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Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi
energy in monolayered ZrB2 is presented. Two-dimensional ZrB2 is a mechanically stable d- and p-
orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry
points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles
calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second
cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with
external physical stimuli, along with the relativistic effect of SOC, is able to remove selectively the
Dirac cones. A rational explanation in terms of d- and p-orbital mixing is provided to elucidate the
origin of the infrequent amount of Dirac cones in a flat structure. The versatility of transition metal
d-orbitals combined with the honeycomb lattice provided by the B atoms yields novel features never
observed in a two-dimensional material.

I. INTRODUCTION

In the search of the materials of tomorrow’s technol-
ogy, graphene was considered early on as a promising can-
didate for development and innovation1. The combina-
tion of an electronic band structure hosting the so-called
massless Dirac fermions, together with a weak spin-orbit
coupling (SOC), enable electrons to travel at relativis-
tic speed over very long distances at room temperature.
Governed by the Dirac equation, Dirac fermions emerge
at isolated points in the irreducible Brillouin zone (iBZ),
where an upper band touches a lower one. In undoped
graphene, two Dirac cones are centered around the two
non-equivalent K and K’ points with a perfect electron-
hole symmetry at the Fermi level. Each Dirac cone is
therefore three-fold degenerate since they are shared by
three contiguous BZ, namely a BZ contains the equiva-
lent to two inequivalent cones.

Experimental results confirmed the ability of other
two-dimensional (2D) group IV materials (silicene2,3,
germanene4,5, stanene6) for hosting Dirac states, and
theoretical predictions suggested new compounds with
similar properties (graphynes7, 8-pmmn borophene8). In
most cases, 2D honeycombed lattices with Dirac cones
are composed of a single type of element. Although bi-
nary compositions usually yield gapped electronic struc-
tures (BN9, MoS2

10), branching away from the single-
element material and search for multi-atom compounds
may yield similar benefits at an effective control cost.

More recently, the fabrication of a diverse array of 2D
B monolayers has captivated a growing community of sci-
entific experts focusing on their large list of exceptional
physical properties11,12. B-based materials with addi-
tional electron-rich elements are potential candidates to
expand the number of compounds with similar proper-
ties to the group IV materials. The discovery of high Tc

superconductivity in MgB2
13 caused an immediate in-

terest to find B-based superconductors. The viability of
this compound, similar to other planar diborides14 such

as B2O and B2Be, relies in that it is unsymmetrical iso-
electronic to C, with four valence electrons per atom in
average. B-based compounds analog to group IV can be
extended to larger principal quantum number elements to
include the richness of d-orbitals. Thus, first-principles
calculations predicted the existence of massless fermions
in monolayered TiB2

15. Polymers containing both boron
and transition metals atoms have been prepared, prov-
ing a high degree of delocalization via boron and metal
atoms16.

FIG. 1. Top a) and side view of a ball-and-stick representation
of the hexagonal cell of monolayered ZrB2. Zr atoms sit on
the center of the hexagons of the small B atom honeycomb
lattice . The hexagonal unit cell containing two atoms of B
and one atom of Zr is shown in a). c) Phonon spectrum of
monolayered ZrB2

In this paper the potential scope of diborides is ex-
panded by describing the electronic properties of metal
diboride monolayered ZrB2. Free-standing ZrB2 is tri-
angular borophene with Zr atoms in substitutional dop-
ing, and is predicted to exhibit 12 non-degenerate Dirac
cones in the vicinity of Fermi level with a small com-
pensated electron-hole pocket. This material features an
infrequent property in a hexagonal lattice such as the dis-
placement of the Dirac cones to lines joining two high-
symmetry points of the iBZ. Both hexagonal β-graphyne7
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and TiB2
15 have been reported to exhibit six low sym-

metry Dirac points in the first BZ, and the use of Rashba
SOC has been proposed17 for splitting them into 12. In-
stead of resorting to the spin degree of freedom, we pro-
pose the interplay of p and d orbitals to generate six
groups of two inequivalent Dirac points in the low energy
spectrum of a P6mm space group material. Zr atom d-
orbitals yield the formation of the Dirac cones with some
contribution from the B pz orbitals.
Contrary to the current trend of identifying new ma-

terials with improved functionalities by means of high-
throughput screening of thousands of compounds, here
we present a one-at-a-time material study to provide a
detailed analysis of a nanostructure designed upon ex-
amination of the physico-chemical properties of its con-
stituents.

II. COMPUTATIONAL METHODS

Calculations were performed with the SIESTA code.
A double-ζ polarized basis set was used and the radial
extension of the orbitals had a finite range with a ki-
netic energy cutoff of 50 meV. Electron exchange and
correlation was described within the Perdew, Burke, and
Ernzerhof18 scheme of the generalized gradient approx-
imation. The integration in the k-space was performed
using a 64×64×1 Monkhorst-Pack19 k-point mesh cen-
tered at Γ-point. To determine accurately the location of
the Fermi level, a set of 320×320×1 k-points were used in
a single-energy point calculation. Lattice constants and
atomic coordinates were fully relaxed until the residual
forces were smaller than 10−3 eV/Å. Phonon diagram
dispersion was calculated with the PHONOPY code20 using
the force-constant method. Single-energy point SOC cal-
culations were carried out with Elk code21 with similar
parameters.

III. RESULTS AND DISCUSSION

In 2D ZrB2, the honeycomb lattice of B atoms exhibits
a B-B distance of 1.85Å, and the Zr atoms sit over the
hexagon hole at 1.48Å (see Figure 1). The lattice pa-
rameter is 3.17Å. With its vacant pz orbital, three-fold
coordinated B is an electron deficient atom and a strong
p-electron acceptor. It is worth noting that vertical AA
stacking of single hexagonal layers yields bulk ZrB2, a ce-
ramic material with a hexagonal covalent structure pos-
sessing good thermal and electrical conductivities. The
crystal structure belongs to the space group P6/mmm,
where the Zr atoms sit in between two hexagons of
two parallel B honeycombed latticesices. Temperature
dependent resistivity and high frequency susceptibility
measurements in ZrB2 revealed a superconducting tran-
sition at 5.5 K22. Thin films of ZrB2 can be grown by
chemical vapour epitaxy on Si wafers, to additionally pro-
vide an electrically conductive substrate for GaN23, or

the synthesis of monolayered materials24.

FIG. 2. Left panel: Electronic band diagram in the irreducible
Brillouin zone of free-standing monolayered ZrB2. Right pan-
els: color-resolved projected density of states onto each Zr
d-orbitals and B pz orbital.

Isolating a single layer reduces the symmetry to
P6/mm, and the BZ of interest is the area delimited
by the Γ, M , and K points in the hexagonal recipro-
cal lattice. The monolayer (see unit cell in Figure 1b) is
dynamically stable as verified by the absence of negative
frequencies in the phonon spectrum shown in Figure 1c.
Only one of the acoustic modes undergoes a tiny devia-
tion towards negative frequencies close to the Γ point. 9
modes are extended over a frequency range of ∼21 THz.
The in-plane acoustic branches are characterized by lin-
ear dispersions at low momentum near the center of the
BZ. The out-of-plane phonon branches exhibit non-linear
energy dispersions at the zone edge. While most acous-
tic modes exhibit ∼6 eV dispersive branches in the lower
quarter of the spectrum, a frequency gap separates opti-
cal modes in the upper half, which are equally dispersive
spanning altogether a range of ∼10 THz.
The band structure of the hexagonal 2D lattice is dis-

played in the left panel of Figure 2. Two bands form a
Dirac cone in the Γ−K line slightly above the Fermi level
creating a small electron pocket. To compensate the lack
of electrons, a similar hole pocket is formed upon two
bands creating a second Dirac cone slightly below the
Fermi energy level in the M − Γ line.
In the hexagonal pyramid configuration, monolayered

ZrB2 belong to the C6v point group. According to
this symmetry representation, the five Zr d-orbitals are
grouped in three groups, where two in-plane orbitals are
degenerate (e2), two out-of-plane orbitals also form a de-
generate pair (e1), and dz2 remains non-degenerate (a1).
To corroborate this picture and elucidate the origin of
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FIG. 3. Left panel: Electronic band diagram of the trian-
gular lattice composed of uniquely the Zr atoms of the ZrB2

lattice at fixed positions. Color-resolved panels correspond to
the projected density of states of the d-orbitals, and allow to
analyze the contribution of the d-orbitals separately to each
electronic state. Also the pz orbital of B atoms in an all-B
honeycomb lattice is shown.

each Dirac cone, we resort to color-resolved projected
density of state (PDoS) diagrams, which allow to visual-
ize the independent contribution of each atomic orbital
to the electronic states. At K point two band-crossing
occur with a difference in energy of 1.29 eV. In the va-
lence band, the dxy and the dx2

−y2 orbitals intersect in a
two-fold degenerate point (e2), while a Dirac cone at 0.87
eV in the conduction band is created upon the dyz and
the dxz Zr orbitals meet in a degenerate pair (e1). The
d2
z
orbital stands alone at 3.13 eV (a1). Note that the in-

tensity of the lines depends on the contribution but also
on the normalization factor and, although some states
may appear weakly represented, the presence with light
colors at the Fermi level guarantees their contribution to
the Dirac cones.
The PDoS show evidence that the Γ−K Dirac cone at

the Fermi energy is created predominantly by the combi-
nation of Zr d-orbitals, whereas in the M − Γ cone B pz
orbitals have a greater contribution. The former derives
from the dxy, dxz, and dyz orbitals, while the latter is
mainly composed of dxz and dyz states hybridized with
the B atom pz orbital. A reminiscence of the boron hon-
eycomb lattice is evident in the contribution of the B
pz orbitals to the Dirac cone at the K point located at
∼0.9 eV, in whose formation the dyz for the upper cone
and the dxz for the lower one also participate. The two
dz2 and dx2

−y2 orbitals form anti-bonding states at high
energy levels and do not contribute in any case to the
formation of any Dirac cone. However, and as discussed
below in more detail, although B atoms are crucial in the

formation of the Dirac points, each cone presents differ-
ent sensitivity to hybridization changes.

FIG. 4. Constant-energy contour plots of the conduction
and valence bands of ZrB2 in the first (enclosed by dashed
hexagon) and neighbouring Brillouin zones (BZ). Smaller
plots correspond to the same type of diagram of graphene
electronic bands. Γ, M, and K points delimit the irreducible
BZ. Circles point out the location of the ZrB2 Dirac points.
By applying the C6v group symmetry operations, a total of
12 Dirac cones are obtained, in contrast to the three groups
of two obtained in graphene at K and K

′ points.

To further support this picture of d- and p-hybridized
derived Dirac states, the band diagram of the triangular
lattice formed uniquely by Zr atoms at fixed positions,
and with all B atoms removed, is plotted in Figure 3. A
single panel showing the band developed by the lateral
superposition of B atom pz orbitals with no Zr atoms
sitting on the hexagons is included. Interestingly, bands
are shifted in energy and conserve the main features of
the complete lattice, except the Dirac cones at the high-
symmetry lines. The same group of four bands cross-
ing at the K point are distinguishable although within a
much reduced energy range of 0.16 eV.
In the M − Γ line, the band intersection observed at

0.17 eV is composed of the dxz orbital for the running
up band, and of the dxy and dz2 orbitals at the bending
region of the running low band. Upon introducing the B
atoms, pz orbitals mix with low-energy d orbitals in this
region of the BZ and allow the formation of the Dirac
cone. Similarly, in the first half of the Γ−K line, there
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is no running up band that may yield the Dirac cone ob-
served in the diborade lattice, other than the dz2 derived
band which is known from the diboride diagram to not
mix with any other state. Furthermore, the dxz state
is developed from 0.43 eV down to -0.37 eV across that
region, contrary to the observation in Figure 2, where it
is developed from Γ to K with positive gradient. Such a
change in the slope of the band can be ascribed to the
presence of the B atom pz orbitals when they enter the
formation of the diboride lattice, which also causes the
dz2 and dx2

−y2 orbital derived bands to shift up in energy.
This proves that the Zr-B orbitals interplay is crucial in
the formation and strength of both Dirac cones, allow-
ing the Zr-B hybridization to locate both Dirac points
at the Fermi level, and the electronic delocalization over
the complete unit cell.

Applying the symmetry operations of the C6v point
group to the iBZ, two dimensional ZrB2 exhibits 12 in-
equivalent Dirac cones, which is a remarkable difference
with respect to any previously described hexagonal mate-
rial. This is displayed in the contour line plots of both the
valence and conduction band shown in Figure 4, where
the same bands of graphene have been included for com-
parison. Indeed, rotating the iBZ six times to complete
the whole BZ of the hexagonal lattice (pointed out by
the dashed hexagons), six groups of two Dirac points are
reproduced. Note that applying the same operations on
the graphene BZ yields three groups of a pair of K and
K’ points hosting the corresponding cones.

Due to the large size of the Zr atom, SOC is susceptible
to introduce some changes in the electronic states. SOC
was checked and the resulting band diagram is shown
in Figure 5b. meV large band gaps are noticeable at
all band crossing, while the rest of the electronic states
barely differs from the non-relativistic band structure. It
is worth noting that electron-hole pockets are preserved
and the band splitting causes a distortion of the Dirac
cone in the Γ − K line that closes effectively the small
gap by overlapping the bands, as shown in detail in the
zoom-in inset.

Despite both types of Dirac cones derive from the Zr
d-orbitals, the stronger hybridization with the B atoms
exhibited by the cone on the M − Γ line makes it very
sensitive to relative distance variations. External tensile
strain expands the lattice and the Zr atom adjusts its
vertical distance to the honeycomb lattice, and is able
to vanish the Dirac point. Figure 5 shows the evolution
of the ZrB2 electronic states with SOC under increasing
tensile strain. The vertical distance to the center of the
hexagon is progressively reduced from the original 1.48Å
down to 1.44, 1.41, 1.37, and 1.33Å for an enlargement of
the hexagonal unit vectors from 1% to 2%, 3% , and 4%
respectively. Although the hexagons expand, providing
more room to accommodate the Zr atom, the Zr-B bond
length is barely modified. The main effect leading to the
Dirac cone vanishing can be ascribed to the difference in
the pz - d orbital hybridization as a result of the bonding
angle modification. These structural changes, that leave

FIG. 5. Non-relativistic band diagram in a) is shown for com-
parison with the spin-orbit coupling calculation in b). c) and
d) shows the evolution of the monolayered ZrB2 electronic
states under tensile strain. Increments are shown in hexago-
nal lattice parameter percentage. Zr atom vertical position
changes as the honeycomb lattice expands, and the Dirac
point in the M − Γ line vanishes. The superposition of elec-
tronic bands upon SOC-induced band splitting prevents from
the creation of a gap in the Γ → K line.

the triangular geometry of the Zr atom intact, preserve
the Zr-derived Dirac cone in the Γ − K line. Although
the cone is created with the participation of the B atoms
that turn over the slope of the dxz derived band, it is less
sensitive to hybridization effects. With no other metal-
lic band to compensate the hole pocket, the Dirac point
shifts to exactly the Fermi energy. Similarly, the cone at
the K point remains but is shifted in energy.

A distinctive feature of graphene low-energy spectrum
is that the Dirac cones at K points are protected by sym-
metry and from any perturbation that does not violate
parity and time reversal symmetries. The metallic char-
acter of graphene electronic structure is thus insensitive
to deformations such as external stress. On the contrary,
the hexagonal network of ZrB2 is highly sensitive to shear
stress which reduces the symmetry of the unit cell and
causes the vanishing of either the Γ−K or M −Γ Dirac
points, depending on the direction of the external force.
Figure 6a displays the shape of the BZ after symmetry
reduction. The modification of the unit cell is realized
by modifying one unit cell vector component at a time,
as shown in Figure 6b, where the angle between in-plane
unit cell vectors is increased. Figure 6c shows the elec-
tronic band diagram of ZrB2 obtained upon applying an
external force acting parallel to the x-axis that subtract
0.2 Å to the x-component of the ay unit cell vector. A
Dirac cone in the Γ−M line is preserved despite the sym-
metry reduction, while the Dirac point in the Γ−M ′ line
vanishes. Band degeneracy at theK andK ′ points is also
removed. Similarly, decreasing by 0.3 Å the y-component
of the ax vector, a force acting along the y-axis is mim-
icked. As a result, only the Dirac cone in the Γ−K line
remains unaffected.
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FIG. 6. Dirac cones of monolayered ZrB2 vanish selectively
depending on the applied shear stress direction. a) shows the
BZ obtained modifying the unit cell vectors as indicated in
b). c) displays the non-relativistic band diagram obtained
applying a force along the x-axis that modifies the ay vector
x-component in -0.2 Å. Similarly, d) is obtained modifying
the ax vector y-component in -0.3 Å.

IV. CONCLUSIONS

The existence of twelve inequivalent Dirac cones in the
low spectrum diagram of a hexagonal lattice can be re-
alized, without resorting to Rashba SOC or twisted bi-
layer of triangular lattices17. Owing to the formation
of monolayered ZrB2 Dirac cones in the lines joining
high symmetry points, the cones are not shared with
any neighbouring BZ. The twelve Dirac cones are divided
in six groups of two non-symmetry-related cones with a
slight electron-pocket compensation. First-principles cal-
culations allowed to unveil the separate contribution of
each d-orbital of the transition metal atom, and their hy-
bridization with the B atomic orbitals. A color-scheme
enabled to assign the formation of the cones to the Zr
dxy, dxz, and dyz orbitals with a contribution from B pz
orbitals as a result of atomic orbital hybridization.

Dirac cones are modified under external physical stim-
uli differently as a result of the unidentical participation

of the B pz orbitals in the formation of the cones. Owing
to the strong Zr-B atoms hybridization, small changes
in the bonding angle lead to one cone vanishing. Ignor-
ing SOC, internal symmetry breaking leads to a selec-
tive Dirac cone disruption at Fermi level depending on
the direction of applied distortion, showing that not all
cones are protected by symmetry. SOC induces complete
Dirac point vanishing depending on the direction of the
external force. These findings suggest that the interplay
between d and p orbitals of different atoms, together with
the relativistic effect of SOC, creates an environment that
offers new avenues to electronics, and may provide a plat-
form that outdoes the capabilities of other 2D materials
with Dirac states.
It is worth mentioning that one key issue of monolay-

ered ZrB22 with a view to its implementation in elec-
tronic applications is the robustness of the electronic
properties against the disorder introduced by intrinsic or
extrinsic defects, such as atomic vacancies and external
functional groups. Both short and long range disorder
are known to limit the charge transport ability of 2D
compounds25 and, therefore, a systematic analysis of the
possible role of defects in an energy-dependent charge
mobility framework is proposed for future studies. From
our results, where minute network deformations were
shown to lead inevitably to drastic changes, the electronic
properties of monolayered ZrB22 can be anticipated as
extremely sensitive to network changes. Thus, sensor ap-
plications by monitoring electrical changes in the nano-
structure upon interaction with foreign species could be
expected as a potential technological use of the mate-
rial. Advanced approaches accounting for the strongly
correlated Zr electrons must be considered to study the
formation of localized magnetic moments upon composi-
tion changes.

V. ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences, Mate-
rials Science and Engineering Division. I acknowledge
the computing resources provided on Blues and Fusion,
the high-performance computing clusters operated by the
Laboratory Computing Resource Center at Argonne Na-
tional Laboratory. I thank P.B. Littlewood for fruitful
discussions and support.

∗ alejandrolb@gmail.com
1 K. S. Novoselov, A. K. Geim, S. V. Morozov,
D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grig-
orieva, and A. A. Firsov, Science 306, 666 (2004),
http://science.sciencemag.org/content/306/5696/666.full.pdf.

2 P. Vogt, P. De Padova, C. Quaresima, J. Avila,
E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and
G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012).

3 C. Grazianetti, E. Cinquanta, and A. Molle, 2D Materials
3, 012001 (2016).

4 M. E. Dvila, L. Xian, S. Cahangirov, A. Rubio, and G. L.
Lay, New Journal of Physics 16, 095002 (2014).

5 A. Acun, L. Zhang, P. Bampoulis, M. Farmanbar, A. van
Houselt, A. N. Rudenko, M. Lingenfelder, G. Brocks,
B. Poelsema, M. I. Katsnelson, and H. J. W. Zandvliet,
Journal of Physics: Condensed Matter 27, 443002 (2015).



6

6 F.-f. Zhu, W.-j. Chen, Y. Xu, C.-l. Gao, D.-d. Guan, C.-
h. Liu, D. Qian, S.-C. Zhang, and J.-f. Jia, NATURE
MATERIALS 14, 1020+ (2015).
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