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Machine learning interatomic potentials (MLIPs) based on a large dataset obtained by density
functional theory (DFT) calculation have been developed recently. This study gives both conceptual
and practical bases for the high accuracy of MLIPs, although MLIPs have been considered to be
simply an accurate black-box description of atomic energy. We also construct the most accurate
MLIP of the elemental Ti ever reported using a linearized MLIP framework and many angular-
dependent descriptors, which also corresponds to a generalization of the modified embedded atom
method (MEAM) potential.

PACS numbers: 31.50.Bc,34.20.-b,65.40.-b,71.15.Pd

I. INTRODUCTION

Interatomic potentials (IPs) have played a central role
in performing atomistic simulations, such as molecular
dynamics simulation. A wide variety of conventional
IPs have been developed by considering the nature of
chemical bonding in specific systems of interest, such as
Lennard-Jones[1], embedded atom method (EAM)[2–4],
modified EAM (MEAM)[5, 6], and Tersoff[7–9] poten-
tials. However, the accuracy and transferability of con-
ventional IPs are often lacking owing to the simplicity
of their potential forms. As an example, the phonon dis-
persion relationships of hexagonal close-packed (HCP) Ti
computed from several EAM and MEAM potentials are
shown in Fig. 1, along with that computed on the ba-
sis of the density functional theory (DFT). The overall
phonon dispersions of EAM and MEAM potentials are
scattered and markedly deviate from that obtained by
DFT calculation.
On the other hand, the machine learning IP (MLIP)

based on a large dataset obtained by DFT calculation has
great potential for improving its accuracy and transfer-
ability effectively. Once the MLIP is established, it does
not increase the order of computational cost as compared
with conventional IPs. The MLIP has also been increas-
ingly applied to a wide range of materials regardless of
their type of chemical bonding. Its frameworks and ap-
plications have recently been reported[21–31].
Although the MLIP can provide an accurate energy de-

scription, its physical interpretation or relationship with
the existing IPs is still lacking. In this study, we intro-
duce an interpretation of the MLIP on the basis of the

∗ takahashi.akira.36m@gmail.com
† seko@cms.mtl.kyoto-u.ac.jp

framework of EAM and MEAM potentials. The inter-
pretation provides a conceptual basis for the high accu-
racy of the MLIP. Secondly, we develop the most accurate
MLIP of the elemental Ti ever reported using a linearized
MLIP framework. As shown later, the high accuracy of
the linearized MLIP implies that the high accuracy and
transferability of MLIPs are based mainly on the use of a
large number of relevant descriptors, although it has been
considered that the use of flexible black-box functions,
such as neural network and Gaussian process models, is
essential for modeling atomic energy.

II. INTERPRETATION OF MLIPS

A. Embedding atomic energy in EAM and MEAM

potentials

The framework of EAM potentials is based on the con-
cept of the embedding energy of an atom into a host de-
scribed by electron density[32]. The embedding energy
of atom i is defined as a functional of the host electron
density ρ(r) expressed as

E(i) = F
(i) [ρ(r)] , (1)

where F (i) denotes the embedding energy functional
for atom i. Although the application of this concept
is not exclusive to metallic systems, the framework of
EAM potentials is compatible only with metallic systems
owing to the introduction of some approximations. A
main approximation is the uniform density approxima-
tion (UDA), in which the embedding energy is assumed
to be a function of the scalar local electron density, writ-
ten as

E(i) = F (ρ(ri)) , (2)
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FIG. 1. Phonon dispersion curves of elemental HCP Ti cal-
culated using conventional EAM[10–13] and MEAM[14–17]
potentials. Some of these curves are obtained from the inter-
atomic potential repository project[18] and KIM project[19].
Black broken lines indicate the phonon dispersion curves ob-
tained by DFT calculation. Force constants are calculated
using the lammps[20] code.

where ri denotes the position of atom i. Another one
is a pairwise approximation in which the local electron
density is assumed to be equal to the sum of contributions
from neighboring atoms expressed by a single pairwise
function. Adding a short-range pairwise interaction, the
EAM atomic energy is expressed as

E(i) = F





∑

j

p(rij)



+
1

2

∑

j

φ(rij), (3)

where p(rij) and φ(rij) denote the pairwise contribution
of the neighbor atom j to the local electron density and
short-range pairwise interaction including repulsive en-
ergy, respectively[2]. In an extended manner, the MEAM
atomic energy is given by

E(i) = F (ρ(ri)) +
1

2

∑

j

φ(rij), (4)

ρ(ri) =
∑

j

p(rij) +
∑

j,k

f(rij)f(rik)g(cos γjik), (5)

where the local electron density is described by a three-
body function g in addition to the pairwise contribution.
Since the function forms of p, f , and g have not been

established, a wide range of approximated forms have
been proposed in the literature. In addition, polynomials
and spline models have been simply used as function F .

B. Atomic energy in MLIPs

On the other hand, all MLIPs with pairwise descriptors
are formulated as

E(i) = F
(

b
(i)
10 , b

(i)
20 , . . . , b

(i)
nmax0

)

, (6)

where b
(i)
n0 denotes a pairwise descriptor expressed as

b
(i)
n0 =

∑

j

fn(rij). (7)

A large number of pairwise descriptors are generally
used for formulating MLIPs, and neural network mod-
els, Gaussian process models, and polynomials have been
used as functions F . This formulation is obviously a gen-
eralization of the EAM atomic energy. Similarly, most
MLIPs with angular-dependent descriptors are formu-
lated as

E(i) = F (b
(i)
10 , b

(i)
20 , . . . , b

(i)
11 , b

(i)
21 , . . . , b

(i)
nmaxlmax

), (8)

where b
(i)
nl denotes an angular-dependent descriptor.

Most angular-dependent descriptors specified by number
l belong to the class of angular Fourier series, which cor-
responds to a set of rotationally invariant descriptors de-
rived from spherical harmonics[27]. The angular Fourier
series is given by

b
(i)
nl =

∑

j,k

fn(rij)fn(rik) cos (lγjik) (l ≥ 1), (9)

where γjik denotes the bond angle between atoms j−i−k.
From the comparison between Eqns.(4) and (8), the for-
mulation of the MLIP with angular-dependent descrip-
tors is clearly a generalization of the MEAM potential.

C. Derivation of MLIP atomic energy from

embedding energy

We have demonstrated that the MLIP formulations
can be regarded as the generalizations of the EAM
and MEAM potentials by comparing their equations for
atomic energy. We will show that the MLIP formula-
tions can also be derived from the concept of embedding
energy using a higher-order approximation beyond the
UDA. This derivation interprets MLIPs. Using a higher-
order approximation for the embedding energy functional
(Eqn.(1)), atomic energy may be described by a function
of local electron density and its derivatives as

E(i) = F
(i) [ρ(r)]

= F

(

ρ(ri),
∂ρ

∂x
(ri),

∂ρ

∂y
(ri),

∂ρ

∂z
(ri), . . .

)

. (10)
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Then, the local electron density is assumed to be de-
scribed by direction-dependent contributions from neigh-
bor atoms, ρ(ri) =

∑

j p(rij). Eqn.(10) is rewritten as

E(i) = F





∑

j

p(rij),
∑

j

∂

∂x
p(rij),

∑

j

∂

∂y
p(rij),

∑

j

∂

∂z
p(rij), . . .



 . (11)

Expanding the electron density contribution p using a
basis set {fn(rij)}n=1,2,...,nmax

as

p(rij) =

nmax
∑

n=1

cnfn(rij), (12)

embedding atomic energy is written as

E(i) = F̃





∑

j

f1(rij), . . . ,
∑

j

fnmax
(rij)



 , (13)

where another symbol F̃ for the embedding energy func-
tion is derived from both function F and expansion coeffi-
cients {cn}n=1,2,...,nmax

. Replacing the vector rij with the
pair distance rij , Eqn.(13) becomes the pairwise MLIP
formulation. Generally, the basis set is not necessarily
pairwise. When functions based on spherical harmonics
are used as a basis set and function F̃ satisfying the rota-
tional invariance, the angular-dependent MLIP (Eqn.(8))
is derived. Thus, MLIP formulations are derived from the
concept of embedding energy using an approximation be-
yond the UDA. This implies that the lack of accuracy and
transferability of the EAM and MEAM potentials can be
ascribed to their poor representation for embedding en-
ergy due to the limitation of the UDA[33].

III. METHODOLOGY FOR BUILDING MLIP

A. Linearized models for atomic energy

On the basis of the relationship between MLIPs and
EAM potentials, we construct two MLIPs for the ele-
mental Ti in this study. The first one is constructed by
a third-order polynomial approximation of Eqn.(6) ex-
pressed as

E(i) = w0 +
∑

n

wn0b
(i)
n0 +

∑

n,n′

wn0,n′0b
(i)
n0b

(i)
n′0

+
∑

n,n′,n′′

wn0,n′0,n′′0b
(i)
n0b

(i)
n′0b

(i)
n′′0, (14)

where w0, wn0, wn0,n′0, and wn0,n′0,n′′0 denote regression
coefficients. The second one is constructed by a second-
order polynomial approximation of Eqn.(8) with angular

Fourier series descriptors expressed as

E(i) = w0 +
∑

n,l

wnlb
(i)
nl +

∑

n,l,n′,l′

wnl,n′l′b
(i)
nl b

(i)
n′l′ . (15)

Here, we fixed lmax to ten. Both the two models for the
atomic energy are rewritten in the same form as

E(i) = w⊤b(i), (16)

using the vector b(i) = [1, b
(i)
1 , · · · , b

(i)
M ]⊤ composed of

the descriptors and their products, and the vector w =
[w0, w1, · · · , wM ]⊤ composed of the regression coeffi-
cients, where M denotes the number of terms.
We used pairwise Gaussian-type functions as radial

functions fn(r) expressed as

fn(r) = fc(r) exp
[

−p(r − qn)
2
]

, (17)

where fc(r) denotes a cosine-type cutoff function. p and
qn are given parameters, and we used a single p value
and a set of qn values given by an arithmetic sequence.
Also in the EAM and MEAM potentials, Gaussian func-
tions have sometimes been used for expressing the pair-
wise electron density contribution. In addition, a polyno-
mial approximation for the embedding energy function F
has been used for EAM and MEAM potentials. There-
fore, the only difference between the MLIP and EAM
(MEAM) potentials is in the number of descriptors being
used in the formulation of atomic energy. Eqns.(14) and
(15) are also a generalization of our previous linearized
model where only the power of bn is considered[23, 34].

B. Total energy and forces acting on atoms

The total energy of a structure is expressed by the sum
of the atomic energy. Therefore, the total energy Etotal

is given as

Etotal =
∑

i

E(i) = w⊤x, (18)

where x =
∑

i b
(i). The forces acting on atoms are given

by linear equations with respect to the regression coeffi-
cients as well as the total energy. The βth component of
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the force acting on atom a is expressed as

Fa,β = −
∂Etotal

∂ra,β

= w⊤xforce,a,β, (19)

where ra,β denotes the βth component of the position of
atom a provided in Cartesian coordinates (see the Ap-
pendix for details).

C. DFT dataset

Training and test datasets were generated by DFT
calculation for 2700 and 300 atomic configurations, re-
spectively. We firstly optimized the atomic positions
and lattice constants of face-centered cubic (FCC), body-
centered cubic (BCC), HCP, simple cubic (SC), ω, and
β-Sn structures, and supercells were then developed by
the 2 × 2 × 2, 3 × 3 × 3, 3 × 3 × 3, 4 × 4 × 4, 3 × 3 × 3,
and 2× 2× 2 expansions of their conventional unit cells,
respectively. Atomic configurations were generated by
isotropic expansion, random expansions, random dis-
tortions, and random displacements. DFT calculations
were performed using the plane-wave basis projector aug-
mented wave (PAW) method[35, 36] within the Perdew–
Burke–Ernzerhof exchange-correlation functional[37] as
implemented in the vasp code[38, 39]. The cutoff energy
was set to 400 eV. The total energies converged to less
than 10−3 meV/supercell. The lattice constants of the
ideal structures were optimized until the residual forces
became less than 10−3 eV/Å.

D. Estimation of models

The regression coefficients w are estimated by linear
regression using a training data set. In this study, the
energy and the forces acting on atoms computed by DFT
calculations are used as observations for the training
data. Therefore, the predictor matrix X and observa-
tion vector y are written as

X =

[

Xenergy

Xforce

]

, y =

[

yenergy

yforce

]

, (20)

whereXenergy andXforce are composed of x and xforce,a,β

for all structures in the training data, respectively. Ob-
servation vectors of energy and forces, yenergy and yforce,
can be obtained by the energy and forces acting on atoms
computed by DFT calculations, respectively. As a result,
the total number of training data is 430650.
To estimate MLIPs, we adopt linear ridge regression,

which shrinks the regression coefficients to avoid overfit-
ting by imposing L2 penalty. This method determines
ridge coefficients to minimize the sum of residual error of
squares and L2 penalty, that is,

L(w) = ||Xw − y||22 + λ||w||22, (21)
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FIG. 2. (a) Dependence of RMSE of MLIPs on number of
terms for elemental Ti. (b) Distribution of absolute energy
difference between DFT values and MLIPs.

where λ controls the magnitude of the penalty. The solu-
tion is easily obtained only in terms of matrix operations
as w = (X⊤X + λI)−1X⊤y, where I denotes the unit
matrix.

IV. RESULT AND DISCUSSION

We will show the accuracy of MLIPs for the elemental
Ti. We regard the root mean square error (RMSE) for
the energy of the test dataset as a measure of predic-
tion error. Figure 2 (a) shows the dependence of pre-
diction error on the number of regression coefficients.
The number of regression coefficients was controlled us-
ing only the number of radial functions fn for both pair-
wise and angular-dependent MLIPs. By examining the
convergence of RMSE with respect to the number of
regression coefficients, we obtained an optimized pair-
wise MLIP with a prediction error of 3.8 meV/atom
(2925 coefficients). Similarly, we obtained an optimized
angular-dependent MLIP with a prediction error of 0.5
meV/atom (35245 coefficients), which means that it is
very important to consider angular-dependent descrip-
tors for expressing the interatomic interactions of the el-
emental Ti. Figure 2 (b) also shows the distribution of
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FIG. 3. Distribution of energy difference between DFT and
IPs.

the absolute energy difference between DFT and MLIPs
for the test dataset. The distribution for the angular-
dependent MLIP is much narrower than that for the pair-
wise MLIP, which is consistent with the degree of predic-
tion error. For the angular-dependent MLIP, more than
a hundred structures show the absolute energy difference
within only 0.1 meV/atom. In addition, some outliers
can be found in the distribution for the pairwise MLIP.
A structure shows the maximum absolute energy differ-
ence of 23.0 meV/atom of the pairwise MLIP, whereas
the absolute energy difference of the angular-dependent
MLIP does not exceed 2.8 meV/atom.

We then compare the distribution of the energy dif-
ference between DFT and IPs for the test data, elastic
constants and phonon dispersion relationships obtained
from EAM[10] and MEAM[17] potentials, the pairwise
MLIP and the angular-dependent MLIP along with a ref-
erence of the DFT calculation. Figure 3 shows the com-
parison of the distribution of energy difference between
DFT and IPs for the test dataset. EAM and MEAM
potentials show very large energy differences for almost
the entire test dataset, while both the MLIPs show very
small energy differences.

Figure 4 shows the elastic constants and bulk moduli
of (a) HCP-Ti and (b) BCC-Ti obtained from EAM and
MEAM potentials and the MLIPs. The elastic constants
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HCP-Ti and (b) BCC-Ti calculated on the basis of DFT and
IPs.

of EAM and MEAM potentials are close to those of DFT
calculation, except for the C33 of HCP and the C44 of
BCC obtained from the EAM potential. On the other
hand, the pairwise MLIP is worst for predicting most of
the elastic constants and bulk moduli of both HCP and
BCC structures, despite its small prediction error. In-
cluding angular-dependent terms, the prediction of elas-
tic constants and bulk moduli is much improved. This is
consistent with the fact that the angular-dependent de-
scriptors are essential for predicting the mechanical be-
havior of the elemental Ti.

The phonon dispersion curves were also calculated us-
ing the supercell approach[40] for HCP and BCC struc-
tures with the DFT equilibrium lattice constant. To
evaluate a dynamical matrix, each symmetrically inde-
pendent atomic position was displaced by 0.01 Å. The
forces acting on atoms were then computed. Super-
cells were fabricated by the 4 × 4 × 4 expansion of
conventional unit cells for both HCP and BCC struc-
tures. Phonon calculations were performed using the
phonopy code[41]. Figure 5 shows the phonon disper-
sion curves of (a) HCP and (b) BCC structures computed
from EAM and MEAM potentials, and the MLIPs. As
shown in Fig. 5, the phonon dispersion curves from EAM
and MEAM potentials differ largely from that obtained
by DFT calculation. Imaginary phonon modes are ob-
served in the DFT phonon dispersion for the BCC struc-
ture, but not in the EAM and MEAM phonon disper-
sions. Although the pairwise MLIP reproduces the DFT
phonon dispersion better than the EAM and MEAM po-
tentials, phonon frequencies tend to be overestimated.
The angular-dependent MLIP significantly improves the
inconsistency of phonon frequency.
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V. SUMMARY

In summary, this study provides both conceptual and
practical bases for the high accuracy of MLIPs. We have
shown that MLIPs can be regarded as a description of
embedding energy beyond the UDA, which is a funda-
mental approximation of both EAM and MEAM poten-
tials. In other words, the high accuracy of MLIPs is
based on the use of higher-order approximation of em-
bedding energy. We have then applied a linearized MLIP
approach to the elemental Ti, which is also a general-
ization of the MEAM potential. An angular-dependent
linearized MLIP predicts the energetics and phonon fre-
quencies much more accurately than the existing MEAM
potentials. The only difference between the MEAM po-
tentials and linearized MLIP is in the number of descrip-
tors being used. This indicates that the use of a system-
atic set of numerous descriptors is the most important
practical feature for building MLIPs with high accuracy.
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Appendix A: Forces acting on atoms

The force acting on atoms is obtained from the deriva-
tive of the total energy with respect to the atomic posi-
tion given in Cartesian coordinates, expressed as

Fa,β = −
∂Etotal

∂ra,β

= −

M
∑

m=0

wm

∂xm

∂ra,β
. (A1)

In the first model, xm corresponds to each of the follow-

ing terms,
∑

i b
(i)
n0,

∑

i b
(i)
n0b

(i)
n′0, and

∑

i b
(i)
n0b

(i)
n′0b

(i)
n′′0. The

derivative of b
(i)
n0 with respect to ra,β is simply given as

∂b
(i)
n0

∂ra,β
=

∑

j

f ′
n(rij)

∂rij

∂ra,β
. (A2)

The derivatives of b
(i)
n0b

(i)
n′0 and b

(i)
n0b

(i)
n′0b

(i)
n′′0 is calculated

using the derivative of b
(i)
n0, expressed as

∂b
(i)
n0b

(i)
n′0

∂ra,β
=

∂b
(i)
n0

∂ra,β
b
(i)
n′0 + b

(i)
n0

∂b
(i)
n′0

∂ra,β
(A3)

and

∂b
(i)
n0b

(i)
n′0b

(i)
n′′0

∂ra,β
=

∂b
(i)
n0

∂ra,β
b
(i)
n′0b

(i)
n′′0 + b

(i)
n0

∂b
(i)
n′0

∂ra,β
b
(i)
n′′0

+b
(i)
n0b

(i)
n′0

∂b
(i)
n′′0

∂ra,β
. (A4)
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In the second model, xm corresponds to each of the

following terms,
∑

i b
(i)
nl and

∑

i b
(i)
nl b

(i)
n′l′ . Although b

(i)
nl

is a three body descriptor, we compute b
(i)
nl using only

two-body operations. Using the Chebyshev polynomial

Tl(cos γ) = cos(lγ) =
∑

m

Tlm cosm γ, (A5)

bnl is rewritten as

b
(i)
nl =

∑

j,k

fn(rij)fn(rik) cos(lγjik)

=
∑

m

Tlm

∑

j,k

fn(rij)fn(rik) cos
m γjik. (A6)

Then,
∑

j,k

fn(rij)fn(rik) cos
m γjik

=
∑

j,k

fn(rij)fn(rik)

(

xijxik + yijyik + zijzik

rijrik

)m

=
∑

p+q+r=m

m!

p!q!r!

∑

j,k

fn(rij)fn(rik)
x
p
ijy

q
ijz

r
ijx

p
iky

q
ikz

r
ik

rmij r
m
ik

=
∑

p+q+r=m

m!

p!q!r!





∑

j

fn(rij)
x
p
ijy

q
ijz

r
ij

rmij





2

, (A7)

where xij , yij , and zij denote components of the vector

between atoms i and j. Therefore, b
(i)
nl is computed using

the following equation,

b
(i)
nl =

∑

m

Tlm

∑

p+q+r=m

m!

p!q!r!





∑

j

fn(rij)
x
p
ijy

q
ijz

r
ij

rmij





2

.

(A8)

The derivative of b
(i)
nl is also computed from Eqn.(A8) as

∂b
(i)
nl

∂ra,β
=

∑

m

Tlm

∑

p+q+r=m

m!

p!q!r!

∂
(

∑

j fn(rij)
x
p

ij
y
q

ij
zr
ij

rm
ij

)2

∂ra,β
(A9)

=
∑

m

Tlm

∑

p+q+r=m

m!

p!q!r!
· 2





∑

j

fn(rij)
x
p
ijy

q
ijz

r
ij

rmij





·
∑

j

[

∂rij

∂ra,β

1

rm+1
ij

(f ′
n(rij)rij − fn(rij)m)xp

ijy
q
ijz

r
ij +

(∂xp
ijy

q
ijz

r
ij)

∂ra,β

fn(rij)

rmij

]

.

The derivative of b
(i)
nl b

(i)
n′l′ is calculated using the deriva- tive of b

(i)
nl in a similar way to Eqn.(A3).
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