
This is the accepted manuscript made available via CHORUS. The article has been
published as:

First-principles simulations of heat transport
Marcello Puligheddu, Francois Gygi, and Giulia Galli

Phys. Rev. Materials 1, 060802 — Published 17 November 2017
DOI: 10.1103/PhysRevMaterials.1.060802

http://dx.doi.org/10.1103/PhysRevMaterials.1.060802


First Principles Simulations of Heat Transport

Marcello Puligheddu
Institute for Molecular Engineering, University of Chicago, Chicago, IL

Francois Gygi
Department of Computer Science, University of California Davis, Davis, CA

Giulia Galli∗

Institute for Molecular Engineering, University of Chicago, Chicago, IL and

Material Science Division, Argonne National Laboratory, Argonne, IL

(Dated: October 26, 2017)

Advances in understanding heat transport in solids were recently reported by both experiment and
theory. However an efficient and predictive quantum simulation framework to investigate thermal
properties of solids, with the same complexity as classical simulations, has not yet been developed.
Here we present a method to compute the thermal conductivity of solids by performing ab initio

molecular dynamics at close to equilibrium conditions, which only requires calculations of first
principles trajectories and atomic forces, thus avoiding direct computation of heat currents and
energy densities. In addition the method requires much shorter sequential simulation times than
ordinary molecular dynamics techniques, making it applicable within density functional theory.
We discuss results for a representative oxide, MgO, at different temperatures and for ordered and
nanostructured morphologies, showing the performance of the method in different conditions.

The ability to predict the thermal properties of solids
is critical to understanding the thermal management
of opto-electronic and energy conversion devices[1, 2],
and to designing efficient thermoelectric materials [3–5].
Many studies have been devoted in recent years to both
gaining a deeper understanding of heat transport of solids
at the atomistic and molecular level [6], and to develop-
ing experimental and computational techniques to study
the thermal properties of complex materials[7–13]. Ro-
bust progress has been made in the measurement and
computation of fundamental properties, such as the ther-
mal conductivity. For example the development of 3ω
[14], and of time or frequency domain thermo-reflectance
(TDTR and FDTR) methods has allowed one to probe
phonon mean free path distributions [15–17] and to re-
visit the concept of average phonon mean free path; this
concept has been widely used to interpret experiments
but it may be insufficient to describe the thermal trans-
port of solids, even that of simple crystals such as Si.
[18].
To date, most calculations of the thermal conductiv-

ity, especially those for large systems, have been carried
out using empirical interatomic potentials (EIP), that
are available only for some classes of materials and of-
ten have limited predictive power. However several ab
initio methods have been proposed in the recent litera-
ture, based on approximate solutions of the Boltzmann
Transport Equation (BTE) [7, 8], on Green Kubo (GK)
formulations [9, 10], and using non equilibrium molecu-
lar dynamics (NEMD) [12, 13]. Approximate solutions
of the BTE include several techniques to compute force
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constants, e.g. compressive sensing[12], and often incor-
porate anharmonic terms only up to the third derivatives
of the energy. The BTE can then be solved employing
iterative methods [19, 20], the simpler single mode relax-
ation time approximation [21], or the eigenstates of the
phonon scattering matrix (relaxons)[11].

The methods proposed in Ref. [9, 10] are the only
available ab initio GK dynamical formulations to date,
and they represent remarkable progress in the field. Nev-
ertheless these approaches are computationally rather de-
manding, as they involve either repeated solutions of
the Sternheimer equation to calculate the heat current
within Density Functional Perturbation Theory [22], or
the calculation of electronic contributions to the virial
tensor of each atom [10]. In addition, the method of ref.
[10] is specifically designed for solids at equilibrium, as
it involves the diagonalization of the dynamical matrix.
Ab initio non equilibrium MD calculations have been re-
ported, using homogeneous NEMD [12] and hence involv-
ing the explicit calculations of heat currents or using the
method of Ref. [13, 23], which faces serious convergence
challenges as a function of simulation time (see SI [24]
for specific examples).

Addressing the need for an efficient and general quan-
tum simulation framework for thermal properties of ma-
terials, we present a method to simulate heat transport
from first principles, which can be employed for predic-
tive calculations of complex, homogeneous and heteroge-
neous solids. We generalize the approach to equilibrium
molecular dynamics [25, 26] (AEMD) method by imple-
menting sinusoidal temperature gradients, thus avoiding
temperature discontinuities. We call this approach sinu-
soidal AEMD (SAEMD). We then show that SAEMD can
be applied in a straightforward manner to the calculation
of thermal conductivity using density functional theory
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(DFT). This approach only requires the computation of
MD trajectories and atomic forces, with no additional
calculation of energy derivatives, e.g. force constants,
energy densities or direct calculations of currents. The
precision of the method can be systematically increased
by parallel computations on multiple replicas, thus re-
quiring much shorter sequential simulation times than
ordinary non equilibrium techniques. Below we briefly
describe our formulation and we discuss results obtained
with classical potentials and first principles molecular dy-
namics. We then compare our findings to experimental
data, previous simulations and our own calculations us-
ing the GK method.
Within the AEMD approach the average temperature

of a solid is arbitrarily changed by a discontinuous tem-
perature profile; subsequently the way equilibrium is ap-
proached after applying the perturbation is monitored,
by carrying out an NVE (constant number of particles
N, volume V and energy E) simulation. In particular the
temporal decay of T towards an equilibrium value is used
to calculate the thermal conductivity. AEMD has been
successfully applied to crystalline and amorphous solids
and alloys [26], as well as to 2D and nanostructured ma-
terials such as nanocrystalline silicon [26], Si-Ge alloy
nanocomposites [27], graphene [28, 29], graphane, [30],
and porous Si nanowires[31]. In our calculations we used
local Nose-Hoover thermostats to impose the initial sinu-
soidal, and hence continuous, temperature profile T(z,0),
which is position dependent:

T (z, 0) = T0 +
∆T0

2
sin(

2πz

Lz

) (1)

where z is the direction of heat propagation, T0 is the av-
erage temperature and ∆T0 is the peak to peak difference
in the temperature applied to a slab chosen to represent
the system of interest, and periodically repeated in x,y,z.
These initial conditions lead to a simple, analytical solu-
tion of the heat equation, given by:

T (z, t) = T0 +
∆T0

2
sin(

2πz

Lz

)e−γ2

1
αt (2)

where γ1 = 2π/Lz and the thermal diffusivity α = κ/ρcv,
where ρ is the density and cv is the volumetric heat ca-
pacity. The difference between the average temperature
of the two sides of the system subject to the sinusoidal
T profile is

∆T (t) =
2

Lz

∫
Lz

2

0

T (z, t) dz −
2

Lz

∫ Lz

Lz

2

T (z, t) dz (3)

=
2∆T0

π
e−γ2

1
αt (4)

At variance with the original AEMD approach, only
the fundamental mode is present when using sinusoidal
gradients, and thus no higher harmonics in the Fourier
expansion of the temperature profile need be considered.
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FIG. 1. Top: Temperature profile along the heat transport di-
rection z, averaged over 30 samples, for a classical molecular
dynamics run performed at 1000K for MgO. Smooth, con-
tinuous solid lines represent analytical solutions of the heat
equation. Note the rapid decay of the sinusoidal profile to
zero over 10 ps (blue line). Bottom: Difference in the aver-
age temperature (∆T (t)) between the hot and cold side of a
periodic slab representing MgO, as a function of time, dur-
ing a molecular dynamics run at constant volume and energy,
carried out after the application of a sinusoidal temperature
profile (Eq.1). We show first principles results (black line)
obtained for a slab with 960 atoms at 500K, and classical re-
sult (red line) for the same size slab, but averaged over 30
samples. Solid lines are the results of a fit to Eq. 4. The rate
of decay of ∆T is proportional to the thermal conductivity.

The thermal diffusivity α is obtained by fitting the ex-
pression of ∆T in Eq. 4, as obtained during an NVE
run. As an example, in Fig. 1 (top panel) we show the
instantaneous temperature averaged over 30 samples of
crystalline MgO (1280 atom samples) at the beginning
and during the NVE simulation, along with the analyt-
ical solution of the heat equation (continuous lines). In
the lower panel of Fig 1 we show the difference in temper-
ature as a function of time and the fitted function (Eq.
4) used to calculate the thermal diffusivity. In addition,
separate calculations to compute the heat capacity as a
function of T were carried out and the thermal conduc-
tivity is readily obtained from κ = αρcv, where ρ is the
known density of the system (set by choosing the volume
V).

We note that within the SAEMD approach, typical
simulation times to reach equilibrium are shorter by
about 2 order of magnitude, compared to those required
by the NEMD method, thus making the technique pre-
sented here amenable to use with first principles ap-
proaches, i.e. density functional theory (see SI for a
detailed comparison between techniques). Simulations
times are also one order of magnitude shorter than in
the GK approach. When using a GK formulation, the
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FIG. 2. Thermal conductivity (κ) of crystalline MgO com-
puted at 500 (top panel) and 1000K (lower panel), as a func-
tion of the length of the periodic slab (L), using approach to
equilibrium molecular dynamics (AEMD, red curves), sinu-
soidal approach to equilibrium (SAEMD, black curves) and
classical potentials. We compare results obtained with the
two methods using classical potentials and we show (blue
curve) first principles results obtained with the SAEMD
method. Solid and dotted lines represent a fit to Eq. 5, and
6, respectively.

simulation time scale is determined by the time required
to reduce the noise in the tail of the heat current auto-
correlation function; in NEMD it is the time needed to
reach a stationary state between the cold and hot ends
of the system, plus the additional time required to ob-
tain an accurate temperature gradient that determine the
length of thermal conductivity simulations. These sim-
ulation times are of course system dependent, but they
can be estimated to be, in general, [32, 33] two order of
magnitude longer than the time required to reach equi-
librium within SAEMD (see SI for a detailed comparison
between techniques for the case of MgO).
The efficiency of the SAEMDmethod relies on the abil-

ity to reduce statistical errors in the determination of
the thermal conductivity, which arise due to the intrinsic
noise in the temperature profile of a finite system. Given
the transient nature of our MD simulations, statistical
errors may not be improved by increasing the simulation
time once the temperature difference (Eq. 4) vanishes.
Instead, one may carry out multiple, parallel runs and
then average the results obtained for the various repli-
cas. However care must be exercised in the way averages
are performed and direct averaging over values of α from
different replicas may lead to inaccurate or even wrong
results. In the absence of noise, the difference in tem-
perature ∆T (t) decays to zero at a rate proportional to
the thermal diffusivity α. In the presence of noise this
rate is modified: the probability distribution of α is an
asymmetrical function (we report an example in the SI)

and its average value increases as a function of increasing
noise. The value of α obtained by averaging over differ-
ent replicas may thus result to be greatly overestimated.
In our calculations we averaged over instantaneous tem-
perature differences ∆T (t) obtained for several replicas,
and then we performed a single fit to the average value
to compute the diffusivity.
A well known challenge in realistic predictions of ther-

mal conductivity of solids is posed by finite size effects.
Within the AEMD approach, check of convergence is re-
quired with respect to the lateral section of the sample
used, as well as the length of the system in the direction
of heat transport, so as to ensure that all relevant phonon
mean free paths are correctly taken into account. In our
calculations, finite size scaling was performed by com-
puting κ for several samples of length L, as illustrated in
Fig. 2 and Fig. 3. The extrapolation implicitly assumes
that there exist a certain sample length after which only
one dominant phonon mean free path is present. Under
the additional assumption of validity of the Matthiessen’s
rule one obtains [34]

κ(L) = κ∞/(1 +
λ

L
) (5)

This equation appears to properly fit results obtained at
finite sizes within both NEMD, for which it was devel-
oped, and AEMD, although it is not fully justified for the
latter (in particular the assumption of an additional scat-
tering term due to the thermostat, valid within NEMD,
is not justified). Very recently a new fitting equation for
the AEMD method has been proposed [35], not based on
the Matthiessen’s rule, where it is assumed that acoustic
phonons, whose lifetime is proportional to 1/ω2, are the
major contributors to heat transport.

κ(L) = κ∞(1−
√

Λ/L) (6)

We show in Fig. 2 that eq. 5 and 6 yield nearly the same
results for the case of MgO, for large sizes, in spite of
having been derived under different assumptions.
We now turn to the presentation of our results for a

representative solid, MgO, chosen because of the avail-
ability of experimental data and of several results from
other studies to compare with. We first describe classical
and first principles simulations of bulk MgO and compare
data obtained with discontinuous and sinusoidal temper-
ature gradients, as well as using the GK method. We
then show that the SAEMD approach is general and it
can be used also for systems containing nano-grains, and
not only for ordered bulk systems.
All classical simulations were carried out using

LAMMPS [36], with a Buckingham Coulomb potential
shown [37] to describe reasonably well density, thermal
expansion and thermal conductivity of crystalline MgO.
First principles MD simulations were carried out by cou-
pling the LAMMPS and Qbox [38] codes within a client-
server strategy. The former was used to integrate the
equation of motion and to apply the local thermostats,
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FIG. 3. Thermal conductivity (κ) of a periodic slab represent-
ing nanocrystalline MgO, as a function of the slab length L,
computed at 1000K using a classical potential. The average
radius of nanocrystalline grains is 2 nm. We compare simula-
tion results obtained with approach to equilibrium molecular
dynamics (AEMD method, red dots), sinusoidal approach to
equilibrium molecular dynamics (SAEMD, black dots) and
equilibrium molecular dynamics using a Green Kubo (GK)
formulation (blue lines). The blue lines represent the results
of converged GK simulations as a function of size (see SI).
Convergence was obtained for L ≈ 8nm with a cubic super-
cell; the top and bottom blue lines represent the population
standard deviation of the samples used for GK calculations
(see SI).

and the latter to compute DFT forces on atoms at each
time step and to carry out the NVE part of the simula-
tion. Alternatively a position dependent thermostat can
be implemented directly in the first principles MD en-
gine. The time needed to generate the temperature pro-
file, the approximate time necessary to reach equilibrium
and the number of replicas necessary to obtain a ≈ 10%
statistical error were the same for classical and first prin-
ciples simulations. A timestep of 1 fs was adopted in our
MD simulations and a constant lateral section of 2X2 el-
ementary cells was chosen, as a reasonable compromise
between computational cost and accuracy. However fi-
nite size scaling tests for the lateral sections conducted
with classical potentials (see SI) showed this cross sec-
tion not to be fully converged. Unfortunately carrying
out first principles simulations with a (4X4) lateral sec-
tion is prohibitively expensive at present, hence we used a
correction factor αc for the first principles result, namely
we multiplied them by αc = 32/43 ≈ 0.744; αc equals the
ratio [κ SAEMD(4X4)]/[κ SAEMD(2X2)] of values of κ
computed in SAEMD simulations with classical poten-
tials. We realize this is an approximation, which could
be eliminated using larger simulation cells in the future.
Green Kubo simulations with classical potentials were
performed with the same 1 fs timestep in the NVE en-
semble and using a cubic supercell. We averaged the
thermal conductivity over multiple replicas and tested
convergence with respect to both time and number of
atoms.

Results obtained with classical potentials are shown
in Fig. 2 for bulk MgO at 500 and 1000K. We found

very good agreement between AEMD and SAEMD cal-
culations at both temperatures, as well as between differ-
ent extrapolation methods. For the thermal conductivity
of MgO at 500 K computed with SAEMD we obtained
32 ± 1.6 W/mK using Eq. 5 and a 4x4 lateral section,
against a value of 32 ± 1 using GK and an experimen-
tal value of 34.1 [39]. Note that, as pointed out in Ref.
[35], Eq. 6 is appropriate to describe thermal conductiv-
ity extrapolations at large sizes, but not at short sample
lengths. We thus used a minimal length of ≈ 20 nm when
fitting Eq. 6. First principles MD results are presented
in the top panel of Fig. 2. We carried out calculations for
crystalline samples with 192, 256, 384, 512 and 960 atoms
using gradient corrected exchange correlation functionals
(the Perdew-Burke-Ernzerhof (PBE) [40] functional; see
SI). We averaged the temperature difference over 12, 8,
4, 4 and 1 replicas for 3, 4, 5, 7 and 15 ps, respectively,
for the five chosen sizes, with a 10 % target error. The
results and their extrapolation using Eq. 5 (50 W/mK)
turned out to be consistent with those of classical cal-
culations using the same lateral section (43 W/mK for
SAEMD simulations), giving a bulk thermal conductiv-
ity of 37 W/mK for MgO at 500K, when corrected to
account for the difference between 4x4 and 2x2 results
(αc = 0.744). We emphasize that the main finding of our
first principles MD simulations is the demonstration of
their feasibility, opening the way to studying heat trans-
port in complex and realistic systems, without the need
to compute any heat current or energy densities. It is
also reassuring to find good agreement with experiment
and classical potentials and with previous simulations.
[13, 37, 39, 41].

Finally we tested the validity of the SAEMD approach
for nanostructured MgO. In Fig. 3 we show the ther-
mal conductivity of nanocrystalline MgO obtained using
Green Kubo, AEMD and SAEMD methods. The grains
were created by insertion of small crystalline seeds in
random points of the molten phase, followed by grains
growth. We averaged over multiple simulations in or-
der to account for the random nature of grains in the
samples, using classical potentials. We found again re-
markable agreement between AEMD, SAEMD and GK
calculations, indicating that the analytical solution of the
heat equation is valid also at the nanoscale, at least for
the 3D material investigated here. As expected we also
found a reduction of the thermal conductivity with re-
spect to bulk MgO, by approximately a factor of 3, for 2
nm grains at 1000K. More detailed results are reported
in the SI.

In summary, we presented a first principles non equi-
librium molecular dynamics approach for the calculations
of the thermal conductivity of materials. The method is
a variant of AEMD, utilizing simpler initial conditions
and a fit to the analytic solution of the heat equation
with just one Fourier coefficient. The method avoids the
use of discontinuous temperature gradients, and it per-
mits to employ noise reduction techniques, which in turn
allow one to reduce the number of parallel replicas used
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in the calculation. Within SAEMD only atomic trajec-
tories and forces are needed and no other calculation of
energy densities, force constants or heat current are re-
quired, making the framework presented here amenable
to calculations within density functional theory. Further-
more slabs of different sizes may be equilibrated at the
target temperature at the same time, thus allowing one
to exploit the parallel architecture of modern high perfor-
mance computers. All of these characteristics make the
SAEMD method ideal to be used with first principles
Hamiltonians, as demonstrated here for a representative
oxide, MgO. Work is in progress to apply this method to
complex materials, for which no empirical potential exist
and to extend it to the study of heat transport in fluid
systems.

CONTRIBUTIONS

M.P. and G.G. designed the research, M.P. carried out
all simulations and analysis of data, F.G. and M.P. car-
ried out all computational optimizations. All authors
contributed to writing the paper.

ACKNOWLEDGMENT

We thank R.L. McAvoy, F. Giberti and N. Brawand
for discussions. This work was supported by MICCoM,
as part of the Computational Materials Sciences Pro-
gram funded by the U.S. Department of Energy, Office
of Science, Basic Energy Sciences, Materials Sciences and
Engineering Division, under grant DOE/BES 5J-30161-
0010A.

[1] X. Lu, Y. Zhao, Z. Wang, J. Zhang, and Y. Song. Solar

Energy, 136, 333 (2016)
[2] M. A. Modestino and S. Haussener. Annual Review of

Chemical and Biomolecular Engineering, 6(1), 13 (2015)
[3] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang,

H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and
P. Gogna. Advanced Materials, 19(8), 1043 (2007)

[4] R. O. Fitriani, B.D. Long, M.C. Barma, M. Riaz, M.F.M.
Sabri, S.M. Said, and R. Saidur. Renewable and Sustain-

able Energy Reviews, 64, 635 (2016)
[5] M. Zebarjadi. Sci Rep, 6, 20951 (2016)
[6] D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan,

K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan,
A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and
L. Shi. Applied Physics Reviews, 1(1), 011305 (2014)

[7] D. A. Broido, M. Malorny, G. Birner, Natalio Mingo, and
D. A. Stewart. Applied Physics Letters, 91(23), 231922
(2007)

[8] J. Garg, N. Bonini, B. Kozinsky, and N. Marzari. Phys.

Rev. Lett., 106, 045901 (2011)
[9] A. Marcolongo, P. Umari, and S. Baroni. Nature Physics,

12(1), 80 (2016)
[10] C. Carbogno, R. Ramprasad, and M. Scheffler. Phys.

Rev. Lett., 118, 175901 (2017)
[11] A. Cepellotti and N. Marzari. Phys. Rev. X, 6, 041013

(2016)
[12] F. Zhou, W. Nielson, Y. Xia, and V. Ozoliņš. Phys. Rev.
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