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Diffusion quantum Monte Carlo results are used as a reference to analyze properties related to
phase stability and magnetism in vanadium dioxide computed with various formulations of density
functional theory. We introduce metrics related to energetics, electron densities and spin densities
that give us insight on both local and global variations in the antiferromagnetic M1 and R phases.
Importantly, these metrics can address contributions arising from the challenging description of the
3d orbital physics in this material. We observe that the best description of energetics between the
structural phases does not correspond to the best accuracy in the charge density, which is consistent
with observations made recently by Medvedev et al. [Science 355, 49 (2017)] in the context of
isolated atoms. However, we do find evidence that an accurate spin density connects to correct
energetic ordering of different magnetic states in VO2, although local, semilocal, and meta-GGA
functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed
SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-
R transition and correctly predicting the ground state crystal structure. In addition to ranking
current density functionals, our reference energies and densities serve as important benchmarks for
future functional development. With our reference data, the accuracy of both the energy and the
electron density can be monitored simultaneously, which is useful for functional development. So
far, this kind of detailed high accuracy reference data for correlated materials has been absent from
the literature.

I. INTRODUCTION

Due to their unique and controllable properties, func-
tional materials are at the forefront of novel device appli-
cations and condensed matter physics. For example, in
the strongly correlated electron material vanadium diox-
ide (VO2) one such property is a thermally induced metal
to insulator transition (MIT) which is accompanied by a
change in the underlying crystal lattice structure. In ad-
dition to temperature, a variety of techniques have been
devised to control the MIT in VO2, such as photoexci-
tation, hydrostatic pressure, unaxial stress and electrical
gating1–8, opening the door to a range of possible device
applications.

At ambient pressure, the MIT occurs at Tc ≈ 341 K
for pure unstrained VO2. Below Tc unstrained VO2 is in
an insulating monoclinic phase (M1), and above Tc it is
stable in a metallic rutile phase (R)9–11. The mechanism
for the temperature driven transition between these two
phases is not yet fully resolved, with recent studies fa-
voring strong electron-electron correlations, Peierls-type
transition, or the coexistence of both12–16. For example,
very recent Hubbard model calculations would indicate
that the Mott mechanism is the dominant feature17 while
a phonon study would indicate a Peierls-type transition8.
Ab initio quantum Monte Carlo (QMC) studies demon-
strate that an accurate account of electron correlations is
crucial to predict the electronic and magnetic properties

of VO2 across the phase transition18.

Experimental studies are today often accompanied
with density functional theory (DFT)19,20 calculations
for better understanding, and DFT calculations have
been used in isolation to provide insight into the under-
lying mechanisms of the VO2 monoclinic to rutile phase
transition1,2,21–23. However, the main challenges with
DFT approaches relate to a consistent and accurate ac-
count of electronic correlation, and the calculated prop-
erties may vary rather substantially depending on the
chosen exchange-correlation functional. A recent com-
prehensive study of DFT functionals24 applied to atoms
noted that functional development has strayed in recent
years from the focus on obtaining accurate densities in
favor of reaching better energetics by empirical means.
From this point of view progress in DFT functionals
would improve both the energy and density, with these
improvements clearly visible when compared with accu-
rate benchmark data. High quality benchmark studies of
this type are rare in the solid state and more especially
in regard to highly correlated oxides such as VO2. In this
regard a benchmark quality study of these properties in
VO2 is timely.

To this end, we will utilize quantum Monte Carlo
methodology, and diffusion Monte Carlo (DMC)25 in par-
ticular, which is known for its accuracy in solving ground
state electronic structure properties for both molecular
and solid state systems from first principles18,25–28. In
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practice the main advantage of the DMC approach is
its accurate and straightforward account of electron cor-
relations29,30. Calculations of transition metal oxides
(TMOs) are challenging due to the description of corre-
lated electrons, in particular, the localization and cor-
relation related to 3d orbitals. However, successful
application of DMC to TMOs is now well established
by excellent agreement with experimental data, e.g., in
properties such as lattice constants, cohesive/formation
energies, and magnetic excitations31–42. Applications in
this domain are nevertheless fairly recent, as expansions
in computational power and improvements in QMC codes
have enabled such studies to be performed in just the last
few years.

Our main focus is directed on the differences in
the DMC and DFT in describing the antiferromagnetic
(AFM) M1 and R phases of vanadium dioxide. This mag-
netic structure is chosen because it is the lowest energy
state identified so far in the M1 phase and it is nearly de-
generate with other candidate magnetic structures in the
R phase18. We concentrate on variations in energetics,
electron densities, and electronic spin densities to address
phase stability and magnetism. The metrics introduced
in this work enable us to consider the differences in both
local and global properties of the studied system and
rank current density functionals accordingly by property.
This ranking may be of interest to DFT practitioners to
guide functional selection when fidelity to a single prop-
erty (e.g. phase stability or magnetism) is most relevant,
or if a reasonable balance of quality among properties is
sought. Since the most relevant physics (relating to the
3d orbitals) is common to many transition metal oxides,
we expect our conclusions to transfer to other materials.
In addition to ranking density functionals, our reference
energetics, charge and spin densities serve as important
benchmarks for future functional development aimed at
correlated materials.

II. METHODS AND METRICS

We have obtained energies, electron densities and spin
densities for AFM M1 and R phases of VO2 with quan-
tum Monte Carlo (QMC), i.e., variational Monte Carlo
(VMC) and DMC, as well as with DFT. The range
of DFT functionals employed include those from the
first four rungs of “Jacob’s ladder”: local functionals
(LDA43), semi-local functionals (PBE44,45, PBEsol46,47),
meta-GGA’s (TPSS48, SCAN49,50), and hybrid function-
als (PBE051, HSE52,53). We also consider Hubbard-
corrected local (LDA+U54) and semi-local (PBE+U)
functionals. The reference calculations with DMC and
a subset of DFT results use our hard norm conserving
RRKJ55 (OPT) pseudopotentials. Since the exact func-
tional does not depend on the external potential19, by
keeping the pseudopotential fixed we can better compare
local differences in DMC and DFT total and spin densi-
ties. Additionally, we have performed DFT calculations

using VASP56–59 with projector augmented wave (PAW)
potentials60,61, and Quantum Espresso (QE)62 with ul-
trasoft GBRV-potentials63, which can be used in com-
paring the formation energy (R-M1 energy difference)
and magnetization. The results with PAW and ultra-
soft pseudopotentials are labeled by “ ∗ ” (VASP-PAW)
and “ † ” (QE-GBRV) throughout the article. The Nexus
interface64 was used in the creation and execution of all
simulation workflows.

Crystal structures for the M165 and R66 phases
were obtained from the Inorganic Crystal Structure
Database67. All calculations were performed with the
experimental lattice constants. In both phases, the vana-
dium atoms are arranged in quasi-1D chains and, as
in Ref.18, an antiferromagnetic ordering was imposed
by fixing alternating up/down spin moments along the
chains. More detail on the experimental lattice vectors
and atomic coordinates of the M1 and R crystal struc-
tures are provided in the supplemental material68.

QMC simulations were carried out with QMCPACK69

in a supercell containing 16 VO2 formula units. For faster
convergence to thermodynamic limit, we used twist-
averaged boundary conditions70 with a 3×3×3 supercell
twist angle grid instead of purely periodic boundary con-
ditions. The trial wavefunction (ΨT ) used is of the
standard Slater-Jastrow71,72 type:

ΨT = det{ψ↑} det{ψ↓}eJ . (1)

The purpose of the trial wavefunction is to guide the
simulation both more accurately and more rapidly to the
ground state. A trial wavefunction with a better nodal
surface–arising from the sets of orbitals above–leads to
a more accurate DMC result. A trial wavefunction with
a better Jastrow factor improves the timestep and pseu-
dopotential localization approximations made in DMC
and also reduces the statistical variance, making the cal-
culations more efficient. Since a good trial wavefunc-
tion is important in improving the approximations made
in DMC, we describe in more detail below how we ob-
tained an optimal wavefunction within the Slater-Jastrow
ansatz.

The product of spin-up and spin-down determinants of
spatial orbitals arise from a single determinant of spin-
orbitals after fixing the electron spins, while the overall
state is a spin-unrestricted antiferromagnet33. The de-
terminants are composed of single particle orbitals taken
from spin-unrestricted LDA+U (via Quantum Espresso),
in which the correct magnetic structure was imposed by
initializing the magnetic moments in an antiferromag-
netic configuration along the V-V chains. Convergence
to the AFM state was further confirmed after the self-
consistent density functional theory calculations by anal-
ysis of the magnetic structure and spin-resolved Löwdin
charges.

In the Jastrow factor (eJ) we include terms up to three-
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body (electron-electron-ion) correlation functions, i.e.,

J =J1 + J2 + J3

=
∑

I,i

u1(|ri −RI |) +
∑

i<j

u2(|ri − rj |)

+
∑

I,i<j

u3(|ri − rj |, |ri −RI |, |rj −RI |) (2)

where ri and RI refer to electron and ion coordinates,
respectively. The u1, u2, and u3 correlation functions de-
pend, as appropriate, on both the ionic and spin species
involved. These functions are parameterized in terms of
radial B-splines in the case of u1/u2 and as a product of
low order polynomials in the case of u3

73.
The Jastrow parameters were optimized by making use

of the variational principle as applied to the total en-
ergy and the energy variance. The optimization was per-
formed by minimizing a cost function containing a 95/5
ratio of energy and variance with the linear method74,
which results in a good balance between improvements
in DMC pseudopotential localization approximation75–77

and the resulting variance of the local energy78. We
optimize the Jastrow part only with VMC, which im-
proves the description of particle-particle correlations,
but does not modify the nodal surface. The orbitals are
instead optimized directly with DMC, though within the
restricted variational freedom afforded by LDA+U.

In DMC the operator exp[−τ(Ĥ − ET)] is used to
project out the lowest eigenstate that has non-zero over-
lap with the chosen fixed node / trial wave function25,

where Ĥ is the many body Hamiltonian and ET is an
estimate of the ground state energy, which is updated
throughout the simulation. The DMC fixed node/phase
error79–81 was minimized by using the Hubbard-U value
as a variational parameter optimized directly in DMC,
with U = 3.5 eV yielding the lowest energy, which is
demonstrated in the supplemental material. In produc-
tion runs, the DMC timestep was set to 0.005 Ha−1, re-
sulting in an acceptance ratio greater than 99.6%. Non-
local pseudopotentials were handled in the DMC projec-
tor within the variational T-moves scheme77,82.

In general, our DFT calculations were performed in
the AFM magnetic primitive cell of VO2 (4 VO2 formula
units for M1 or R) using a 6×6×6 k-space grid and plane-
wave energy cutoffs of 350 Ry (OPT-potentials), 300 Ry
(GBRV-potentials), and 500 eV (VASP PAW-potentials).
For Quantum Espresso calculations involving meta-GGA
(TPSS) and hybrid functionals (PBE0, HSE), somewhat
coarser k-point grids and energy cutoffs had to be used to
reduce cost, though in all cases we estimate the expected
error to be 1 meV per formula unit or less. The con-
vergence studies mentioned above are described in more
detail in the supplemental material. Full simulation in-
puts and outputs for all QMC and DFT calculations per-
formed in this work are available via the Materials Data
Facility83 (DOI: provided upon acceptance).

Since DMC provides a “mixed” estimate of the den-
sity (a mixture between the fixed node density and the

VMC one), we have corrected the mixed estimates by
extrapolation to obtain “pure” estimates of the density,
reflecting the fixed node wave function (Φ) alone. This
is a general property of the DMC method for operators
that do not commute with the Hamiltonian. In order to
obtain pure estimates of the density, two extrapolation
formulas have been used25:

ρ1 = 2ρDMC,mixed − ρVMC +O((Φ−ΨT )2) (3)

ρ2 =
ρ2DMC,mixed

ρVMC
+O((Φ−ΨT )2). (4)

In practice, we have found that the two estimates yield
the same densities to a high degree of accuracy, consistent
with fully purified densities, and thus we report values
using Eq. (3) only. Our benchmark extrapolated DMC
total and spin densities are available in the supplemental
material68.

In order to quantify the errors incurred by the various
DFT functionals, we define a set of metrics that enable
us to assess both local and global variations from our
accurate reference. To compare functionals in terms of
energetics we use the R/M1 energy difference (∆E ≡
ER − EM1)

δE = ∆E −∆EDMC, (5)

and for densities we use the root-mean-square (RMS)
deviation of the total density (ρtot) and spin density
(ρspin = ρ↑ − ρ↓) over the unit cell

RMS(∆ρ) =

[∫
(ρ− ρDMC)2dV/V

]1/2
. (6)

We also compare DFT and DMC using a global quan-
tity related to the spin density (the “absolute magneti-
zation”)

M =

∫
|ρ↑ − ρ↓|dV, (7)

and the spherically averaged difference of total or spin
densities about vanadium atoms

ρavg = 4πr2
∫
dΩ|ρ(r,Ω)|∫

dΩ
. (8)

These metrics allow us to rank density functionals on the
basis of the quality of the two quantities fundamental to
DFT, and also to gain insight into the magnetic behavior
at the correlated V sites across the metal-insulator (R-
M1) transition.

III. RESULTS

We focus mainly on properties relevant to the struc-
tural phase stability and magnetism of VO2. We exam-
ine the quality of DFT descriptions of structural phase
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stability by comparing the zero temperature R/M1 to-
tal energy differences obtained from DFT with our DMC
benchmarks (Eq. 5). Also included in this section are
comparisons of DFT total densities with DMC (Eqs. 6
and 8). DFT descriptions of magnetism are judged
mainly on the basis of the spin density (Eqs. 6 and 8),
including the absolute magnetization per VO2 unit cell
(Eq. 7). Moreover, related to magnetic properties we
perform a spin gap study as a function of U, demonstrat-
ing a link between the quality of spin densities and the
computed spin gap.

A. Phase stability

In Table I we consider the per formula unit energy
difference between R and M1 phases of antiferromag-
netic VO2 obtained with various theoretical methods.
All values are reported relative to our DMC estimate of
ER − EM1 = 8(3) meV, which agrees very well with the
DMC value previously obtained by Zheng and Wagner
(10(6) meV)18. This study used different choices for the
pseudopotentials and underlying basis set for the QMC

TABLE I. Ranking of the functionals based on the energy
difference between R and M1 phases: ∆E = ER − EM1, and
δE = ∆E −∆EDMC. Results are ranked first by the correct
identification of the ground state structure (M1), and then
by the absolute value of the δE error metric. Energies are
given in meV/VO2, and the 1-σ statistical error of DMC is 3
meV/VO2, which provides the uncertainty for the differences.
Listed U-values for LDA+U and PBE+U are in eV. Values ob-
tained with PAW (VASP) and ultrasoft (Quantum Espresso)
pseudopotentials are labeled as “ ∗ ” or “ † ”, respectively.
Point of “chemical accuracy” (∼ 43.4 meV) is indicated by
the horizontal line after the 16th rank.

Rank Method δE Ground state
1. DMC 0(3) M1
2. LDA+U(1.0) −3(3) M1
3. PBE −3(3) M1
4. TPSS 5(3) M1
5. SCAN∗ 28(3) M1
6. VMC −19(3) R
7. LDA+U(2.0) −23(3) R
8. PBE† −28(3) R
9. TPSS∗ −29(3) R
10. HSE −29(3) R
11. PBEsol −29(3) R
12. PBE0 −31(3) R
13. LDA† −33(3) R
14. PBEsol† −34(3) R
15. LDA −34(3) R
16. LDA+U(1.0)† −38(3) R
17. PBE∗ −49(3) R
18. LDA+U(3.5) −96(3) R
19. PBE+U(3.5)∗ −127(3) R
20. PBE+U(4.0)∗ −148(3) R
21. LDA+U(6.0) −190(3) R

wavefunctions, giving confidence in the DMC simulation
methodology. The DFT functionals show a systematic
bias toward incorrectly identifying the R phase as the
ground state structure. Other than DMC, only four ap-
proaches correctly identify the M1 phase as the ground
state: PBE, TPSS, SCAN∗, and LDA+U (U = 1.0 eV).

In the case of VO2, we do not see a systematic improve-
ment in energetics as we ascend the “Jacob’s ladder” of
functionals. Strictly within calculations made with our
norm conserving pseudopotentials, we find that semilocal
(PBE) and meta-GGA (TPSS) functionals perform the
best (δE ∼ 4 meV) with local (LDA) and hybrids (PBE0,
HSE) performing worse (δE ∼ 32 meV). Despite this,
nearly all functionals appear to experience a very large
cancellation of error between the M1 and R phases, bring-
ing the energy difference within the widely used refer-
ence of “chemical accuracy” (defined as 1 kcal/mol≈ 43.4
meV)84,85 relative to the DMC benchmark value. In this
light, the various density functional approximations are
actually performing quite well–when provided with the
lowest energy magnetic structure (AFM)–as even simple
functionals are “chemically accurate”. The level of er-
ror cancellation observed here is most likely fortuitous,
as e.g. hybrid functionals have been shown to deviate by
∼ 0.5− 1.0 eV from DMC benchmarks in other contexts
such as cohesive energies and defect formation energies
in other transition metal oxides40,86–88. The results that
fall decidedly out of the range of chemical accuracy be-
long to Hubbard-corrected functionals including the U
range (3.5-5.0 eV) identified by DMC as having an opti-
mal –and therefore ostensibly physical– orbital structure.
As we see in the next subsection, the physics reflected in
this range of Hubbard U’s relates more to the magnetic
properties of VO2.

The relevant energy scale in the VO2 M1/R transition
is sufficiently small that sources of systematic error other
than the choice of functional also become relevant. Some
of the DFT results, such as for PBE and TPSS, show sen-
sitivity to pseudopotential details on the order of 21−46
meV even where significant care has been given to their
construction. For example, with the PBE functional the
formation energy with PAW and GBRV pseudopotentials
deviates from the one obtained using the OPT-potential
by 46 meV and 25 meV, respectively, while the difference
between PAW and GBRV is 21 meV with PBE.

When considering the total electronic density, we only
reference the norm conserving (OPT) pseudopotentials
for a sound comparison. In Table II we provide a rank-
ing of the theoretical methods based on the root-mean-
squared metric of the total electron density according to
Eq. (6): RMS(∆ρ) with (∆ρ = ρMethod

tot − ρDMC
tot ). In

both the M1 and R phases, the Hubbard corrected LDA
functional (with U in the 2 − 6 eV range) performs the
best in terms of overall accuracy of the electron den-
sity. Also in both phases, hybrid functionals (PBE0,
HSE) perform better than the local (pure LDA) and
semi-local (PBE, PBEsol) functionals, consistent with
systematic improvements in the hybrids. The meta-
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FIG. 1. Radial distribution function of absolute total density difference from extrapolated DMC (Eq. 8) around V atom for
various theoretical methods using RRKJ pseudopotentials: (a) M1 phase, and (b) R phase. As a function of increasing U value
the LDA+U density tends to an improved accuracy, i.e., as U is increased LDA+U curves get closer to zero.

GGA functional TPSS gives a mixed performance: it is
among the worst in the M1 phase, but in the R phase
it is significantly better than the hybrids in terms of
the density. Even among the best performing function-
als there is still considerable room for improvement as
the level of accuracy afforded by an approximate three
body Jastrow factor in VMC is roughly six times better,
i.e. RMS(∆ρDFT)/RMS(∆ρVMC) & 6.

Looking across the M1 to R transition, most function-
als (excepting LDA+U and TPSS) perform significantly
worse in terms of the density in the R phase than for
M1, though this bears little discernible relationship to
the performance of the functionals in terms of energet-

TABLE II. Ranking based on the RMS deviation of the total
electron density from extrapolated DMC according to Eq. (6):
RMS(∆ρ) with ∆ρ = ρMethod

tot − ρDMC
tot . DMC-extrap refers to

the most accurate evaluation of an observable from diffusion
Monte Carlo (extrapolated estimate of Eq. 3), and is used as

a reference. Density deviations are given in units of Ne/Å
3
.

M1 phase R phase
Rank Method RMS(∆ρ) Method RMS(∆ρ)

1. DMC-extrap 0.000 DMC-extrap 0.000
2. DMC-mixed 0.004 DMC-mixed 0.004
3. VMC 0.009 VMC 0.008
4. LDA+U(2− 6) 0.061 LDA+U(2− 6) 0.054
5. LDA+U(1.0) 0.062 TPSS 0.063
6. PBE0 0.064 HSE 0.068
7. HSE 0.064 PBE0 0.068
8. PBEsol 0.068 LDA+U(1.0) 0.081
9. LDA 0.068 PBE 0.085
10. TPSS 0.068 PBEsol 0.087
11. PBE 0.071 LDA 0.092

ics. In Fig. 1 we show spatial variations in the electron
density with respect to DMC according to Eq. (8). We
concentrate on a spherical region around one vanadium
atom up to r = 1.43Å, and provide the radial distribu-
tion function of the absolute density difference. Here it
should be emphasized that in the M1 phase there are two
inequivalent V atoms, but for roughly r < 1.9Å there
are no discernible differences in the radial metric. In
both phases the density errors tend to peak where the
density itself is also the highest: near the peak of the
d -orbitals. This clear “bump” in the radial error dis-
tributions demonstrates that the DFT functionals are
in general not capturing the 3d orbital well. A small
3d error is also very weakly present in VMC and DMC-
mixed curves, which shows the effect of the more accurate
extrapolated estimator. It should be noted that for an
exact input trial wave function both VMC and DMC-
mixed curves would collapse to zero. For reference, the
non-local cutoff radius of our norm-conserving V pseu-
dopotential is at 0.42Å, which is also near the d -peak.

Despite LDA+U(1.0eV) and PBE being ranked as sec-
ond and third in terms of energetics (see Table I) they
do not excel in density metrics around the V atom. Con-
sistent with the global RMS density metric in Table II,
the variations are noticeably increased by going from M1
phase to R phase. Within this transition it seems that
only LDA+U with the larger U-values (U ≥ 2.0 eV) as
well as TPSS tend to maintain or even slightly improve
the accuracy across the M1 to R transition. However,
apart from TPSS these are ranked rather poorly in terms
of the energy difference between the two phases.
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B. Magnetism

An accurate description of magnetism is essential to
obtain a correct account of the structural phase stability
in VO2. As has been shown in prior DFT studies22,89, the
calculated energy differences between different magnetic
configurations in a single structural phase can be larger
than the expected enthalpy of formation based on exper-
iment. It is therefore pertinent to explore the magnetic
properties of the various functionals, as represented by
the spin density, relative to our DMC benchmarks. As
before, we consider the AFM state, which is the low-
est energy state observed so far in the M1 phase and
which is effectively degenerate with other magnetic states
in the paramagnetic R phase according to recent DMC
calculations18.

In Table III we provide the ranking related to accuracy
in electronic spin density by the root-mean-squared met-
ric of ∆ρ = ρMethod

spin − ρDMC
spin . Based on the results, the

density functionals considered are generally more accu-
rate in their description of the spin density than the total
density. For the most accurate functionals, the observed
errors are only about 2 − 3× greater than VMC versus
the factor of six observed for the total density. Overall
the DMC optimized LDA+U functional (U = 3.5 eV)
performs substantially better than the others, indicating
that the optimal U–in terms of the DMC energy–is being
selected based on the correct description of local mag-
netic moments. In the M1 phase, improvements to the
spin density exactly follow the expected progression with
the errors following LDA>PBE>TPSS>HSE. Crossing
the transition to the metallic R phase, this ordering is
largely preserved but with the hybrids now lagging be-
hind meta-GGA. Local, semilocal, and hybrid functionals
all experience a large increase in the spin density error in

TABLE III. Ranking related to description of magnetism.
The ranking is based on the RMS deviation of the spin den-
sity from extrapolated DMC according to Eq. (6): RMS(∆ρ)
with ∆ρ = ρMethod

spin −ρDMC
spin . Spin density deviations are given

in units of Ne/Å
3
.

M1 phase R phase
Rank Method RMS(∆ρspin) Method RMS(∆ρspin)

1. DMC-extrap 0.000 DMC-extrap 0.000
2. DMC-mixed 0.003 DMC-mixed 0.003
3. VMC 0.006 VMC 0.007
4. LDA+U(3.5) 0.016 LDA+U(3.5) 0.015
5. PBE0 0.022 LDA+U(2.0) 0.016
6. HSE 0.022 TPSS 0.019
7. LDA+U(2.0) 0.022 LDA+U(6.0) 0.020
8. LDA+U(6.0) 0.024 HSE 0.049
9. TPSS 0.024 PBE0 0.050
10. PBE 0.039 PBE 0.073
11. LDA+U(1.0) 0.047 LDA+U(1.0) 0.080
12. PBEsol 0.064 PBEsol 0.088
13. LDA 0.153 LDA 0.113

the R phase relative to M1, while for LDA+U(3.5) and
TPSS the density errors remain unaffected by the struc-
tural transition. The source of these large differences is
purely angular in nature as can be seen by inspecting
the local magnetic moments and the angularly sensitive
radial error metric of Eq. (8) (see supplemental material
Figs. 6 and 7).

Variations in total magnetic moment across the tran-
sition can be probed by calculating the absolute magne-
tization via Eq. (7) for both the M1 and R phases. In
Fig. 2 we show how the absolute magnetization M =∫
|ρ↑− ρ↓|dV changes as one selects among the available

theoretical methods. The vertical gray line separates re-
sults calculated with PAW (VASP) and OPT (Quantum
Espresso) potentials. Results for the M1 and R phases
of VO2 are represented by blue circles and red squares,
respectively. A key property we observe is that the total
magnetic moment–which is concentrated primarily on the
V sites– remains essentially unchanged at about 1.1µB

across the M1/R transition. This result is indicated by
the horizontal dashed lines in Fig. 2.

In DFT the total magnetic moment is very sensitive
to the functional employed and we observe two features
of general interest in the data. First, as we ascend the
“Jacob’s ladder” of functionals (from local functionals
to hybrids), we observe the total magnetic moment ap-
proaching the DMC benchmark values for each struc-
tural phase. Hybrid functionals and Hubbard corrected
functionals (for selected values of U) attain almost to-
tal agreement with DMC on this measure. Second, and
perhaps more interesting, functionals that most under-
estimate the magnetic moment in the R phase show in-
creasingly greater imbalance toward demagnetization in
the M1 phase.

This can be interpreted as a direct reflection of the
degree of self-interaction error present in a given func-
tional. Self-interaction error relates to the lack of prefer-
ential localization of charge on separated atoms. In both
phases, the vanadium atoms are arranged on effectively
one dimensional chains. In the R phase, the V atoms are
equidistant and we might expect that functionals with a
larger self-interaction error will tend to delocalize charge
across the neighboring V sites. In the AFM state, neigh-
boring atoms contain localized 3d charge of opposing
spin, and so the charge delocalization leads to a reduction
in the local magnetic moment. This effect is enhanced in
the M1 phase, where the primary structural change is
that the V atoms are no longer equidistant but dimerize,
forming pairs. This increase in proximity leads to fur-
ther erroneous charge sharing and hence a stronger shift
toward demagnetization. Along these lines, we should
note that among the non-hybrids the recently developed
SCAN functional stands out as remaining nearly bal-
anced in terms of magnetization across the transition.
This is consistent with the notion that the enforcement
of the known exact constraints on the functional has ef-
fectively reduced, though not eliminated, self-interaction
error.
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FIG. 2. Magnetization M =
∫
|ρ↑ − ρ↓|dV in units of

Ne/formula unit from different methods for the two consid-
ered phases: M1 (blue) and R (red). The asterisk symbol
refers to PAW results with VASP, where the U-values are
3.5 eV (left), and 4.0 eV (right). The other results are ob-
tained with hard norm conserving pseudopotential (OPT) us-
ing Quantum Espresso. For the DMC values we have used the
spin density from the extrapolated estimator.

It is also interesting to consider the relationship be-
tween spin density quality and the reproduction of refer-
ence spin gaps. With the OPT-potentials and LDA+U
we performed a spin gap study as a function of U,
where we consider the energy differences in the M1 phase
between AFM, ferromagnetic (FM), and non-magnetic
(NM) orderings. This is shown in Fig. 3 where we com-
pare LDA+U results with different U-values (solid sym-
bols) to DMC18 (horizontal dashed lines). The vertical
gray line marks the location of the optimal U value ac-
cording to the variational DMC total energy. For this U
value, the LDA+U results (EFM−AFM ∼ 80 meV (esti-
mated), ENM−AFM = 380 meV) are quite similar to the
DMC spin gap values and it is also at this point that
the LDA+U magnetic moment is correct (See Fig. 3).
As HSE also gets the magnetic moment close to correct,
we compare to previously calculated spin gaps. In Ref.89

the FM-AFM difference is found to be 102 meV with the
non-magnetic state (NM-AFM) residing at 463 meV. For
comparison the DMC values18 are EFM−AFM = 123(6)
meV and ENM−AFM ≈ 360 meV. Unlike total energies
and densities, these results suggest a close connection
between the quality of spin energetics and spin densities
in VO2 for current generation functionals.

In general, many functionals have in common the chal-
lenges related to strongly correlated systems, e.g., in-
creased self-interaction error arising from the localized
3d orbitals. Currently, these challenges can be tuned to
some extent, e.g., by an “optimized” U, which requires
external information to determine. Optimizing the U-
parameter seems to have a clear correlation to improving
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FIG. 3. LDA+U spin gap as a function of U for M1 VO2. The
energy of the ferromagnetic (FM) and fully spin unpolarized
(or non-magnetic, NM) states are shown relative to the anti-
ferromagnetic (AFM) state. Cubic fits to the data–performed
prior to referencing against AFM–are shown as solid lines.
Dashed lines correspond to the DMC results from Ref. 18.
Ferromagnetic calculations in the range U = 2 − 6 eV were
unstable.

the accuracy in modeling the magnetic properties, how-
ever, within the density functional theory framework this
does not relate to improvements in the formation energy.
The most common consequence of a poorly ranked func-
tional is that even if one property can be obtained rela-
tively accurately, obtaining reliable conclusions on other
properties is not guaranteed. For example, predicting
energetically the correct ground state structure does not
imply that magnetic properties or phase stability would
be described reliably. Overall, an accurate account of
both the energy and density remains elusive as function-
als that show the closest fidelity to either energetics (the
meta-GGA’s) or the (spin) density (hybrids and tuned
LDA+U) generally retain significant room for improve-
ment in the description of electronic correlation evident
in both areas. Therefore, we hope that the extensive
data we provide will be efficiently utilized in developing
functionals that can capture all the properties reliably.

IV. CONCLUSIONS

In this work we used the diffusion Monte Carlo method
as a reference in comparing properties related to phase
stability and magnetism in vanadium dioxide within den-
sity functional theory using current generation function-
als ascending “Jacob’s ladder”. The main focus was di-
rected on antiferromagnetic VO2 in M1 and R phases, for
which our local and global metrics based on energetics,
total density and spin density address the limitations in
the description of correlated 3d orbital physics present in
currently available density functionals. As in the recent
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study for atoms by Medvedev et al.24, we also come to
the conclusion that the best match regarding total ener-
gies does not necessarily connect with the best match in
the electron density.

In terms of phase stability, functionals which pre-
dicted the correct zero temperature structure (the M1
phase) showed mixed performance in terms of the to-
tal charge density. We do however find evidence that
accurate spin densities are related to obtaining correct
energy orderings of magnetic states. The density func-
tionals surveyed displayed a wide variation in the calcu-
lated V-site magnetic moment–generally tending toward
demagnetization–which can be reconciled in terms of self-
interaction error.

Our work provides accurate energetics, charge and spin
densities which serve as important benchmarks for future
functional development both in general and especially
in addressing the challenges related to the description
of correlated 3d orbital physics within transition metal
oxides. Importantly, our benchmark/reference data en-
ables the accuracy of both the energy and the elec-
tron density to be monitored simultaneously, which is
useful for functional development towards an exchange-

correlation functional with exact properties. So far, this
kind of detailed high accuracy reference data for cor-
related materials–for which VO2 may be viewed as a
prototype– has been absent from the literature. Due to
the noticeable challenges arising from self-interaction er-
ror and description of 3d orbitals we believe our reference
data has potential to enable improvements in future den-
sity functionals.
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35 J. Kolorenč, S. Hu, and L. Mitas, Phys. Rev. B 82, 115108

(2010).
36 K. Foyevtsova, J. T. Krogel, J. Kim, P. R. C. Kent,

E. Dagotto, and F. A. Reboredo, Phys. Rev. X 4, 031003
(2014).

37 L. K. Wagner and P. Abbamonte, Phys. Rev. B 90, 125129
(2014).

38 J. Yu, L. K. Wagner, and E. Ertekin, J. Chem. Phys. 143,
224707 (2015).

39 Y. Luo, A. Benali, L. Shulenburger, J. T. Krogel,
O. Heinonen, and P. R. C. Kent, New Journal of Physics
18, 113049 (2016).

40 J. A. Santana, J. T. Krogel, P. R. C. Kent, and F. A.
Reboredo, J. Chem. Phys. 144, 174707 (2016).

41 A. Benali, L. Shulenburger, J. T. Krogel, X. Zhong,
P. R. C. Kent, and O. Heinonen, Phys. Chem. Chem.
Phys. 18, 18323 (2016).

42 K. Doblhoff-Dier, J. Meyer, P. E. Hoggan, G.-J. Kroes,
and L. K. Wagner, J. Chem. Theory Comput. 12, 2583
(2016).

43 J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
44 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.

Lett. 77, 3865 (1996).
45 J. P. Perdew, K. Burke, , and M. Ernzerhof, Phys. Rev.

Lett. 78, 1396 (1997).
46 J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov,

G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke,
Phys. Rev. Lett. 100, 136406 (2008).

47 J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov,
G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke,
Phys. Rev. Lett. 102, 039902(E) (2009).

48 J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria,
Phys. Rev. Lett. 91, 146401 (2003).

49 J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett.
115, 036402 (2015).

50 J. Sun, R. C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky,
H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu, M. L.
Klein, and J. P. Perdew, Nature Chem. 8, 831 (2016).

51 J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys.
105, 9982 (1996).

52 J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys.
118, 8207 (2003).

53 J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys.
124, 219906 (2006).

54 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Physical
Review B 44, 943 (1991).

55 A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D.
Joannopoulos, Phys. Rev. B 41, 1227 (1990).

56 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
57 G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
58 G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15

(1996).
59 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169

(1996).
60 P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
61 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
62 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,

C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-
cioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fab-
ris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougous-
sis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P.
Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcov-
itch, J. Phys.: Condensed Matter 21, 395502 (2009).

63 K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Van-
derbilt, Computational Materials Science 81, 446 (2014).

64 J. T. Krogel, Comput. Phys. Commun. 198, 154 (2016).
65 J. Longo and P. Kierkegaard, Acta Chemica Scandinavica

24, 420 (1970).
66 M. Ghedira, H. Vincent, M. Marezio, and J. Launay, J.

Solid State Chem. 22, 423 (1977).
67 M. Hellenbrandt, Crystallography Reviews 10, 17 (2004).
68 Supplemental Material .
69 J. Kim, K. P. Esler, J. McMinis, M. A. Morales, B. K.

Clark, L. Shulenburger, and D. M. Ceperley, J. Phys. Conf.
Ser. 402, 012008 (2012).

70 C. Lin, F. H. Zong, and D. M. Ceperley, Phys. Rev. E 64,
016702 (2001).

71 J. C. Slater, Phys. Rev. 34, 1293 (1929).
72 R. Jastrow, Phys. Rev. 98, 1479 (1955).
73 N. D. Drummond, M. D. Towler, and R. J. Needs, Phys.

Rev. B 70, 235119 (2004).
74 C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and

R. G. Hennig, Phys. Rev. Lett. 98, 110201 (2007).
75 M. M. Hurley and P. A. Christiansen, J. Chem. Phys. 86,

10691070 (1987).
76 L. Mitas, E. L. Shirley, and D. M. Ceperley, J. Chem.

Phys. 95, 34673475 (1991).
77 M. Casula, Phys. Rev. B 74, 161102 (2006).
78 C. J. Umrigar and C. Filippi, Phys. Rev. Lett. 94, 150201

(2005).
79 J. B. Anderson, J. Chem. Phys. 63, 1499 (1975).
80 J. B. Anderson, J. Chem. Phys. 65, 4121 (1976).
81 G. Ortiz, D. M. Ceperley, and R. M. Martin, Phys. Rev.

Lett. 71, 2777 (1993).
82 M. Casula, C. Filippi, and S. Sorella, Phys. Rev. Lett. 95,

100201 (2005).
83 B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan,

S. Tuecke, and I. Foster, JOM 68, 2045 (2016).
84 W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
85 J. A. Pople, Rev. Mod. Phys. 71, 1267 (1999).
86 J. A. Santana, J. T. Krogel, J. Kim, P. R. C. Kent, and

F. A. Reboredo, J. Chem. Phys. 142, 164705 (2015).



10

87 C. Mitra, J. T. Krogel, J. A. Santana, and F. A. Reboredo,
J. Chem. Phys. 143, 164710 (2015).

88 J. A. Santana, J. T. Krogel, P. R. C. Kent, and F. A.
Reboredo, J. Chem. Phys. 147, 034701 (2017).

89 R. Grau-Crespo, H. Wang, and U. Schwingenschlögl,
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