latter only provide estimates of the q-space in-
tegration region, it is not too crucial how we perform the
average, although we recognize this is at present a limi-
tation of the approach. The VBM at R can be seen to
be rather flat and in fact in GW the maximum moves
away from R toward M . We use the masses extracted
from our QSGW bands without the lattice polarization
correction. The hole polaron length scale is significantly
shorter than for the electrons, predicting stronger pola-
ronic effects for holes. This agrees with the finding in
other work of self-trapped hole-polarons.36,37

The results of this approach and the corresponding pa-
rameters are summarized in Table IV. We can see that
the conduction band is predicted to shift less than the
valence band as expected and the total gap correction is
predicted to be 404 meV, which we really should round
off to 0.4 eV. The shortest polaron length scale corre-
sponds to holes for the largest phonon frequency and is
8 Bohr. This corresponds to a q-space region of about
1/6 of the Brillouin zone. Our estimate using the BM
approach in Table III used a 4 × 4 × 4 mesh and gives
a contribution to the zero-point motion or lattice po-
larization correction of −0.55 eV. This is already rather
close to the polaron estimate. With a 6 × 6 × 6 mesh
we obtain −0.25 eV. These bracket the polaron estimate
of Table IV. We can thus conservatively conclude that
the lattice polarization correction amounts to 0.3 ± 0.1
eV in good agreement between the Nery-Allen like esti-
mate (0.4) and the BM approach. When we add this to
the 0.8Σ result we obtain a gap of 3.24 eV for the in-
direct gap in excellent agreement with experiment. We
note that if we apply the lattice polarization correction
using the BM approach with a 4 × 4 × 4 mesh but then
apply the 0.8Σ correction, the LPC shift is also reduced
by 0.8, and becomes 0.4 eV. We can see that in this ap-
proach the correction is almost a constant shift and hence
the indirect gap correction is the same as the direct gap
correction. Because of the approximate nature of these
estimates, we have not separately evaluated the polaron
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FIG. 3. (Color-online) Band structure of a) cubic and
b)tetragonal SrTiO3 c) layered orthorhombic, LDA: blue
dashed and QSGW : red solid lines.

approach to the VBM at Γ which would give the direct
gap. In principle, the polaronic effect also should enhance
the band mass by a factor (1 + αP /6) but it is not clear
that the BM-method captures this more subtle effect. In
fact, we find the bands to shift almost rigidly as can be
seen in Fig. 4.
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FIG. 4. Comparison of the band structure of SrTiO3 in
QSGW (red dashed) and in QSGW with lattice polarization
correction using BM-approach with 4×4×4 mesh (blue solid).

C. Other band structure features

Turning to other band features than the gap, summa-
rized in Table V we see that Sr-4p states lie significantly
closer to the VBM than the Ti 3p semicore states and
hence play a more important role. We can see that the
shifts of these states are also sensitive to the 0.8Σ and
LPC corrections and amount to about 2 eV for Sr-4p and
4 eV for Ti 3p. As expected, the farther away from the
VBM, the larger is the quasiparticle self-energy shift. In
the conduction band we see that the higher lying Γ12

state has almost the same shift from LDA (about 1.4
eV) as the Γ25′ CBM. In the valence band the shifts are
smaller and progressively larger as we go deeper in the
VBM.

D. Tetragonal structure

The band structure for the tetragonal structure is
shown in Fig. 3b. In the tetragonal material we see a
similar large shift of the band gap by GW . To under-
stand this band structure, we note that the tetragonal
unit cell is rotated by 45◦ and has at =

√
2ac as in-plane

lattice constant. Thus the Brillouin zone (BZ) of the cu-
bic structure is folded into a smaller BZ with the Γ−M
of the tetragonal BZ corresponding to half the Γ−X of
the cubic BZ. The high symmetry points correspond to
M = (1/2, 1/2, 0) and X = (1/2, 0, 0) with respect to
their respective reciprocal lattice vectors. Similarly the
Γ−X of the tetragonal BZ is half the Γ−M of the cubic
BZ. One can clearly see the folding in half of the bands
with additional small gaps opening due to the breaking of
the symmetry by the slight rotation of the octahedra. We
can see that VBM which in the cubic case and in QSGW
occurs between M − R (R = (1/2, 1/2, 1/2)), where the
band dispersion is very flat, is folded on to the tetragonal
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TABLE V. Various band differences: specific states (symmetry labeling as in Fig. 3a) in the conduction band relative to the
CBM, and in the upper valence band relative to the VBM. The position of the semicore states Sr4p, Ti3p, are also with respect
to the VBM at R.

Γ25
′ -CBM Γ12-CBM Γ15-VBM Γ25-VBM Γ25-VBM Sr4p states Ti3p states

LDA 1.74 4.29 -0.41 -1.12 -2.91 -14.66 -32.55

G0W0 3.53 6.29 -0.58 -1.37 -3.49 -17.19 -36.48

QSGW 4.34 6.98 -0.49 -1.39 -3.67 -17.51 -37.38

0.8Σ-QSGW 3.54 6.17 -0.49 -1.32 -3.64 -16.9 -36.74

QSGW+LP 3.78 6.4 -0.49 -1.37 -3.62 -17.51 -37

QSGW+LP+0.8Σ 3.2 5.71 -0.49 -1.31 -3.5 -16.9 -36.4

TABLE VI. Band gap of tetragonal SrTiO3 in eV at Γ− Γ.

basis-sets LDA QSGW QSGW QSGW Ref.

+LPC 0.8Σ+LPC

with Sr4p,Ti3p 1.76 4.1 3.88 3.27 4.03a

no semi-core 1.72 3.7 3.47 3.04

a ,b By Heifets and et al.38 using a hybrid DFT-Hartree-Fock
(HF) approach

BZ Γ point and the gap becomes direct.

E. Hypothetical layered orthorhombic structure

Although, the CaIrO3 structure, proposed26 for
SrTiO3 as a potential high-pressure structure, can be
shown to be unstable,27 it is of interest to see how the
GW gap correction changes with such a large change in
structure. This structure has edge-sharing octahedra in
layers separated by Sr, rather than corner sharing octa-
hedra. In the LDA, the band gap becomes zero as can
be seen in Fig. 3c. The very different band dispersion
in this case results from the direct Ti-d to Ti-d inter-
actions between much closer Ti atoms in the layer. In
the QSGW method the gap becomes 2.32 eV which is
not too different from the gap correction 2.68 eV in cu-
bic perovskite. The gap correction is found to be almost
the same as in the cubic or tetragonal structures. Similar
screening reduction or 0.8Σ corrections and lattice polar-
ization corrections should apply here but are not further
pursued at this point.

VII. CONCLUSIONS

In this paper we reviewed the status of the QSGW
method for a prototypical complex transition metal ox-
ide like SrTiO3 in the perovskite structure. We found
that all-electron QSGW results obtained by means of
the FP-LMTO implementation give a significant over-
estimate of the gap compared to experiment in contrast
to PAW or pseudopotential based GW approaches. This

indicates a compensation of errors in the latter. We base
this on the observation that for a large family of mate-
rials, the under-screening of W in the RPA amounts to
about 20 % and can hence be accommodated by using
the 0.8Σ approach. This evidence is based both on the
comparison of dielectric constants in QSGW with experi-
ment and on recent calculations11,13 which go beyond the
RPA by including an exchange correlation kernel in the
calculation of W or adding vertex corrections directly12

and it is found to apply to both tetrahedrally bonded
semiconductors and various oxides and ionic compounds.
The second important correction to the gap is the lattice
polarization correction. This is part of the zero-point
motion correction due to electron-phonon coupling and
more specifically is its dominant contribution in strongly
ionic materials arising from the long-range Fröhlich part
of the electron-phonon coupling. Two independent esti-
mates of this effect were made: one based on the polaron
theory and one on the Botti-Marques approach of multi-
plying the macroscopic dielectric constant at q = 0 by a
Lyddane-Sachs-Teller factor along with a suitable q-mesh
sampling based itself on the polaron length scale which
determines the strength of the effect. The two estimates
are found to be in good agreement with each other. We
find that both the electron-hole interaction effects which
reduce Σ by about 20 % and the lattice-polarization cor-
rections are required to obtain good agreement with ex-
perimental gaps in cubic perovskite SrTiO3. As for the
structural dependence of the QSGW corrections, we find
that the gap correction in tetragonal STO is very close
to that in cubic STO and the bands are essentially folded
according to the rotation of the octahedra, which leads to
a doubling of the cell and rotation of the BZ by 45◦. This
happens to fold the R point of the BZ onto the Γ-point
an hence the indirect lowest gap becomes then direct.
Due to the similarity in band states, we expect it to be
pseudo-direct in the sense that no strongly optical tran-
sitions will correspond to this direct gap. Even for a very
different hypothetical structure with edge-sharing octa-
hedra, we find very similar gap corrections by QSGW ,
which shows that the gap corrections are rather insensi-
tive to structure.
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5 L. Sponza, V. Véniard, F. Sottile, C. Giorgetti, and
L. Reining, Phys. Rev. B 87, 235102 (2013).

6 D. R. Hamann and D. Vanderbilt, Phys. Rev. B 79, 045109
(2009).

7 G. Cappellini, S. Bouette-Russo, B. Amadon, C. Noguera,
and F. Finocchi, Journal of Physics: Condensed Matter
12, 3671 (2000).

8 T. Kotani, M. van Schilfgaarde, S. V. Faleev, and A. Chan-
tis, Journal of Physics: Condensed Matter 19, 365236
(2007).

9 D. Deguchi, K. Sato, H. Kino, and T. Kotani, Jap. J.
Appl. Phys. 55, 051201 (2016).

10 S. Ismail-Beigi, Journal of Physics: Condensed Matter 29,
385501 (2017).

11 W. Chen and A. Pasquarello, Phys. Rev. B 92, 041115
(2015).

12 A. L. Kutepov, Phys. Rev. B 95, 195120 (2017).
13 M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev.

Lett. 99, 246403 (2007).
14 A. N. Chantis, M. van Schilfgaarde, and T. Kotani, Phys.

Rev. Lett. 96, 086405 (2006).
15 A. N. Chantis, M. Cardona, N. E. Christensen, D. L.

Smith, M. van Schilfgaarde, T. Kotani, A. Svane, and
R. C. Albers, Phys. Rev. B 78, 075208 (2008).

16 S. Rigamonti, S. Botti, V. Veniard, C. Draxl, L. Reining,
and F. Sottile, Phys. Rev. Lett. 114, 146402 (2015).

17 A. L. Kutepov, Phys. Rev. B 94, 155101 (2016).
18 L. Hedin, Phys. Rev. 139, A796 (1965).
19 L. Hedin and S. Lundqvist, in Solid State Physics, Ad-

vanced in Research and Applications, Vol. 23, edited by
F. Seitz, D. Turnbull, and H. Ehrenreich (Academic Press,

New York, 1969) pp. 1–181.
20 W. R. L. Lambrecht, C. Bhandari, and M. van Schilf-

gaarde, Phys. Rev. Materials 1, 043802 (2017).
21 S. Botti and M. A. L. Marques, Phys. Rev. Lett. 110,

226404 (2013).
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