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Recent experimental work has revealed that the unusually strong, isotropic structural negative
thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground
state tuned very near a structural quantum phase transition, posing a question of fundamental
interest as to whether this special circumstance is related to the anomalous behavior. To test this
hypothesis, we report an elastic and inelastic X-ray scattering study of a second system Hg2I2
also tuned near a structural quantum phase transition while retaining stoichiometric composition
and high crystallinity. We find similar behavior and significant negative thermal expansion below
100K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between
negative thermal expansion and zero temperature structural transitions. We identify the common
traits between these systems and propose a set of materials design principles that can guide discovery
of new materials exhibiting negative thermal expansion.

Negative thermal expansion (NTE) is an emerging area
of material behavior discussed in chemistry, engineering,
and physics which challenges conventional notions of lat-
tice dynamics. Two routes to realizing NTE have been re-
alized: one recipe is via a broadened phase transition from
some high-temperature phase to a higher-volume, lower
temperature phase. Treatment with quenched disorder
can smear the transition and achieve a gradual and tun-
able NTE evolution of lattice parameters. Examples of
this type of NTE are found in InVar1, anti-perovskites2,3,
ruthenates4, and charge-transfer insulators5,6. In con-
trast, a second type of NTE is realized from intrinsic
dynamical origins, also referred to as structural NTE
(SNTE)7, which is not obviously resultant from phase
competition and does not require quenched disorder but
seems to arise from intrinsic geometrical modes with ten-
dencies to draw in the lattice dimensions when thermally
activated. Unlike the broadened phase transition type,
SNTE appears in a wide variety of lattice systems8,9

without necessarily constraining the magnetic or elec-
tronic phase diagram. This freedom allows one to envis-
age new multifunctional materials with diverse mechan-
ical, spin, orbital, thermal, electronic, superconducting,
and more exotic order coexisting with NTE, potentially
enabling the benefits of strain control to enable new types
of order.

ScF3 is prominent among SNTE systems, forming in
the so-called “open” perovskite (ReO3-type) structure
with a small, four-atom unit cell and cubic symmetry at
all temperatures below the high melting point of 1800K
(Fig 1a)10–16. The linear coefficient of thermal expan-
sion (CTE) of this material is isotropic, strongly negative,
and persistent over 1000K temperature window10. Com-
bined computational and inelastic scattering work11 has

described the configurational potential for R point distor-
tions as having a nearly quartic form at small displace-
ment, presenting an interesting limit of lattice dynamics.
Further inelastic scattering investigations on single crys-
tals aimed at exploring the consequences of this unusual
situation discovered an incipient soft-mode instability12

implying the development of a structural instability with
a small extrapolated critical temperature Tc<0. This
result implies that while similar compounds like TiF3

realize a cubic-to-rhombohedral structural phase tran-
sition, the transition is never realized in ScF3, except
under an extremely small <1kbar hydrostatic pressure
at cryogenic temperatures. These special circumstances
are contextualized in Figure 1a, which shows the global
structural phase diagram of 3d transition metal triflu-
orides BF3 as a function of the B+3 ionic radius, rB .
The occurrence of the endpoint of a structural phase
boundary so near the ground state of a stoichiometric
compound is extremely rare, as is the pronounced SNTE
property of ScF3. The confluence of these unusual cir-
cumstances raises the broad question of whether SNTE
can arise as unusual behavior above structural quan-
tum phase transitions (SQPTs) associated with trans-
verse shifts of linking units between volume-defining ver-
tices. To directly address this issue, we have explored the
thermal expansion behavior and lattice fluctuation spec-
tra in optical/detector quality single crystals of a second
stoichiometric SQPT material Hg2I2, known colloquially
as protiodide17.

Figure 1b summarizes the known structural phase di-
agram of the mercurous halides Hg2X2 (X=Cl,Br,I) as
a function of the X− ionic radius17, rX . The high sym-
metry structure in this case is body-centered tetragonal
(BCT; Fig 1e) and can be described as a dense packing
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FIG. 1: Structural phase diagrams of (a) 3d transition
metal trifluorides BF3 and (b) mercurous halides Hg2X2.
Open circles represent solid solutions Sc1−xTixF3

18 and
Hg2(Br1−xIx)2

19, respectively. Insets show the basic volume-
defining polyhedral units: (a) the BF6 octahedron and (b) the
elongated square dipyramid (ESD). (c-f) Schematic structures
of the (c) cubic trifluoride (d) rhombohedral trifluoride (e)
body-centered tetragonal mercury halide, and (f) orthorhom-
bic mercury halide. The lower panels in (e) and (f) show views
down the 001 axis, showing the shift pattern of the Hg dimer
across the structural transition and gray line show the BCT
unit cell and the black diamond in (f) shows the orthorhombic
unit cell.

of X-Hg-Hg-X linear molecules oriented along the tetrag-
onal c axis20. The basic structural unit that defines the
high-temperature unit cell is an elongated square dipyra-
mid (ESD) formed as a cage with parts of 10 X− ions
surrounding a Hg dimer oriented along c, shown in Fig-
ure 1b inset and Figure 4b. The structural transition
to the orthorhombic phase can be described as a freez-
ing of the Hg dimer transverse fluctuation in a staggered
pattern (Fig. 1f) at the X point of the BCT Brillouin
zone.

Single crystals of Hg2I2 and Hg2Br2 were prepared
from purified materials using physical vapor deposi-
tion as previously reported17. Diffraction and inelas-
tic X-ray scattering (IXS) data were collected using the
HERIX spectrometer in sector 30 of the Advanced Pho-
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FIG. 2: Temperature-dependent lattice parameters of (a,c)
ScF3 and TiF3 from references10,12,21, and (b,d,f) Hg2I2, and
Hg2Br2. The mercurous halide c axis parameters were col-
lected from the 004 and 008 reflections and the a,b parame-
ters are derived from the 300 and 030 twin reflections. The
panel (e) shows a schematic free energy landscape of high,
low, and transitioning systems near the SQPT. (f) Shows an
intermolecular potential appropriate for bond-stretch coordi-
nates. The mean separation is indicated by a dashed curve,
illustrating the positive thermal expansion effect of this type
of excitation. Horizontal arrows in (e) and (f) show the fluc-
tuation domain in each case. (g) Planar lattice parameters
for Hg2Br2 and Hg2I2.

ton Source, Argonne National Laboratory. Figure 2
shows the lattice parameters of ScF3

10 and Hg2I2 along
with data from their nearest realized structural transi-
tions in TiF3

18 and Hg2Br2, respectively, for comparison.
In the case of TiF3 (Fig 2a), the cubic-to-rhombohedral
transition has profound effects on the lattice dimen-
sions, showing a signature step of a first order transi-
tion and subsequent continuous order parameter devel-
opment, shrinking ∼3% between the structural transition
temperature Tc and base temperature21. The hexagonal
c axis on the other hand displays SNTE similar in mag-
nitude to the negative CTE observed along the cubic a
axis of ScF3 in the same temperature range. The lat-
tice expansion of the realized transition in Hg2Br2 bears
remarkable resemblance, with a significant reduction in
tetragonal c axis lattice parameter below the transition,
changing 4.5% between 150K and base temperature. The
transition appears to be nearly continuous, consistent
with prior work22. The c axis of Hg2I2 however shows a
strongly negative CTE below 100K shown in Figure 2d,
reaching a significant low-temperature value of -5ppm/K.
While negative values of the c-axis compressibility have
been noted in mercurous halides23, SNTE in Hg2I2 has
not been reported to our knowledge.

The similarities to the fluorides are striking - both real-
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ized transitions TiF3 and Hg2Br2 show a strong positive
CTE below their respective transitions while the systems
tuned near SQPTs show SNTE in high symmetry di-
rections aligned with a linkage undergoing strong trans-
verse fluctuations at the lowest temperatures. Beyond
the phase diagram and structural motifs, we note other
gross similarities between these two material classes:
they are ionic insulators with no reported magnetism
or free carriers and retain high symmetry structures at
all temperatures below their respective melting temper-
atures. Furthermore, both systems are driven to lower
symmetry phases at modest pressure and ambient tem-
perature (ScF3 cubic-to-rhombohedral at pc=7kbar and
300K10; Hg2I2 body-center-tetragonal-to-orthorhombic
at pc=9kbar and 300K24) or very low pressure at cryo-
genic temperatures (estimated pc∼1kbar for both sys-
tems at 4K10,25). We note also analogous structural mo-
tifs: the bridging F ion in ScF3, which occurs in all three
spatial directions and the bridging Hg dimer, which is
oriented along the c axis in the mercurous halides.

Figs 2c,d show remarkable similarities in the func-
tional form of the CTE of Hg2I2 and ScF3, which
strengthen significantly at low temperature, implying the
relevant lattice modes lie at extremely low energy. Apart
from exceptional cases26,27, the influence of higher-energy
bond-stretch excitations are expected to provide positive
thermal expansion influences which generically compete
with SNTE due to the short-range hardening and long-
range softening of central force interionic potentials (Fig.
2f)28,29, which explains the overwhelming prevalence of
positive thermal expansion in materials at ambient tem-
perature. For Hg2I2, the magnitude of the c-CTE (-
5ppm/K) is about one third of the maximum a-CTE
in ScF3 (-14ppm/K) and the range of thermal persis-
tence is also reduced about 10-fold. This suppression
can be partially explained by the much larger mass in
the iodide case (ScF3 density 2.53g/cm3; Hg2I2 density
7.7g/cm3), which significantly reduces the phonon band-
width (∼140meV in ScF3

15 and ∼25meV in Hg2I2
24)

and activation energy for bond-stretch dynamics which
compete with and ultimately overtake the SNTE ef-
fect. We point out further that quenched disorder is
known to compete with SNTE30, and while we have
restricted our attention to pure stoichiometric systems,
the halide system is likely more disordered than the flu-
oride based on comparison of the rocking curve width
(0.002◦ for ScF3 and 0.13◦ for Hg2I2; see Supplemental
Materials62). A recent study of a SQPT achieved through
chemical substitution shows prominent elastic and ther-
modynamic anomalies near the SQPT in solid solution
LaCu6−xAux

31 but does not report SNTE near the crit-
ical composition. In contrast, both ScF3 and Hg2I2 lie
very close to the critical endpoint of a structural phase
boundary without the additional detrimental effects of
quenched disorder.

Figure 3 provides an experimental basis to demon-
strate proximities to SQPTs in ScF3 and Hg2I2, show-
ing inelastic X-ray scattering spectra at the momentum
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FIG. 3: (a) Dynamical structure factor for ScF3 collected
using inelastic X-ray scattering at the (2.5,3.5,0.5) recipro-
cal vector, corresponding to the R point of the simple cubic
Brillouin zone, shown as an inset. (b) Dynamical structure
factor for Hg2I2 collected using inelastic X-ray scattering at
the (2.5,3.5,0) reciprocal vector, corresponding to the X point
of the body-centered tetragonal Brillouin zone, shown as an
inset. (c) Soft mode frequency squared determined from fits
to the data in (a), showing the incipient ferroelastic state un-
derlies the SNTE effect in ScF3. (d) (d) Soft mode frequency
squared determined from fits to the data in (b), showing the
incipient ferroelastic state also underlies the SNTE effect in
Hg2I2.

points corresponding to the soft mode instabilities. The
trifluoride low-temperature phase can be described as a
staggered tilt of octahedra around the 111 axis (Figure
1f). This fluctuation has the (π,π,π) spatial texture of
the R point in the simple cubic Brillouin zone, shown in
Figure 3a. Also shown is a surface plot of the dynamical
structure factor S(R,ω) obtained using IXS12. At high
temperature, a Stokes and anti-Stokes mode at low fre-
quency of 3.4 meV softens considerably, approaching an
extrapolated transition temperature Tc'-39 K, as shown
in Figure 3c. This singular point in the response function
is suggestive of a flattening of the free energy landscape
in an approach to an unrealized structural phase transi-
tion and strongly supports our identification of ScF3 as
near a SQPT.

In the halide case, starting from the BCT phase, the
relevant distortion to the low-temperature orthorhom-
bic phase is a staggered shift of the Hg-Hg dimer from
the ESD central axis in the 110 direction of the basal
plane (Figure 1f) and the structural transition then cor-
responds to condensation of the transverse acoustic wave
at the X point of the BCT Brillouin zone22,32,33. Fig-
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ure 3b,d shows the evolution of S(X,ω) with tempera-
ture and an avoided condensation of a soft mode at the
X point of the body-centered tetragonal Brillouin zone
in Hg2I2. S(X,ω) also shows Stokes/anti-Stokes mode
pairs that imply a putative transition at Tc'-23 K. This
is fully consistent with previous studies on single crystals
using energy-integrated diffuse X-ray scattering showing
Tc ∼-20 K34. We explore more detailed analysis of the
influences driving these incipient structural transitions in
each case below.

For the realized structural transitions in the mercurous
halides X=Cl,Br22,34 Tc >0 and the T=0 energy land-
scape consists of four minima corresponding to the pos-
sible saturated shifts of the Hg dimers (Fig 4d). For
larger ionic radius X=I, these minima flatten and co-
alesce to the central axis, as no symmetry breaking is
observed. The flattening of the energetic landscape how-
ever induces strong temperature-dependent fluctuations
of the staggered shift, as is observed experimentally from
X-ray diffraction data as large transverse dimensions of
the Hg thermal ellipsoids, approaching 2

√
U11=0.38Å at

T=150 K for Hg2I2
35.

To gain further insight into the origin of the avoided
transition in Hg2I2, we analyze trends among the bond
lengths of the ESD, which is not regular, but rather com-
pressed (Fig 1b inset), defined by X-X bond lengths of
three varieties: the long X-X bonds (green) lying in the
basal plane, the short X-X bonds (blue) oriented along
the tetragonal c axis, and apical X-X bonds (red). Figure
4b shows reported literature values of the lengths of the
three types of X-X bond distance20,35–39. The basal pla-
nar (green) X-X bonds cluster well63 with a clear trend
far in excess of the diagonal dashed line that indicates
simplest expectation based on sphere packing. The api-
cal (red) bonds trend with ionic radius and stay near the
X ionic diameter, indicating the apical half octahedron
is flattened relative to a regular ESD but roughly satis-
fies simple packing conditions. On the contrary, the c-
oriented (blue) X-X bond is near the ionic diameter only
for X=Cl (calomel) and deviates significantly for X=Br
and even more so for the SQPT material X=I, suggestive
that the compression of the X-X bond plays a role in the
energy flattening behind the SQPT and the NTE we re-
port here. These short halide-halide bonds along c are in
a state of compression due to forces provided by the rest
of the framework64. The natural source of this compres-
sion is a net tension in the X-Hg-Hg-X linear molecule
along the c axis through the ESD center. We propose
that the origin of the coalescing energy minima can be
viewed as an effect of two competing forces: the compres-
sive stress on the c-oriented X-X bonds and the tensile
stress on the X-Hg-Hg-X linear molecule by its environ-
ment. For X=I, these forces have a near-canceling effect
which stabilizes the high-symmetry BCT structure with
large transverse dimer fluctuations inside the ESD and
the corresponding c-axis SNTE. Our identification of the
compressive/tensile balance in Hg2X2 constitutes a con-
text for the 1D “tension effect”8,14,40,41, which has been
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FIG. 4: (a) Development of the structures of the transition
metal trifluorides, with purple spheres representing F− and
silver spheres representing B+3 ions. (b) Development of the
structures of the mercurous halides with purple spheres rep-
resenting X− and silver spheres representing Hg− ions. B+3

or X− ionic radius increases from left to right in (a) and (b)
respectively. Overlayed lines show the ESD of Figure 1b inset,
where solid lines lie in the plane of the page and dashed lines
show bonds that protrude out of the plane. (c,d) Compar-
ison of the observed bond distances and expectations based
on hard sphere packing (dashed lines) for (c) transition metal
trifluorides in the cubic phase49 and (d) mercurous halides
in the BCT phase. Symbols in (d) are from corresponding
references: triangles38, squares39, pentagons37, hexagons36,
septagons50, and circles35.

observed in cyanides42,43 in 1D and 2D. The Hg linking
dimer is distinct from the linking CN complex in that it
does not set up orientational order known to exist in a
broad class of cyanides44.

Crossing the SQPT from the high symmetry side can
be viewed as an increase in the number of zero modes as
the potential landscape flattens in certain directions. In
the language of structural mechanics, a change in zero
mode count must be accompanied by a reduction in the
number of states of self stress (SSS) in the ESD poly-
hedral unit45–47, a condition which increases its stability
against deformation48. For the critical composition X=I,
a critically-tensioned linear molecule inside the ESD unit
exhibits large transverse fluctuations of the Hg dimer
which exert tension on all bonds in the c direction and
leads to the observed negative thermal expansion along
this axis which increases as the temperature is lowered
(Fig. 2d). This size-induced stiffening is also apparent in
the lowering of the melting temperature and triple points
as the X ion grows, since the entropy of the BCT phase is
reduced by the stiffening of the ESD, enabling the fluid
phase to persist at lower temperature.
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In a similar set of considerations, we analyze the evo-
lution of the basic trifluoride octahedral subunit with rB ,
used as a baseline for comparison of relative size effects.
Figure 4a shows that to a good approximation, the unit
cell dimension F-B-F ionic distance (a lattice parame-
ter) trends with rF +rB while the nearest F-F distance
grows to values significantly in excess of 2rF . We note
further that for rB>0.75Å in the rare-earth class and be-
yond, trifluorides take on other crystal structures with
B site coordination larger than n=6 in the orthorhom-
bic tysonite (n=8), and hexagonal (n=9)51 structures.
Together, these observations suggest an effective reduc-
tion of the overall stiffness of the BF6 octahedron for
large B ions through reduced interaction of the anions
situated at the octahedral vertices. In this case, a large
number of SSSs are removed as the octahedral unit loses
integrity with increasing rB . Notably, fluctuations of the
F− position transverse to the B-F-B bond are very large
in ScF3, approaching 2

√
U33=0.24Å11,14,15 at T=150 K,

consistent with this picture. In contrast to the mecha-
nism in the mercurous iodide, we expect that the onset
of pliancy of octahedral molecules stabilizes the cubic
phase, as many states are available with the average cu-
bic structure. This situation is also manifest in the high
melting point of ScF3, where the high entropy of trans-
verse bond fluctuation competes with the fluid phase as
high as 1800K.

We note that incipient lattice instabilities and broadly
systems tuned near SQPTs have recently attracted re-
newed interest52 in light of their use to develop a 50%
increase53 in superconducting transition temperature of
Nb-doped SrTiO3 in an exceptional limit of the strong
coupling theory54, while the recent observation of elec-
tronic coupling to a substrate phonon in FeSe films raises
questions regarding the possible role of substrate lat-
tice fluctuations in stabilizing film superconductivity55.
The common appearance of incipient soft modes also in
SNTE materials potentially opens promising areas for
future work combining SNTE and superconductivity to
realize new emergent phases enabled by extremal strain
conditions. Our results here suggest renewed impor-
tance of spectroscopic studies of known high-symmetry
NTE materials such as ZrW2O8

56,57, Zn(CN)2
58,59, and

Ag3[Co(CN)6]60.
The transition metal trifluoride and mercurous halide

materials bear strong similarities besides the unusual
strengthening of the SNTE effect at low temperature. In
both cases, molecular units form a high-symmetry struc-
ture whose bonds are on average straight and are situated
so as to define the linear dimensions of the crystal, a in
ScF3 and c in Hg2I2. On approach to zero temperature,
high-energy bond-stretch excitations become frozen out
quickly according to the Bose factor, while the soft mode
angular fluctuations reduce more gradually due to the
observed ω ∝

√
T dependence. These competing influ-

ences lead to trend of NTE strengthening at the low-
est temperatures and conventional expansion at elevated
temperatures and the soft mode is crucial to boost the
weak NTE influence. From this point of view, ScF3 has
extremely strong and thermally-persistent NTE behav-
ior due both to the stiff bond-stretch, three dimensional
lattice system, and proximity to the SQPT. The incipi-
ent nature of the transition is vital to this condition to
avoid a staggered strain symmetry breaking which dis-
rupts the coupling of angle to dimension. We generalize
this understanding in a proposal that candidate SNTE
materials may be identified in systems which have (i)
structural instability associated with a transverse linkage
shift between-volume-defining vertices, (ii) soft modes
and large fluctuations of the near the SQPT, (iii) low
quenched disorder and stoichiometric composition, and
(iv) relatively stiff bond-stretch excitations.
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