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Charged defects in 2D materials have emerging applications in quantum technologies such as
quantum emitters and quantum computation. Advancement of these technologies requires rational
design of ideal defect centers, demanding reliable computation methods for quantitatively accurate
prediction of defect properties. We present an accurate, parameter-free and efficient procedure to
evaluate quasiparticle defect states and thermodynamic charge transition levels of defects in 2D
materials. Importantly, we solve critical issues that stem from the strongly anisotropic screening
in 2D materials, that have so far precluded accurate prediction of charge transition levels in these
materials. Using this procedure, we investigate various defects in monolayer hexagonal boron nitride
(h-BN) for their charge transition levels, stable spin states and optical excitations. We identify
CBVN (nitrogen vacancy adjacent to carbon substitution of boron) to be the most promising defect
candidate for scalable quantum bit and emitter applications.

Two-dimensional (2D) materials such as graphene,
hexagonal Boron Nitride (h-BN) and transition metal
dichalcogenides exhibit a wide range of remarkable prop-
erties at atomic-scale layer thicknesses, holds promise for
both conventional and new optoelectronic functionality
at drastically reduced dimensions1–5. It is well estab-
lished that point defects play a central role in the prop-
erties of bulk 3D semiconductors but their correspond-
ing role in 2D materials is not yet well understood. In
particular, the weak screening environment surrounding
the defect charge distribution and the strong confine-
ment of wavefunctions due to the atomic-scale thickness
could lead to vastly different behavior compared to con-
ventional semiconductors.

Defects in 2D materials such as h-BN show promise as
polarized and ultra-bright single-photon emitters at room
temperature,6,7 with potentially better scalability8,9

than the long-studied nitrogen-vacancy center(NV) in
diamond10–12 for emerging applications in nanophoton-
ics and quantum information.13 Progress beyond initial
experimental demonstration of promising properties re-
quires rational design and development of quantum de-
fects in 2D materials that exhibit high emission rate,
long coherence time, single photon purity and stability.
Specifically, the promising defects should have the fol-
lowing properties: defect levels should be deep (far from
band edges) to avoid resonance with the bulk band edges
and thereby exhibit long coherence time;6,14,15 optically-
addressable spin conserving excitations facilitate exploit-
ing spin-selective decays in high-spin defect states, simi-
lar to the NV center in diamond;16–18 anisotropic polar-
ization of the defect states in combination with quantum
bits could provide a pathway to quantum optical com-
putation. A recent work18 performed density functional
theory (DFT) and constraint DFT calculations to obtain

FIG. 1. Left: CBVN defect energy levels in monolayer BN
with spin up (up arrow) and spin down (down arrow) chan-
nels respectively. The black filled arrows represent occupied
states and unfilled arrows represent unoccupied states. The
red arrow represents the bright transition between two defect
states. Right: The wavefunctions for the two defect states
(“A” and “B”) that have the bright optical transition. “Per-
pendicular” and “Along” are two orthogonal directions in the
plane; only the “Along” direction has the bright transition.

the Huang-Rhys factor and photoluminescence spectrum
for multiple netural defects in h-BN, while the possibility
of forming charged defects has not been examined. Most
importantly, higher level of theory beyond DFT is nec-
essary to obtain accurate defect charge transition levels,
which has not been carried out for charged defects in 2D
materials due to several technical difficulties that will be
resolved in this paper.

In this work, we use first-principles methods to the-
oretically investigate the suitability of several complex
defects in monolayer h-BN for quantum bit and emitter
applications. We choose n-type defects which are closely
related to common intrinsic and extrinsic defects in BN
and can potentially create several occupied defect levels
in the band gap and high spin states. For each candi-
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date defect, we examine the charge transition level (CTL)
which determines the stability ranges of various charge
states of each defect. For each stable charge state, we
evaluate spin states and optical excitations along differ-
ent polarization directions. With these calculations, we
will show CBVN (a nitrogen vacancy adjacent to boron
substituted by carbon as shown in Fig. 1) to be the most
promising defect in 2D h-BN, analogous to the NV center
in 3D diamond, which has a stable triplet ground state
and a bright anisotropic optical transition between defect
levels.

However, calculating properties such as CTLs and
optical excitations of charged defects in 2D materi-
als present serious challenges for state-of-the-art first-
principles methods, which have so far limited the accu-
racy of previous calculations. We start this communica-
tion by outlining these challenges and then discuss our
methodology to address them.

The formation energy of a defect in charge state q,
ionic coordinates R and electron chemical potential εF
(often set to the valence band maximum for insulators or
semiconductors) is given by19

Ef
q (R)[εF ] = Eq(R)− Epst +

∑
i

µi∆Ni + qεF . (1)

Here Eq(R) is the total energy of the system with the
charged defect, and Epst is the total energy of the pris-
tine system. The third term on the right side accounts for
the change ∆Ni in number of atoms of element i between
these two configurations, with µi being the atomic chemi-
cal potential of that element in its stable form. The ther-
modynamic charge transition level (CTL) is the value of
the electron chemical potential at which the stable charge
state of the defect changes from q to q + 1, which cor-
responds to equal formation energies of the q and q + 1
states, and is therefore given by

εq+1|q = Ef
q (Rq)− Ef

q+1(Rq+1), (2)

where Rq are the ionic coordinates of the charge state
q. We note that the defect ionization energies associated
with thermodynamic CTLs include the vertical excita-
tion energy between two charge states and a geometry
relaxation energy at the final charge state19. The vertical
excitation energy is related to the optical CTLs, which
can be directly obtained from quasiparticle band struc-
tures. In this communication, we denote the thermody-
namic charge transition level as “CTL”, unless specified.

Within density-functional theory (DFT), CTLs can be
determined by calculating formation energies in Eq. 2
in their respective equilibrium geometries, but this in-
troduces two problems. First, DFT calculations of de-
fects employ periodic boundary conditions on a super-
cell; formation energies of charged defects converge very
slowly with supercell sizes due to periodic charge inter-
actions and this is even more problematic for 2D ma-
terials. Second, the well-known band gap problem and

self-interaction errors within standard DFT methods in-
troduce significant errors in calculated CTLs, even if the
supercell convergence issue could be dealt with.

The second issue above can be effectively solved by
combining DFT with the many-body perturbation the-
ory GW method20–23. This involves rewriting the CTL
calculation as23–25

εq+1|q = Ef
q (Rq)− Ef

q+1(Rq)︸ ︷︷ ︸
EQP

+Ef
q+1(Rq)− Ef

q+1(Rq+1)︸ ︷︷ ︸
Erlx

,

(3)

by adding and subtracting Ef
q+1(Rq) (we note that the

results are insensitive to the choice of path for defects
in monolayer BN as discussed in SI). The second pair
of terms on the right-hand side of Eq. 3 is the struc-
tural relaxation energy Erlx at the charge state q, which
can be calculated with reasonable accuracy at the DFT
level (provided we solve the periodic charge interaction
issue). The first pair of terms in Eq. 3 is the quasipar-
ticle (QP) excitation energy EQP at the fixed geometry
Rq, which can be calculated accurately using the GW
method20,26,27. However, GW calculations of quasiparti-
cle energies in 2D materials exhibit serious convergence
difficulties28–30 that make the calculations of charged de-
fects that require large supercells extremely challenging.

At this stage, Eq. 3 provides accurate CTLs in princi-
ple, provided we can address the periodic charge interac-
tion issue in formation energies of charged defects at the
DFT level, and resolve convergence issues for GW calcu-
lations of 2D materials. Below, we discuss each of these
two issues and our methodology to overcome them.
First, the basic problem in charged defect formation

energy calculations in DFT is the spurious interaction of
the charged defect with its periodic images and with the
uniform compensating background charge (necessary to
make the total energy finite). For 3D systems, correction
schemes31–34 by removing the spurious periodic interac-
tion from the DFT results using a model charge distribu-
tion for the defect and a model dielectric response for the
bulk material work reliably well, because the self-energies
of a model charge distribution both with periodic bound-
ary conditions and without i.e. the isolated case can be
computed easily31.

However, for 2D materials, the dielectric screening is
strongly anisotropic and localized to one atomic layer;
correction schemes now require a spatially-dependent
anisotropic dielectric function, whose spatial profile is not
unambiguously defined. Most importantly, calculation of
the isolated charge self-energy for the correction has so
far relied on extrapolating periodic calculations in var-
ious supercell sizes,35 an approach we find here to be
problematic due to its strong nonlinear dependence on
the supercell sizes (as shown in Fig. 2(a)). This nonlin-
earity comes both from the highly anisotropic screening
in monolayer 2D materials and the spatial distribution
of bound charge in the dielectric surrounding the model
charge, which is even more important for charged defects
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FIG. 2. Electrostatic self-energies of a model charge in a 2D
slab with the periodic boundary condition (black dots) and
the isolated boundary condition (black line). Dashed red, blue
and green lines are fitting curves to the periodic electrostatic
self-energies with different order of polynomials. (b) Forma-
tion energies of CB (+1) defect at different supercell sizes
L (where a = 2.50 Å is the lattice constant of h-BN). With
conventional periodic Coulomb interactions (red squares), the
cell size scales with Lz = Lx, while with truncated Coulomb
potentials (blue diamonds), Lz is constant with a 15 bohr
vacuum. With our correction scheme (black dots), results are
converged to within 10 meV in a 6×6 a2 cell. The extrapo-
lated result (blue triangle) includes a correction based on the
fitted results from (a).

of MoS2
36 that has a larger in-plane dielectric constant

than h-BN.

We recently developed a robust scheme for calculat-
ing formation energies of charged defects in bulk and
interfaces,37 that (a) redefines DFT electrostatic poten-
tials to avoid strong oscillations near atom centers im-
proving supercell convergence with geometry optimiza-
tion, (b) unambiguously defines a spatial dielectric pro-

file ε−1(z) = −∂∆V (z)
E0∂z

as the change in the now-smooth

total potential ∆V (z) upon applying a normal electric
field E0, and importantly, (c) it also completely avoids
the problematic extrapolation between supercell sizes35

(or convergence issues in image charge methods32) by us-
ing a spectral expansion in cylindrical Bessel functions for
the isolated electrostatic energy. In this work, we extend
all aspects of that approach to handle the anisotropic di-
electric response in 2D materials (see SI), including an
exact calculation of the isolated electrostatic self-energy.
Fig. 2(a) shows that the conventional extrapolation tech-
niques line up to this result, but only when those fits are
done to a high enough order (e.g. fifth order).

Fig. 2(b) shows that our charge correction scheme
(black dots) converges the CB (+1) charged defect forma-
tion energy within 10 meV in a 6×6 supercell, with a con-
verged value of -0.59 eV. The formation energy without
the correction and with isotropic supercell extrapolation
by a third order polynomial (red line) gives a similar re-

sult with Ref. 35; but fail to account for the nonlinearity
of the periodic model charge self-energy with supercell
sizes. The difference between our new method (black
dots) and this extrapolated result (red line) in Fig. 2(b)
is 0.12 eV, which lines up exactly with the difference be-
tween third and fifth order extrapolation in Fig. 2(a).
We therefore expect that previous predictions of charged
defect formation energies in 2D materials could routinely
contain inaccuracies of this magnitude, or even larger for
2D materials with a higher in-plane dielectric constant.

The second major issue is the extremely slow numer-
ical convergence of the GW method for 2D materials,in
part because of the rapid spatial variation in screening
along the vacuum direction.28,38 These issues have pro-
duced large discrepancies in literature even for properties
of pristine 2D materials.28,30 As an example, converging
GW calculations of pristine monolayer MoS2 requires at
least 6000 bands, 25 Å vacuum spacing, and a 24×24×1
k-point grid for Brillouin zone integration.28 Adopting
such parameters for large supercell calculations contain-
ing defects would make them impractical.

The slow convergence with respect to the number of
bands can be overcome by using a recent implemen-
tation of the GW method that does not explicitly re-
quire any empty states as implemented in the WEST
code,20,21,27,39–41 based on density functional perturba-
tion theory42 and the projective dielectric eigenpotential
(PDEP) algorithm.43,44

For 2D materials, the remaining convergence issues
arise from the long-range nature of the dielectric matrix
and GW self-energy (in contrast to DFT), which have not
been solved by current implementations. Here the polar-
ization of repeated images in the direction perpendicular
to the plane spuriously screens the Coulomb interaction
and lowers the QP gap.28 These image interactions can
be avoided in the correlation part of the self-energies by
using a truncated Coulomb potential,

v̄(k) =
4π

k2

(
1− e−kxyLz/2 cos

kzLz

2

)
, (4)

expressed here in reciprocal space45. In Eq. (4) we have
k = q + G, where q is a wave vector in the first Bril-
louin zone and G denotes the reciprocal lattice vectors.
Fig. 3(a) shows that this truncation results in excellent
convergence with vacuum spacing for the GW QP gap of
monolayer BN (Specifically, we performed G0W0 calcula-
tions in which the self-energy is approximated from DFT
states with the PBE exchange correlation functional46).
At 30 Bohr (16 Å), the QP gap is converged within
10 meV, while the conventional treatment results in a
smaller gap as discussed above, which does not converge
even at 100 Bohr.

When G = 0 and qz = 0, the potential in Eq. (4)
diverges as 2πLz/qxy for qxy → 0 and the inverse dielec-
tric matrix has a ‘dip’ feature in this limit.28 Accord-
ingly, around the Γ point a fine q mesh is required to
compute absolute QP energies.30 Explicit q-mesh conver-
gence is not practical for large supercell calculations with
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FIG. 3. (a) Coulomb truncation substantially improves con-
vergence of GW band gap of h-BN with respect to vacuum
spacing (with a 3×3 a2 lateral supercell size). (b) GW correc-
tion to the VBM (valence band maximum) extrapolates reli-
ably with lateral supercell size. Black dots are the computed
values with Coulomb truncation and dot blue and dashed
green lines are extrapolated values with two different formula.

defects. Instead, since discarding the qxy = 0 component
introduces an error proportional to L−2, we extrapolate
quasiparticle corrections to the L → ∞ limit from three
supercell sizes (L2 = 6× 6, 9× 9, 12× 12 a2). Fig. 3(b)
shows that this extrapolation works very well, with a de-
viation within 0.03 eV with respect to more sophisticated
models for the q → 0 contribution30 (see note 47). The
QP correction for the 12× 12 a2 is converged within 0.1
eV compared to the extrapolated value.

We implemented the DFT charge correction scheme
discussed above in JDFTx48 and the method to treat 2D
materials in GW calculations in WEST.41 Optimized ge-
ometry and DFT eigenvalues and wavefunctions are ob-
tained using Quantum ESPRESSO.49 (See SI for further
computational details.)

Having eliminated all the roadblocks in calculating
CTLs of 2D materials, we now predict properties of the
simple (CB (carbon substitution of boron), VN (nitrogen
vacancy)) and complex (CBVN, NBVN (nitrogen substi-
tution of boron adjacent to a nitrogen vacancy)) charged
defects (CBVN see Fig. 1). As discussed earlier, promis-
ing candidate defects should have stable high-spin states,
localized and deep defect levels, spin conserved excita-
tions and anisotropic optical response.10,13 Fig.4 shows
their optical (without geometry relaxation at the final
charge state, dashed lines) and thermodynamic CTLs
(solid lines) at both the DFT (left panel) and GW (right
panel) levels of theory (see note 50).

Fig.4 directly leads to several important conclusions.
At both DFT and GW levels of theory, all four type de-
fects have deep CTLs and localized defect wavefunctions
(not shown). We note that we also performed hybrid
functional calculations for the defective system, which
partially correct the self-interaction errors in DFT, and
found the defect geometry, ground spin state and defect

FIG. 4. Charge transition levels of various defects in h-BN
computed by DFT (left panel) and GW(right panel) methods.
Solid lines indicate thermodynamic charge transition levels
(Eq. 1 for DFT, Eq. 3 for GW), while dashed lines indicate
optical charge transition levels.We note that the optical CTLs
are obtained from the eigenvalues at the DFT and GW levels
of theory respectively at a fixed geometry. Fermi level εF is
set to VBM of pristine h-BN. All defects have (+1/0) and
(0/-1) CTLs inside the band gap, except CB that only has
(+1/0).

TABLE I. Physical properties of defects in monolayer h-BN
relevant for quantum technologies. Below, “S”, “D” and “T”
denote singlet, doublet and triplet spin states respectively.

Defects CB VN NBVN CBVN

Deep level Yes Yes Yes Yes
Spin at q = 0 D D D T
Spin at q = ±1 S S S D

Bright transition
between
defect states

No No Yes Yes

Optical
anisotropy

No No Yes Yes

wavefunctions are similar between hybrid and semilocal
functionals (see SI for more details). The difference of
thermodynamic CTL by DFT+GW in Eq. 3 and opti-
cal CTL by GW QP energies, which is the geometric
relaxation energy, is less than 0.5 eV. The large differ-
ence between thermodynamic and optical CTLs in DFT
is consistent with the fact that the total energies in DFT
are more reliable than eigenvalues, as the optical CTLs
are computed from eigenvalues directly, which do not
have a strict physical meaning in DFT and can not be
interpreted as the quasiparticle excitation energies. In
fact, correcting the VBM (and CBM) reference in the
DFT thermodynamic CTLs (using Eq. 1) with GW QP
energies, yields 0.1 eV difference compared to the full
DFT+GW calculations of the CTLs (using Eq. 3).

All four defects have deep CTLs with the neutral state
being stable for a wide range of εF , but their spin and
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optical properties are rather different as Table I shows.
CBVN center has a spin triplet ground state as shown
in Fig. 1 left panel, which is advantageous for quantum
applications,10 distinct from the doublet state in other
defects. Furthermore, we computed the optical transi-
tions and absorption spectra for all defect cases and found
both CBVN and NBVN have bright defect-to-defect state
transition well separated by over 1 eV from any defect-
bulk and bulk-bulk transitions. A strong in-plane po-
larization anisotropy was also found in their absorption
spectra (see Fig. 1 and SI for details of absorption spectra
and selection rules).

In summary, we developed a methodology to reli-
ably calculate thermodynamic CTLs in 2D materials by
solving several critical issues in charged defect forma-
tion energies and GW QP energies for 2D systems in
general. The source of difficulties originate from the
highly anisotropic and localized screening of 2D systems,
which necessitates proper treatment of electrostatic po-
tentials of charges near a 2D plane and of the screened
Coulomb interaction in the GW approximation. Using
this methodology, we examined several possible defects
in h-BN and identified CBVN center to be promising for
quantum technologies, which has multiple deep defect
levels, a triplet ground state and bright defect-to-defect
transitions.
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