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We introduce a real-space approach to understand the relationship between optical absorption
and crystal structure. We apply this approach to alternative phases of silicon, with a focus on
the Si20 crystal phase as a case study. We find that about 83% of the changes in the calculated
low-energy absorption in Si20 as compared to Si in the diamond structure can be attributed to
reducing the differences between the on-site energies of the bonding and anti-bonding orbitals as
well as increasing the hopping integrals for specific Si-Si bonds.

I. INTRODUCTION

In order to reduce the cost of solar-cell energy gener-
ation, a great deal of effort has been put into attempts
to increase the number of charge carriers collected by
the solar cell relative to the number of incident photons
(quantum efficiency). Silicon is the most widely used
photovoltaic material. In terms of global annual power
production, a recent market survey shows that crystalline
silicon dominates the photovoltaic industry by more than
90%. One of the major reasons for its popularity is that
silicon is non-toxic and abundant. There are also ben-
efits from technologies developed over the years in the
microelectronics industry.

Despite its widespread usage as a photovoltaic mate-
rial, silicon does not efficiently absorb most of the light in
the solar spectrum. The solar spectrum that is received
at the Earth’s surface (under the so-called air mass of 1.5
or AM 1.5 for short1) ranges from 0.3 to 4.4 eV and is
the strongest around 1.2 eV. According to the Shockley-
Quiesser model,2 the optimal band gap from solar energy
conversion lies within the range of 1.1 to 1.4 eV.2–4 Since
silicon has a direct band gap of 3.3 eV, optical absorption
due to direct transitions can only take place at the high-
energy end of the solar spectrum between 3.3 and 4.4 eV.
Phonon-assisted indirect transitions5,6 lower the onset of
optical absorption to 1.2 eV. Even then, absorption coef-
ficients due to indirect transitions alone are smaller and
require the solar cell to be thick in order to amplify the
phonon contributions. With a thicker absorber layer, the
solar cell has to have high purity to prolong its carriers
lifetime. Together, the increased thickness and need for
material purity add to the cost of production.

Under ambient conditions, the diamond cubic phase
(diamond-Si) is the most stable crystal phase of silicon,
and this is also the crystal phase of silicon most com-
monly used to make solar cells today. However, sili-
con is known to exist in other crystal phases as well.
For instance, with increase in pressure, silicon undergoes
phase transitions from the diamond-Si phase to the β-Sn
phase,7 Imma phase8, simple hexagonal phase9–12 and
Cmca phase13. Pressure release from the β-Sn phase does

not recover the diamond-Si phase. Instead, a slow pres-
sure release produces the metastable R8 phase14 which
subsequently transforms into the BC8 phase,15–18 while a
very rapid pressure release leads to two other tetragonal
phases.19 Many of these phases are not suitable to make
solar cells. For example, the first four phases mentioned
above only exist under high pressure. The β-Sn and
simple hexagonal phases are also metallic11,12 while the
BC8 phase18 is semi-metallic. On the other hand, phases
like the R820 and body-centered tetragonal21 phases are
semiconducting, and since they have direct band gaps
smaller than diamond-Si’s, they in principle can also ab-
sorb light over a wider energy range22 than diamond-
Si. Recently, a low-density silicon allotrope with an
open silicon framework consisting of large empty chan-
nels, Si24, has reportedly23 been synthesized. It has a
direct G0W0 band gap of 1.34 eV, which is smaller than
that of diamond-Si.

One approach22 to increasing the absorption range of
silicon is then to find a crystal phase of silicon that has a
smaller direct band gap than that of diamond-Si. With
the advent of first-principles computational techniques,
it has become possible to search24–27 for crystal phases
that have not been previously discovered. Botti et al.28

found several crystal phases of silicon that have lower en-
ergies than the R8 and BC8 phases and have quasiparticle
band gaps ranging from 0.8 to 1.5 eV from GW calcu-
lations. Wang et al.29 proposed phases of silicon that
have band gaps from 0.39 to 1.25 eV obtained within
density functional theory (DFT) using the hybrid HSE
functional. Lee et al.30 used the conformational space
annealing (CSA) approach and presented several other
direct-gap silicon phases. Using the same CSA approach,
Oh et al.31 subsequently proposed a series of direct-gap
silicon superlattices composed of bulk-like Si layers inter-
calated by defective layers made of Seiwatz chains32. De-
pending on the thicknesses of the bulk-like layers, these
superlattices can have calculated G0W0 band gaps that
fall within the optimal range for solar conversion.

In Ref. 33, Xiang et al. found the structure of Si20
(also called Si20-T) using the particle swarm optimiza-
tion (PSO)24 approach. The calculated DFT-HSE band



2

gap of Si20 is 1.55 eV. One of the structural features of
Si20, which is not found in diamond-Si, is that some of
the bonds form equilateral triangles. In Ref. 33, it was
suggested that these bonds might be related to its im-
proved optical absorption. Nevertheless, the microscopic
reason for the increase in the calculated absorption in
Si20 remained unknown. In a related work, Guo et al.34

proposed an alternative ground state of silicon with a
band gap of 0.61 eV from DFT-HSE that also contains
triangular bonds.

The purpose of this work is to understand how the
structure of an alternative silicon phase may lead to an
improved calculated absorption relative to diamond-Si.
While there are many proposed metastable phases of sil-
icon with improved absorption, we focus here in detail
on Si20 as a case study for our approach since it has a
very desirable calculated optical absorption. (We note
that Si20 has a somewhat high formation energy,30,35,36

which may make it harder to access experimentally.) To
demonstrate the generality of our approach, near the end
of this paper, we also study two other silicon phases (SC5
and Si24) that have drastically different structures from
that of Si20.

One of the obstacles in establishing the relationship
between the crystal structure and optical absorption is
the fact that the crystal structures of alternative phases
of silicon like Si20 and diamond-Si are very different. For
example, one cannot be related to the other by the re-
moval or addition of a single atom, or by a small struc-
tural distortion that will not drastically disturb the bond-
ing network of the silicon atoms. Moreover, the primi-
tive unit cell of diamond-Si contains two atoms whereas
that of Si20 contains 20 atoms. Therefore, a conventional
analysis of optical absorption in the reciprocal space is
non-trivial as each k-point in Si20 contains 40 valence and
40 conduction sp3-like bands (unlike diamond-Si, which
only has four of each).

To overcome this difficulty, we study the optical ab-
sorption in a real space representation using Wannier
functions. Our analysis reveals that about 33% of the
enhanced optical absorption of Si20 can be attributed to
the decreased differences of the on-site energies between
the bonding and anti-bonding orbitals. Roughly 50% is
due to the increased hopping integrals between the bond-
ing and anti-bonding orbitals. The remaining 17% is due
to a variety of other contributions.

II. METHOD

In this section, we will first describe the conventional
density functional theory (DFT) interband-transition ap-
proach and the GW plus Bethe-Salpeter equation (GW-
BSE) approach for computing optical absorption in re-
ciprocal space. The latter approach includes electron
self-energy and electron-hole (excitonic) effects. Next
we briefly introduce a real-space representation of the
electronic structure in terms of Wannier functions. Fi-

nally, we transform the expression for the optical absorp-
tion from the reciprocal space representation into the real
space representation.

A. Optical absorption

Optical absorption can be expressed through ε2(ω), the
imaginary part of the dielectric function. Within the
independent-particle DFT approach and neglecting the
photon momentum, the diagonal elements of ε2(ω) can
be computed using the random-phase approximation for
a specific light polarization,

ε2(ω) =8π2e2~2
∑
k

∑
n∈{C}

∑
m∈{V }

|e · 〈nk|r|mk〉 |2

× δ(~ω − Enk + Emk).

(1)

Here k is the wave vector, e is the polarization direction,
r is the position operator, ω is the frequency of absorbed
photon, Enk and Emk are the DFT eigenvalues, |nk〉
and |mk〉 are the DFT Bloch eigenstates and {V } and
{C} are the valence and conduction bands. The matrix
element 〈nk|r|mk〉 describes a transition of an electron
from state |mk〉 into state |nk〉 upon the absorption of a
photon.

The ε2(ω) calculated within the DFT approach is
shown in Fig. 1a for diamond-Si (black) and Si20 (red).
In this calculation we used a norm-conserving pseudopo-
tential and we used the local density approximation
as implemented in Quantum-ESPRESSO.37 The plane-
wave cutoff for the electron wavefunction is 36 Ry. For
diamond-Si, the Wannier functions are constructed from
a coarse k-mesh of 16 × 16 × 16 and they are used to
interpolate quantities on a fine k-mesh of 30× 30× 30 to
calculate ε2(ω). For Si20, the coarse k-mesh is 8 × 8 × 8
and the fine k-mesh is 20× 20× 20.

From Fig. 1a, it is clear that within the DFT approach,
the onset of optical absorption in Si20 is 1.7 eV lower in
energy than in diamond-Si. However, absorption of Si20
at the absorption edge is relatively small, and it increases
significantly only at 0.8 eV above the absorption edge.
Comparing the steep edges of the absorption spectra, the
steep edge of Si20 is still about 0.9 eV lower in energy
than it is for diamond-Si.

In what follows, we discuss two well-known limitations
of the optical absorption calculated within the DFT-RPA
approach. The first limitation is that the calculated
DFT-LDA band gap is typically too small due the fact
that DFT eigenvalues are not quasiparticle excitation en-
ergies. The GW approximation38 removes this limitation
by properly including the electron self energy effects. In
the case of Si20 and diamond-Si, the inclusion of the GW
correction39 separates the DFT valence and conduction
bands by 0.7–0.8 eV (depending on the k-points and elec-
tron bands) which is close to the value obtained by the
hybrid-functional approach in Ref. 33.

The second limitation of the optical absorption cal-
culated within the DFT approach is that it does not
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FIG. 1. The absorption of diamond-Si (black) and Si20 (red)
calculated with the DFT (a) and BSE (b) approaches.

consider electron-hole interactions. Within the interact-
ing many-electron picture, an electron is excited from a
ground state |0〉 to an excited excitonic state |S〉 in which
the electron interacts with the hole that it left behind.
This process can be calculated40 by solving the BSE and
ε2(ω) is then expressed as,

ε2(ω) = 8π2e2~2
∑
S

|e · 〈S|r|0〉 |2δ(~ω − ΩS). (2)

Here S labels the exciton states and ΩS is the exciton
eigenenergy.

The ε2(ω) spectra calculated39 by solving the BSE for
Si20 and diamond-Si are shown in Fig. 1b. Comparing
the GW-BSE and DFT absorption spectra, we see two
main differences. First, the absorption edge in the GW-
BSE spectrum is 0.6 eV higher in energy than the edge
in the DFT spectrum. This shift is close to the shift
resulting from the GW correction (0.7 eV). The second
difference with the GW-BSE approach is that ε2(ω) is
larger in amplitude by a factor of about 1.5–2.0 near the
band edge.

Therefore, while the optical absorption in absolute
terms is very different between the GW-BSE and DFT
approaches, the corrections made by the GW-BSE ap-
proach are nearly the same for both Si20 and diamond-Si.
To better understand the improved absorption of Si20,
it is sufficient to focus on an analysis of results from
the DFT-RPA approach, since the geometric effect of

the crystal structure is already present at the DFT-RPA
level.

B. Localized representation

The Bloch states appearing in the expression for ε2(ω)
(in Eq. 1) have a well-defined crystal momentum k. They
are eigenstates of the Kohn-Sham Hamiltonian,

〈nk|H|mk〉 = δnmEnk. (3)

By superposing the Bloch states of different crystal mo-
menta k, one can construct a well localized Wannier
state,

|jR〉 =
1

Nk

∑
nk

e−ik·RU
(k)
nj |nk〉 . (4)

Here R is a real-space lattice vector and U
(k)
nj is an ar-

bitrary unitary matrix that mixes the Bloch bands at k.
In this paper, we use indices i and j to denote individ-
ual Wannier functions and indices n and m to denote
individual Bloch bands.

One often chooses the matrices U
(k)
nj according to the

scheme introduced by Marzari and Vanderbilt41 so that
|jR〉 is as localized in real space around the centers of
mass of the Wannier functions as possible. For this rea-
son, |jR〉 is also called the maximally localized Wannier
function. The Bloch functions can be reconstructed back
from the Wannier functions through an inverse transfor-
mation,

|nk〉 =
∑
jR

eik·RU
(k)†
nj |jR〉 . (5)

Since the set of Wannier functions contains the same
amount of information as the set of Bloch bands from
which it is generated, it is convenient to rewrite the
Hamiltonian and position operators in the Wannier basis.
The Hamiltonian in the Wannier (or real space) represen-
tation is simply 〈i0|H|jR〉 which can be calculated by a
Fourier transform of 〈nk|H|mk〉,

〈i0|H|jR〉 =
1

Nk

∑
nmk

e−ik·RU
(k)†
ni 〈nk|H|mk〉U (k)

mj . (6)

There are two types of Hamiltonian matrix elements
that we will focus on in this paper. For the first type,
we have R = 0 and i = j. We will refer to this type of
matrix element,

〈i0|H|i0〉 = ei, (7)

as the on-site energy of Wannier function i. The remain-
ing matrix elements

〈i0|H|jR〉 = tijR (8)
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(a) Bonding Wannier function

(b) Anti-bonding Wannier function

FIG. 2. The isosurface of calculated bonding (a) and anti-
bonding (b) Wannier functions in diamond-Si. Gray spheres
are silicon atoms forming the bond. Isosurface in (a) is 1.4
and 1.0 in (b). Red and blue colors indicate parts of the
Wannier function with opposite signs.

are known as the hopping integrals. The hopping integral
measures the probability amplitude for Wannier function
j in cell R to tunnel to the Wannier function i in the unit
cell at the origin.

Wannier functions are constructed from a set of Bloch
bands so a different choice of Bloch bands will lead to
different Wannier functions. Since the expression for op-
tical absorption in Eq. 1 refers explicitly to occupied and
empty Bloch states, we constructed the Wannier func-
tions either from only empty or only occupied Bloch
states. Therefore, by construction, 〈i0|H|jR〉 is zero un-
less bra and ket are either both derived from empty or
occupied states.

We will refer to the Wannier functions constructed
from the occupied Bloch states as bonding Wannier func-
tions and those from the empty states of the relevant con-
duction bands as anti-bonding Wannier functions since
they typically have real-space forms that resemble bond-
ing and anti-bonding molecular orbitals. Since silicon
bonds are highly covalent, the valence charges are local-
ized on the bonds between these two nearest-neighboring
silicon atoms. Therefore, the bonding and anti-bonding
Wannier states are localized in the region between these
two silicon atoms, as shown in Fig. 2 for the case of
diamond-Si. Each Si-Si bond has only one sp3-like bond-
ing and one sp3-like anti-bonding Wannier function (per
each spin). For convenience, we will label the on-site
energy for the bonding and anti-bonding states as,

ei and ēi

respectively. Similarly, we denote the hopping integral
between anti-bonding states as t̄ijR.

FIG. 3. Conventional unit cell of diamond-Si containing eight
silicon atoms. Its primitive unit cell contains only two silicon
atoms.

C. Optical absorption in the localized basis

The optical absorption calculated using ε2(ω) (Eq. 1)
within the DFT-RPA approach depends on the energy
of the Bloch states Enk, and the matrix element of the
position operator. The Bloch state energies are fully de-
termined by ei and tijR. Similarly, the position operator
matrix element can be computed from its representation
in the Wannier basis

〈i0|r|jR〉 = rijR. (9)

In all, optical absorption is exactly determined given the
following three real-space quantities: ei, tijR, and rijR.

III. RESULTS AND DISCUSSION

In this section, we will compare ei, tijR, and rijR in
diamond-Si and Si20 and relate them to the structural
differences between the two materials, as well as the dif-
ferences in their optical absorption.

A. Comparison of structures

Figures 3 and 4 show the crystal structures of diamond-
Si and Si20. Both of their conventional unit cells have
cubic lattices. In our calculations, we use fully relaxed
structures of Si20 and diamond-Si. The lattice parame-
ters of the conventional unit cells of Si20 and diamond-Si
are 7.40 Å and 5.43 Å. On the average, Si20 has one Si
atom every 20.2 Å3 (2.30 g/cm3) and diamond-Si has one
atom every 20.0 Å3 (2.33 g/cm3).

Each Si atom in diamond-Si is tetrahedrally coordi-
nated to four other Si atoms, such that every bond an-
gle is exactly 109.5◦. Every Si-Si bond in diamond-Si
is symmetrically equivalent. The distance between the
bond centers of two nearest-neighboring bonds is 1.9 Å.
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FIG. 4. Conventional unit cell of Si20 containing 20 silicon
atoms. Its primitive unit cell is the same as the conventional
unit cell. Four distinct Si-Si bonds are indicated with labels
a, b, c, and d. Bonds forming a triangle are labelled with
letter a.

For Si20, every Si atom is also coordinated to four other
Si, but in a distorted tetrahedron. The distortions bring
some of the bond centers of Si20 closer together and oth-
ers further apart. There are four symmetry-inequivalent
groups of Si-Si bonds in Si20 and they are labelled from
a to d in Fig. 4. One feature of the Si20 structure is
the type-a bonds which form triangles. These bonds are
highly strained as they are distorted from 109.5◦ to a
narrow 60.0◦. As a result, the distance between two
nearest-neighboring bond centers ranges from as short
as 1.2 Å (between two type-a bonds of the same trian-
gle) to 2.1 Å. We will label this range, 1.2–2.1 Å, as the
nearest-neighbor hopping regime.

B. On-site energy ei

Here we compare on-site energies of diamond-Si and
Si20. Since we can assign a single bonding and anti-
bonding Wannier function to each Si-Si bond, we will
focus here on comparing the on-site energies, ei and ēi,
for the same bond in the crystal.

Calculated values of ei and ēi for diamond-Si and Si20
are shown in Fig. 5 with horizontal lines. The arrow
represents the difference between ei and ēi for a given
set of symmetry-related bonds in the structure. In the
case of diamond-Si, ēi − ei for its Si-Si bond is 9.66 eV.
On the other hand, ēi − ei for Si20 ranges from 8.78 to
10.10 eV. The smallest value (8.78 eV) belongs to the
highly strained type-a bonds. Its large deviation from
diamond-Si’s 9.66 eV is likely due to large strain present
in these triangular bonds. Less strained type-b and type-
c bonds have ēi − ei similar to that in diamond-Si (9.64
and 9.78 eV). Finally, type-d bonds have the largest ēi−ei
(10.10 eV).

We expect that the smaller ēi− ei of type-a bonds will
lower the optical absorption edge of Si20 with respect to
diamond-Si’s. This will be analyzed in more detail in
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FIG. 5. On-site energy of bonding (ei, lower value) and anti-
bonding (ēi, higher value) Wannier function in diamond-Si
(left, black) and Si20 (right, red). Numbers indicate ēi − ei
in eV. In the case of Si20 we show ēi − ei for all four types of
bonds. (The origin of the energy scale is arbitrary.)

Sec. III F.

C. Hopping integral tijR

After analyzing ei, we now focus on the hopping inte-
gral tijR of diamond-Si and Si20.

For the analysis of tijR, we will define the hopping
distance as the distance between the centers of mass of
the Wannier functions |i0〉 and |jR〉,∣∣ 〈i0|r|i0〉 − 〈jR|r|jR〉 ∣∣.
In what follows, we will relate tijR with its hopping dis-
tance.

1. Bonding states

First, we discuss the hopping integrals between bond-
ing Wannier functions. As shown in Fig. 6, the hopping
integrals of both diamond-Si and Si20 are nearly zero for
hopping distances beyond 5 Å. This behavior is charac-
teristic of the exponential localization42 of Wannier func-
tions for insulators.

The hopping integral tijR with the largest magnitude
for diamond-Si is −1.23 eV. This hopping integral cou-
ples a bonding Wannier function with its nearest bonding
neighbor and has a hopping distance of 1.9 Å. In Fig. 6,
it is denoted by the leftmost black dot. For Si20, hopping
integrals coupling the nearest bonding neighbors are dis-
tributed over the range of 1.2–2.1 Å (see Sec. III A). In
Fig. 6, they are represented by the group of red dots
surrounding the above-mentioned black dot.

The largest |tijR| for Si20 corresponds to the hopping

integral with the shortest hopping distance of 1.2 Å. This
hopping integral couples type-a bonds and is 0.70 eV
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FIG. 6. Hopping integrals between bonding Wannier func-
tions, as a function of hopping distance for diamond-Si (black)
and Si20 (red).

larger than the largest |tijR| of diamond-Si. The pres-
ence of this large hopping integral in Si20 is due to
the fact that the distance between triangular bonds is
1.9 − 1.2 = 0.7 Å shorter than the shortest bond–bond
distance in diamond-Si.

As we will analyze later in more detail, we expect the
larger hopping integrals of the occupied Wannier func-
tions to raise the valence band edge in Si20 as we expect
the valence bands to have a larger bandwidth.

2. Anti-bonding states

Now, we look at the hopping integrals between the
anti-bonding states. Figure 7 shows that the largest |t̄ijR|
for diamond-Si is 0.54 eV and has a hopping distance of
5.8 Å. Unlike the bonding states, this largest t̄ijR does
not couple the nearest-neighboring Wannier functions.
That hopping integral is four times smaller (0.13 eV).
For Si20, the largest |t̄ijR| is 0.62 eV and has a hopping

distance of 3.5 Å. It is somewhat larger than diamond-
Si’s largest |t̄ijR| and it also does not couple the nearest-
neighboring Wannier functions.

Nevertheless, in the nearest-neighbor hopping regime
of 1.2–2.1 Å, the largest |t̄ijR| in Si20 is 0.40 eV. This
value is significantly larger than the corresponding |t̄ijR|
for diamond-Si (0.13 eV) in the same regime.

Notably, even though |t̄ijR| for anti-bonding Wan-
nier functions are nearly zero above hopping distance
of 9 Å, it does not increase monotonically below 9 Å
as the hopping distance decreases. The distribution
of t̄ijR (Fig. 7) is more dispersive than that of tijR
(Fig. 6). This is likely related to the fact that the anti-
bonding Wannier functions (Fig. 2b) have more nodes
than the bonding Wannier functions (Fig. 2a). They are
also more diffuse than the bonding Wannier functions.
In addition, anti-bonding Wannier functions hybridize
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FIG. 7. Hopping integrals between anti-bonding Wannier
functions, as a function of hopping distance for diamond-Si
(black) and Si20 (red).

with the continuum, making them somewhat sensitive
to the choice of the frozen window used in the Wannier
disentanglement43 procedure. (For consistency, we have
chosen the frozen windows for both diamond-Si and Si20
to span the same energy range, from the conduction band
minimum (CBM) to 3.5 eV above the CBM of diamond-
Si.)

Hopping integrals between anti-bonding Wannier
states of Si20 are distributed over a wider energy range
than diamond-Si. We expect the larger hopping inte-
grals between the empty Wannier functions of Si20 to in-
crease the bandwidth of the conduction bands and lower
its lower band edge. This will be further discussed in
Sec. III F.

D. Position integral rijR

Now we discuss the third real-space object required
to compute the optical absorption: position operator in
the real space representation, rijR, between a bonding
Wannier function and an anti-bonding Wannier function.
(The matrix elements between two bonding or two anti-
bonding Wannier functions do not enter into Eq. (1).)

For diamond-Si, |rijR|2 is the largest when i and j are
both centered on the same bond, as can be expected. Its
value is |rijR|2 = 0.59 Å2 and it is seven times as large

than that between the neighboring bonds (0.09 Å2). For
Si20, the largest |rijR|2 are also on the same bond. Their
values for four types of Si20 bonds are nearly the same.
Their average value is 0.53±0.02 Å2. (The next largest
value is only 0.15 Å2.)

Here, two observations can be made. First, we see that
in the real space representation, |rijR|2, like the Hamil-
tonian, is highly localized. Second, the largest |rijR|2
for Si20 and diamond-Si have nearly the same numerical
value. This is likely because the Wannier functions of Si20
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have similar real-space character as those in diamond-Si.

E. Relating ei and tijR to the optical absorption

Now, we will relate the magnitudes of ei and tijR to the
optical absorption in diamond-Si and Si20. For this pur-
pose, we compute the optical absorption in three model
systems, which are hybrids between diamond-Si and Si20.
These hybrid systems have the same Hamiltonian as Si20,
except for some ei, ēi, tijR and t̄ijR which are modified
to resemble those in diamond-Si. Figure 8 shows the
calculated optical spectra of diamond-Si (in solid black),
Si20 (in solid red), and the hybrid systems (in dashed,
dotted-and-dashed, and dotted red).

The dashed red curve in Fig. 8 shows the calculated
optical absorption of the first hybrid system, where all
on-site energies, ei and ēi, of Si20 are made to be equal
to those of diamond-Si.

The dotted-and-dashed curve in Fig. 8 represents the
second hybrid system where, on top of the modifications
made for the first hybrid system, hopping integrals tijR
between bonding Wannier functions are modified as well.
This modification is done in the following way. First, we
identify hopping integrals in Si20 larger than the nearest-
neighbor hopping integral in diamond-Si (their values
are −1.93, −1.45, −1.30, and −1.29 eV). Second, we
modify these hopping integrals so that they are equal to
the nearest-neighbor hopping integral in the diamond-Si
(−1.23 eV).

Finally, the dotted red curve in Fig. 8 shows the opti-
cal absorption of the third hybrid system which, in ad-
dition to the modifications made for the first and second
hybrid systems, has modified hopping integrals between
the anti-bonding Wannier functions, t̄ijR. Here we follow
the same logic as is used for hopping integrals between

the bonding Wannier functions. We first identify hop-
ping integrals in Si20 in the nearest-neighbor regime that
are larger than the nearest-neighbor hopping integral in
diamond-Si (their magnitudes are 0.18, 0.20, 0.23, 0.32,
0.34, and 0.40 eV). Next, we modify these hopping in-
tegrals to the nearest-neighbor hopping integral between
anti-bonding states in diamond-Si (0.13 eV).

As can be seen from Fig. 8, modifying only ei and
ēi shifts the leading edge of the absorption spectrum of
Si20 to a higher energy by about 0.30 eV. This is about
33% of its difference with diamond-Si. Modifying ei, ēi,
and tijR further shifts the leading edge of the absorption
spectrum by another 0.30 eV. When ei, ēi, tijR and t̄ijR
are all modified, the edge of the absorption spectrum is
shifted by a total of 0.75 eV from the original calculated
spectrum which accounts for approximately 83% of its
difference with diamond-Si.

This behavior can be understood by considering a sim-
ple tight-binding model of a periodic one-dimensional
mono-atomic chain. The band structure of such a model
is given by e+ 2t cos(ka) where e is the on-site energy, t
is the hopping integral between the nearest-neighboring
orbitals, and a is the distance between atoms. Therefore,
on-site energy e can be thought of as an average energy
of the band while the hopping integral t determines its
bandwidth. This means that smaller ēi − ei and larger
tijR and t̄ijR found in Si20 will lower the average band
gap.

The modifications that are made to the hybrid sys-
tems do not account for the remaining 17% and an ab-
sorption tail at low energy. We attribute this to the fol-
lowing two effects. First, we only modified some of the
larger hopping integrals in our calculations of the hybrid
models. Second, even though we modified the hopping
integrals in our calculations, we have always kept the
crystal structure of Si20 the same. Therefore, relative
phases of the Bloch states between neighboring silicon-
bond sites will be different in Si20 and in diamond-Si. In
other words, even if the hopping integrals were somehow
made exactly the same in the two structures, their opti-
cal absorption edges may still not be the same because
of this effect. Nevertheless, the total influence of these
two effects on the improved optical absorption of Si20 is
rather small (17%) and the majority of the difference can
be attributed to the changes in the on-site energies and
hopping integrals.

F. SC5 and Si24 silicon phases

To demonstrate the generality of our approach, we
consider here two other phases of silicon that also ab-
sorb light (without phonon-assisted transitions) at pho-
ton energy lower than diamond-Si. The first phase can
be described as a Si superlattice composed of alternat-
ing stacks of bulk-like Si layers intercalated by Seiwatz
chains.31 Each stack is made of five Si(111) layers of
hexagonal diamond-Si. The Seiwatz chains are arranged
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in a configuration that results in a simple monoclinic Bra-
vais lattice. We refer to this phase as SC5. The second
phase is a low-density Si24 structure with an open sili-
con framework.23 Unlike Si20 we discussed earlier, none
of these two phases have Si-Si bonds in a triangular ar-
rangement.

Repeating the earlier analysis for SC5, we find that all
of its bonds have ēi−ei smaller than that in diamond-Si.
In SC5, they range from 9.09 to 9.61 eV. If we change
the on-site energies of SC5 to match those of diamond-
Si, we find that the optical spectrum more closely re-
sembles that of diamond-Si. This change in the on-site
energies accounts for roughly 70% of the change in the
optical absorption. Furthermore, if we also change the
hopping integrals of SC5 to match those of diamond-Si,
we find another 20% of the change in the optical absorp-
tion. Therefore, the improved calculated optical absorp-
tion edge of SC5 is mostly due to changes in the on-site
energies, not hopping integrals. This is in contrast to Si20
where dominant effect came from the hopping integrals.

Switching now to Si24, our calculation shows that most
of the on-site energy differences (ēi − ei) are larger than
those in diamond-Si. Out of 24 bonds in the primitive
unit cell, 18 have higher on-site energy differences while
only six have smaller differences than that of diamond-Si.
The range of calculated ēi−ei in Si24 ranges from 9.18 to
10.69 eV. We attribute this to Si24’s open silicon frame-
work and its low density (2.17 g/cm3)23 as compared to
that of diamond-Si (see Sec. III A). If we modify the on-
site energies of Si24 so that they are equal to that of
diamond-Si, we find that the onset of optical absorption
shifts to a lower energy. If we also modify the hopping el-
ements, the optical absorption more closely matches that
of diamond-Si. Therefore, we conclude that in the case
of Si24, the effect of the on-site energies on the optical
absorption is opposite to that of the hopping integrals.

IV. CONCLUSION

The different structure of Si20, relative to diamond-Si,
leads to smaller on-site energy differences and larger hop-
ping integrals between some of its Wannier functions. We
have identified that most of these differences are due to
the strained bonds forming triangles (i.e. type-a bonds)
in Si20. Different on-site energies and large hopping in-
tegrals are responsible for approximately 83% of the im-
proved optical absorption in Si20 for photovoltaic appli-
cations relative to diamond-Si. The remaining difference
is attributed to contributions from the smaller hopping
integrals and the effect of the crystal structure on the
relative phase of the electron wave functions.

Introducing strain to the bonds in the crystal structure
turns out to be important when looking for crystal phases
of silicon that have band gaps smaller than diamond-Si.
However, as strain may reduce the band gap of diamond-
Si, it also reduces the stability of the crystal structure.
It is possible that a large band gap reduction may re-
quire a strain that is too large for the crystal structure
to be thermodynamically stable. Hence, in the search for
a practically viable silicon crystal phase that has a band
gap smaller than that of diamond-Si, it is a balance be-
tween reducing the band gap and increasing the strain in
the crystal structure.
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