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Using	Molecular	Dynamics	simulations	to	explicitly	model	fluid	molecules,	we	study	the	effect	of	

solvent	wetting	on	the	behavior	of	polyhedral	nanoparticles	at	a	 fluid-fluid	 interface.	First,	we	

quantify	the	positional	and	orientational	free	energy	characteristics	of	an	isolated	nanoparticle.	

Our	 results	 suggest	 that	 the	 structure	of	 the	 interface	 can	 introduce	non-trivial	 effects	on	 the	

preferential	 particle	 orientations.	 A	 continuum	 model	 is	 proposed	 to	 account	 for	 the	 finite	

interfacial	 mixing	 region,	 and	 a	 qualitative	 comparison	 between	 the	 two	 approaches	 is	

presented.	We	examine	the	effect	on	the	free	energy	of	 the	system	of	changes	 in	the	particle’s	

solvation	preference	towards	one	fluid,	and	the	degree	of	miscibility	between	the	two	fluids.	By	

tuning	these	interaction	parameters,	we	can	potentially	access	and	favor	different	orientations	

for	 the	 particle	 shapes	 examined.	 Further,	we	 extend	 the	 insights	 gained	 from	 single	 particle	

behavior	to	the	attachment	of	two	particles.	Our	results	reveal	conditions	that	could	drive	the	

assembly	 of	 Cuboctahedra	 into	 either	 2D	 Puckered	 Honeycomb	 lattices	 or	 linear	 rod-like	

structures.	

	

	

I.	INTRODUCTION	

Recent	 advances	 in	 the	 synthesis	 of	 colloidal	 nanoparticles	 (NPs,	 aka	 quantum	 dots)	 with	

precisely	controlled	size,	 shape	and	composition	have	 introduced	a	new	paradigm	of	material	

synthesis.	Using	NPs	as	fundamental	building	blocks	of	superstructure	introduces	the	ability	to	

control	 interactions	between	the	particles	and	thereby	tailor	the	material’s	properties.	Among	

the	various	self-assembly	strategies	that	have	been	reported,	interfacial	assembly	has	emerged	

as	the	most	promising	and	versatile.	By	restricting	the	motion	of	the	NPs	to	two	dimensions,	e.g.,	

by	 depositing	 them	 on	 a	 flat	 solid	 substrate	 or	 by	 pinning	 them	 at	 a	 fluid-fluid	 interface,	 a	

variety	 of	 superlattice	 structures	 can	 be	 realized	 from	 the	 same	 building	 blocks.	 Numerous	

experimental	 efforts	 [1-5]	 have	 been	 made	 over	 the	 years	 to	 increase	 the	 repeatability,	

precision	and	control	over	the	self-assembly	of	colloidal	NPs	into	quasi-2D	superstructures	with	

programmable	 symmetry.	These	quasi-2D	superstructures	provide	 important	 testbeds	 for	 the	
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study	 of	 fundamental	 structure-property	 relations	 and	 have	 found	 multiple	 technologically	

important	applications;	e.g.	in	optics	[6-8],	photovoltaics	[9-11],	and	catalysis	[12,13].	

The	 self-assembly	 of	NPs	 at	 a	 fluid-fluid	 interface	 is	 driven	 by	 a	 complex	 interplay	 of	

entropic	and	enthalpic	forces.	Although	simulation	studies	have	mostly	focused	on	investigating	

systems	dominated	by	entropic	effects	through	Monte	Carlo	simulations	of	hard-core	particles	

[14-17],	 a	 few	 studies	 have	 also	 examined	 systems	 exhibiting	 enthalpic	 interactions	 using	

Molecular	Dynamics	 (MD)	simulations	 [18,19].	The	current	work	primarily	aims	 to	assess	 the	

role	of	enthalpic	interactions	on	the	self-assembly	process,	using	a	coarse-grained	model	for	the	

polyhedral	 NPs	 and	 explicit	 molecules	 to	 describe	 the	 fluids.	 The	 use	 of	 polybead	models	 to	

represent	 polyhedral	 objects	 facilitates	 not	 only	 the	 implementation	 of	 enthalpic	 interactions	

but	 also	 the	 use	 of	 MD	 simulations	 which	 conveniently	 exploit	 multi-processor	 computing	

capabilities.	

It	has	been	 long	known	 that	 colloidal	NPs	possess	a	 strong	affinity	 towards	 fluid-fluid	

interfaces	and	can	bind	to	them	irreversibly	[20,21].	It	is	widely	believed	that	the	driving	force	

behind	 this	 irreversible	 adsorption	 is	 the	 reduction	 in	 the	 interfacial	 energy	 due	 to	 contact	

between	the	two	immiscible	fluids.	Based	on	this	principle,	many	analytical	models	[2-4,22-25]	

have	 been	 developed	 to	 capture	 the	 orientational	 behavior	 of	 isolated	 NPs	 at	 sharp	 (zero	

thickness)	interfaces.		

In	the	case	of	polyhedral	particles,	understanding	and	controlling	the	orientation	of	the	

NP	relative	to	the	normal	of	the	interface	presents	an	interesting	challenge.	The	NP	orientation	

is	 typically	 denoted	 by	 the	 Miller	 index	 vector	 or	 the	 NP	 facet	 parallel	 to	 the	 plane	 of	 the	

interface.	 Cilliers	 and	 co-workers	 [26,27]	 have	 reported	 a	 model	 for	 the	 investigation	 of	 the	

orientation	 of	 isolated,	 non-spherical,	 micrometer-sized	 particles	 at	 fluid	 interfaces	 	 Their	

continuum	model	showed	that	cubic	particles	with	a	 fixed	surface	energy	preferred	 the	{100}	

facet	up	orientation	at	low	contact	angles	and	the	corner-up	{111}	facet	up	orientation	at	high	

contact	angles.	Evers	et	al.	[2]	predicted	that	the	most	preferred	orientation	of	a	cubic	NP	at	a	

non-deformable,	 sharp	 interface	 is	 {110}	 facet	 up.	 Recent	 experiments	 [28,29]	 have	

demonstrated	that,	under	certain	conditions,	cubic	NPs	at	a	fluid-fluid	interface	orient	with	the	

{111}	 facet	 up.	 Subsequently,	 by	 including	 the	 effect	 of	 capillary	 deformation	 in	 a	 sharp-

interface	model,	Soligno	et	al.	[25]	showed	that	the	{111}	facet	up	preference	of	the	cube	could	

be	captured	correctly.	Whereas	the	sharp-interface	models	may	be	suitable	for	applications	to	

relatively	 larger	 NPs,	 the	 effect	 of	 an	 interfacial	 region	 with	 a	 finite	 “thickness”	 cannot	 be	

neglected	when	the	NP	size	is	comparable	to	the	thickness	of	the	interface.		

In	 this	work,	we	seek	to	establish	the	underlying	thermodynamic	principles	governing	

the	self-assembly	of	NPs	using	flat	(fluid)	interfaces	as	templates.	The	first	step	in	this	process	is	

to	 investigate	 the	 behavior	 of	 an	 isolated	 NP	 at	 the	 interface.	 For	 this	 purpose,	 we	 employ	
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solvent-explicit	MD	simulations	 to	 simulate	 the	multibody	effect	of	 the	 fluid	molecules	on	 the	

NP.	By	explicitly	modeling	the	interface,	the	effect	of	solvent	wetting	characteristics	on	the	NP	

behavior	can	be	more	accurately	captured.	We	use	these	simulations	to	map	out	the	free-energy	

of	the	NPs	as	a	function	of	their	orientations	and	vertical	positions	with	respect	to	the	interface,	

and	 thus	 to	 identify	 the	 preferred	 NP	 configurations.	 We	 use	 selected	 molecular	 simulation	

results	 for	 a	 cube	 shape	 to	 illustrate	 the	 basis	 of	 the	 general	 characteristics	 displayed	 by	 an	

isolated	NP	at	 the	 interface,	 and	 to	motivate	 the	development	of	 a	 continuum	model	where	a	

non-deformable	interfacial	region	of	finite	thickness	contributes	explicitly	to	the	free	energy	of	

the	system.		

The	 rest	 of	 this	manuscript	 is	 organized	 as	 follows.	 In	 Sec.	 II,	we	describe	 the	 coarse-

grained	 simulation	model	 and	 simulation	methodology.	 In	 Sec.	 III,	we	 summarize	 the	basis	of	

our	 continuum	model	 (providing	 additional	 details	 in	 the	 Supplementary	 Information,	 SI).	 In	

Sec.	IV,	we	present	the	main	results	for	a	single	NP	near	an	interface,	comparing	key	simulation	

data	and	trends	to	those	predicted	by	the	continuum	model.	In	that	section,	we	also	extend	the	

principles	 developed	 for	 a	 single	 NP	 to	 explain	 the	 assembly	 of	 two-NP	 systems,	 simulating	

polybead	 Cuboctahedra	 as	 test	 bed.	 Finally,	 we	 close	 with	 some	 concluding	 remarks	 and	 an	

outline	of	suggested	future	work	in	Sec.	V.	

	

II.	MODELS	AND	METHODS	

A.	Coarse-grained	model	and	molecular	dynamics	(MD).	

The	 base	 system	 consists	 of	 a	 single	 colloidal	 NP	 (Fig.	 1),	 suspended	 at	 the	 interface	 of	 two	

vertically-stacked	immiscible	fluids	(two	NPs	are	simulated	in	select	cases).	For	simplicity,	the	

direction	perpendicular	to	the	average	orientation	of	the	interface	is,	henceforth,	referred	to	as	

the	 vertical	 direction	 (represented	 by	 the	 y-axis).	 By	 construction,	 the	 interface	 is	 initially	

located	at	 the	 center	of	 the	 simulation	box.	The	 interface	 location	 is	maintained	near	 the	box	

center	 by	 adding	 reflective	 walls	 at	 the	 box	 edges	 perpendicular	 to	 the	 vertical	 direction.	

Periodic	boundary	conditions	(PBCs)	are	imposed	in	the	x	and	z	directions.		

	

The	 NPs	 are	 described	 using	 a	Polybead	model	 [30].	 The	 desired	 shape	 is	 carved	 out	

from	 a	 Cubic	 Close	 Packed	 lattice,	 wherein	 each	 face	 is	 represented	 by	 a	 well-defined	

crystallographic	 plane.	 The	 NP	 is	 then	 shaped	 by	 placing	 Lennard-Jones	 (LJ)	 beads	 at	 the	

surface/outermost	 lattice	 sites	 only.	 The	 surrounding	 liquids	 (top	 solvent	 and	 bottom	 sub-

phase)	 are	 explicitly	 defined	 as	 dimers	 of	 LJ	 beads.	While	 such	 dimers	 are	 intended	 to	 be	 a	

coarse-grained	 representation	 of	 the	 fluid	molecules,	 they	 are	 able	 to	 capture	 the	multibody	

forces	associated	with	the	wetting	characteristics	of	NPs	and	the	varying	fluid	properties	across	

the	fluid-fluid	interface.	Typically,	the	number	of	solvent	molecules	was	around	5500.	
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FIG.	1.	Snapshot	of	the	polybead	model	depicting	two	fluid	phases	(in	red	and	blue)	and	a	cubic	NP	
(in	yellow)	at	their	interface.	For	the	sake	of	visibility,	fluid	molecules	have	been	removed	from	the	
front	half	of	the	simulation	box.	

	

The	 interaction	between	any	 two	species	 is	modeled	by	 tuning	 the	 interactions	between	their	

corresponding	 beads.	 This	 inter-bead	 interaction	 is	 defined	 by	 the	 (12-6)	 cut	 and	 linearly	

shifted	Lennard-Jones	potential,	
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where	 rij	 is	 the	 distance	 between	 beads	 i	 and	 j	 and	 the	 cutoff	 radius	 is	 rc	 =	 2.5.	 The	 effective	

diameter	(σ)	of	all	beads	(in	the	NP	and	the	two	liquids)	is	taken	to	be	the	same	(σ	=	1.0).	The	

bond	 in	 a	 liquid	 dimer	 is	 described	 by	 the	 FENE	 potential,	
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and	 the	bond	 length	 is	maintained	at	1σ	 (K=30ε/σ2,	R0=1.5σ).	MD	simulations	are	performed	

using	the	canonical	(NVT)	ensemble	in	LAMMPS	[31].	The	simulation	temperature	is	maintained	

at	0.85ε/kB	using	the	Nosé-Hoover	Thermostat.	 In	this	work,	we	only	consider	systems	with	a	
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liquid-liquid	interface,	and	so	the	density	is	kept	close	to	0.8	beads/σ3,	and	the	integration	step	

is	0.005τ.	For	a	 single	NP	system,	 the	 typical	 simulation	box	size	 is	20×40×20σ3	 (in	 the	X-Y-Z	

dimensions	respectively).	Characteristic	values	of	the	reduced	parameters	for	comparison	with	

experimental	data,	as	reported	in	Ref.	[32],	are	σ	=	0.4nm,	ε	=	100kB,	and	τ	=	2ps.	

Using	the	method	given	by	Savoy	et	al.	[33],	the	LJ	well	depth	parameter	(εij)	 	between	

the	NP	surface	and	the	fluid	is	tuned	to	correspond	to	a	physically	relevant	contact	angle	value	

(θij)	 and	 the	 resulting	 calibration	 curve	 is	 given	 in	 the	 SI	 (Fig.	 S1).	 The	 degree	 of	miscibility	

between	 the	 two	 fluids	 is	 determined	by	 the	 value	 of	 εS1,S2.	 In	 the	 following	 sections,	we	 first	

establish	a	“base	case”	where	the	εij	value	between	all	species	is	set	to	0.5.	This	ensures	that	the	

NP	 interacts	 symmetrically	 with	 both	 the	 fluids,	 and	 the	 respective	 contact	 angle	 values	 are	

close	to	90˚.	We	subsequently	change	the	interaction	parameters	to	be	asymmetric	so	that	the	

NP	 is	 preferentially	 wetted	 by	 a	 particular	 fluid,	 and	 assess	 the	 effect	 of	 this	 asymmetry	 by	

comparison	with	the	results	from	the	base	case.	

	

B.	Free	energy	(FE)	and	key	degrees	of	freedom	

The	microstate	of	a	single	NP	(and	the	free	energy	associated	with	it)	is	fully	determined	by	its	

position	and	orientation	relative	to	the	fluid-fluid	interface.	We	use	a	vertical	position	(H)	and	

Euler	angles	(θ,	ψ)	to	describe	such	degrees	of	freedom.		

The	 interface	 diving	 surface	 is	 defined	 as	 the	 plane	 parallel	 to	 the	 average	 orientation	 of	 the	

interface	 and	 dividing	 the	 finite	 interface	 symmetrically	 through	 the	 middle.	 The	 distance	 H	

from	 the	NP	 center	 of	mass	 (COM)	 to	 the	 interface	 dividing	 plane	 is	 referred	 to	 as	 “vertical”	

position	and	is	given	in	reduced	units	“y/e”	where	e	 is	the	edge	length	or	a	characteristic	size	

parameter	 of	 the	 NP.	 To	 quantitatively	 characterize	 the	 thermodynamic	 driving	 force	 that	

controls	 the	 vertical	 position	 (H)	 of	 the	 NP,	 we	 perform	 Umbrella	 Sampling	 (US)	 [34]	

simulations	to	estimate	the	underlying	Free	energy	(FE)	profile.	For	this	purpose,	we	divide	the	

vertical	 position	 space	 into	 overlapping	 windows	 and	 use	 a	 harmonic	 biasing	 potential	 to	

constrain	the	NP	to	each	window.	A	Weighted	Histogram	Analysis	Method	(WHAM)	[35]	scheme	

is	then	used	to	combine	the	results	from	individual	simulation	windows	into	the	final	unbiased	

FE	profile.		

NP	orientation	 is	 represented	using	 the	 intrinsic	Euler	angle	convention	 (y-z’-y’’)	with	

three	 angles	 (ϕ,	 θ,	 ψ).	 The	 elemental	 rotations	 occur	 about	 the	 axes	 of	 the	 local	 coordinate	

system	(fixed	to	the	NP).	Angle	ϕ	gives	the	rotation	about	the	y-axis,	i.e.	the	axis	perpendicular	

to	the	interface.	Rotation	about	this	axis	does	not	change	the	NP	configuration	with	respect	to	

the	 interface,	 and	 hence	we	 ignore	 it.	 The	 tilt	 angle,	 θ	 described	 the	 rotation	 about	 the	 new	

(rotated	in	step	1)	z-axis,	and	the	spin	angle,	ψ	gives	the	rotation	about	the	new	(rotated	in	step	

2)	y-axis.	
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For	an	isolated	NP	(of	a	given	shape	and	size)	at	the	interface,	a	free	energy	landscape	

can	 be	 generated	with	 tilt	 (θ)	 and	 spin	 (ψ)	 angles	 as	 parameters	 using	 an	US	 technique.	 The	

vertical	position	of	the	NP	is	decoupled	from	such	calculation	by	allowing	it	 to	freely	fluctuate	

around	 its	 equilibrium	 position.	 The	 2D	 orientation	 phase	 space	 is	 divided	 into	 overlapping	

windows.	 Independent	MD	 simulations	 are	 run	 for	 each	window	with	 two	 discrete	 harmonic	

torsion	springs	constraining	the	corresponding	orientation	angles	(details	in	the	SI,	Sec.	4).	The	

windows	are	 then	stitched	 together	using	WHAM	to	generate	 the	unbiased	FE	 landscape.	The	

minima	in	this	landscape	helps	to	identify	the	preferred	orientation	of	the	NP.	

	

III.	INTERFACIAL	STRUCTURE	AND	CONTINUUM	MODEL	

First,	we	used	our	MD	simulations	to	probe	the	presence	of	hexapolar	capillary	deformations	in	

the	interface	for	a	cubic	NP	in	the	{111}	facet	up	orientation	as	predicted	by	Soligno	et	al.	[25].	

To	do	 this,	 the	simulation	box	 is	set	up	as	described	 in	Sec.	 II.A	and	a	cubic	NP	 is	 fixed	at	 the	

origin	in	the	{111}	facet	up	orientation.	The	value	of	all	εij	is	set	to	0.5.	The	box	is	then	divided	

into	3D	voxels,	and	the	density	of	the	bottom	solvent	beads,	ρS2	for	each	voxel	is	calculated	and	

averaged	over	 time.	We	 simulate	 two	NP	 sizes,	 5	 and	10σ	 and	 the	density	profiles	 at	 various	

vertical	heights	are	shown	in	Fig.	2.	The	approximate	heights	of	capillary	deformations	for	cubic	

NPs	of	sizes	5	and	10σ	are	estimated	(in	the	SI,	Fig.	S3)	to	be	0.25σ	(0.05e)	and	1.25σ	(0.125e)	

respectively.	 Clearly,	 as	 the	 NP	 size	 increases,	 the	 capillary	 deformations	 become	 more	

pronounced	and	are	expected	to	play	a	significant	role	in	determining	the	NP	orientation	at	the	

interface.	 This	 increasing	 trend	 in	 capillary	 height	 with	 particle	 size	 is	 inconsistent	 with	 the	

size-independent	prediction	of	0.15e	made	by	Soligno	et	al.,	although	such	a	theoretical	value	is	

in	 line	 with	 ours	 for	 the	 10σ	 NP	 case.	 The	 likely	 cause	 for	 this	 deviation	 in	 behavior	 is	 the	

breakdown	of	the	theoretical	assumption	of	a	sharp	interface	when	the	size	of	the	NP	is	of	the	

same	order	of	magnitude	as	the	size	of	the	solvent	molecules.	In	reality,	the	two	fluids	are	not	

completely	immiscible	and	they	partially	mix	over	a	finite	region	[36].	
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FIG.	2.	Density	profile	of	the	bottom	solvent	(S2)	when	a	cubic	NP	is	fixed	at	the	origin	in	the	{111}	
facet	up	orientation.	Different	images	represent	the	density	profiles	at	various	vertical	positions	
(unscaled).	The	black	shaded	region	represents	the	area	excluded	by	a	perfect	(not	polybead)	cubic	
NP	from	the	vertical	plane.	The	NP	edge	length	is	(a)	5σ	and,	(b)	10σ.	The	color	code	is	calibrated	
to	number	density	of	beads	of	S2,	ρS2	such	that	the	most	red	corresponds	to	the	pure	S2	phase	
and	the	most	blue	to	the	absence	of	S2	beads	(i.e.,	pure	S1	phase	in	the	fluid	region).	
	

To	 illustrate	 the	 significance	 of	 the	 finite	 interface	 thickness,	we	 simulated	 the	 two	 vertically	

stacked	fluids	and	plotted	the	density	of	the	fluid	“beads”	as	a	function	of	H	in	the	absence	of	any	

NP	[see	Fig.	3(a)].	We	note	that,	in	this	case,	the	contact	angle	is	~	90°	(εS1,S2	=	0.5).	The	density	

of	the	bottom	solvent,	S2	(red	curve)	gradually	decreases,	while	that	of	the	top	solvent,	S1	(blue	

curve)	 gradually	 increases	 as	 we	 increase	 H	 over	 a	 small	 region	 from	 -1.5σ	 to	 1.5σ.	 We	

henceforth	 refer	 to	 this	 region	 as	 the	 mixing	 region	 and	 the	 width	 of	 this	 region	 is	

approximately	3σ.	 It	 is	 seen	 that	 the	overall	 density	of	 the	 fluid	beads	 [black	 triangles	 in	Fig.	

3(a)]	 decreases	 in	 the	 mixing	 region.	 This	 low	 density	 region	 arises	 from	 the	 unfavorable	

contact	between	the	two	types	of	fluid	beads,	which	is	captured	by	a	low	value	of	εS1,S2	(=	0.5),	

and	further	leads	to	the	low	miscibility	between	the	two	fluids.	
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FIG.	3.	Key	properties	of	fluid-fluid	interface.	(a)	Bead	number	densities	[1/σ3]	of	the	bottom	fluid	
(red),	top	fluid	(blue),	and	combined	fluid	(black	triangles).	(b)	Probability	density	(of	center	of	mass)	
of	an	unconstrained	polybead	cube	of	size	e=5σ	(red)	and	10σ	(blue)	at	the	interface.	(c)	
Representation	of	the	theoretical	model	describing	the	division	of	the	system	into	vertical	slabs.	

	

Note	 that	 the	capillary	deformation	shown	 in	Fig.	2	would	be	slightly	 smeared	out	 if	 the	NP’s	

position	 and	 orientation	 were	 not	 fixed	 but	 allowed	 to	 fluctuate	 due	 to	 thermal	 (Brownian)	

motion.	This	is	because	by	virtue	of	thermal	energy,	the	vertical	position	(and	orientation)	of	a	

small	 NP	 fluctuates	 significantly	 about	 the	 interface-dividing	 plane.	 Figure	 3(b)	 shows	 the	

probability	distribution	of	a	 cubic	NPs	 (of	edge	size,	e	=	5σ	 and	10σ)	as	a	 function	of	vertical	

position	where	 the	 standard	deviation	about	 the	mean	 (the	 interface-dividing	plane)	 for	both	

sizes	is	approximately	0.35σ.	

To	 account	 for	 NP	 behavior	 at	 these	 smaller	 length	 scales	 (e	 =	 5σ),	 we	 propose	 an	

alternate	 theoretical	 model	 where	 we	 explicitly	 account	 for	 the	 contribution	 of	 the	 mixing	

region	 to	 the	 total	 energy	 of	 the	 system.	 We	 assume	 negligible	 contribution	 from	 capillary	

deformations,	a	simplification	partially	justified	by	the	small	length	scales	of	interest.	We	divide	

the	 fluid	 system	 into	 a	 large	 number	 of	 adjacently	 placed,	 vertical	 slabs	 [Fig.	 3(c)].	 The	 total	

potential	energy	of	the	system	is	given	as	the	sum	of	contributions	by	each	slab.	The	function	is	

shifted	such	that	the	energy	of	a	NP	completely	immersed	in	the	bulk	of	fluid	2	is	zero:	
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where	γP,i	is	the	interfacial	tension	between	the	NP	and	the	fluid	phase	in	the	slab,	and,	βi	is	the	

internal	 energy	 per	 unit	 volume	 of	 fluid	 phase	 in	 the	 slab.	 AP,i	 and	 VP,i	 represent	 the	 lateral	

surface	 area	 and	 the	 volume	 of	 NP	 in	 the	 slab,	 respectively,	 and	 Vi	 represents	 the	 total	 slab	

volume.	 Since	 the	 interface	 (mixing	 region)	 is	 a	 region	 of	 unfavorable	 contact	 between	

immiscible	 solvents,	 the	 NP	 attempts	 to	minimize	 the	 volume	 of	 the	 “unfavorable	 interfacial	

contact”	 by	 maximizing	 the	 volume	 it	 occupies	 inside	 the	 mixing	 region.	 Essentially,	 the	

variational	 principle	 of	 finding	 the	 values	 of	 H,	 θ,	 and	 ψ	 that	 minimize	 the	 system	 energy	

translates	now	to	minimizing	the	volume	of	contact,	as	opposed	to	minimizing	the	planar	area	of	

contact.	 Further	 details	 on	 the	 minimization	 procedure	 are	 outlined	 in	 the	 supporting	

information	(SI,	Sec.	2).	

	

IV.	RESULTS	AND	DISCUSSION	

A.	Single	cubic	particle	at	the	interface	

Figure	4(a)	shows	the	underlying	FE	profile	as	a	function	of	the	vertical	height,	leaving	the	NP	

orientation	unconstrained.	It	can	be	seen	that	a	cube	of	edge	size,	e=5σ,	pays	a	penalty	of	~10	

kBT	 to	move	~0.3e	 away	 from	 the	 interface-dividing	plane.	 It	 is	 clear	 from	 the	underlying	FE	

profile	that	the	NP	can	only	reside	in	a	small	region	near	the	interface	[Fig.	3(b)].	

Figure	 4(b)	 shows	 the	 FE	 landscape	 obtained	 from	 US	 calculations	 with	 θ	 and	 ψ	 as	

parameters	(which	probe	all	possible	orientations	of	a	cubic	NP),	while	allowing	the	NP	to	freely	

fluctuate	perpendicular	to	the	interface.	For	this	“base”	case,	the	contact	angle	between	the	NP	

and	both	fluids	was	~90˚	(i.e.,	εS1,NP	=	εS2,NP	=	0.5)	and	εS1,S2	was	set	to	0.5.	It	is	observed	that	the	

cubic	NP	exhibits	 the	strongest	preference	 for	 the	{111}	 facet	up	configuration	 [see	Fig.	4(c)],	

while	the	smallest	preference	for	the	{100}	facet	up	configuration.		
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FIG.	4.	(a)	FE	as	a	function	of	H	for	a	polybead	cube	(e=5σ)	at	base	case	conditions.	The	most	
preferred	orientation	is	{111}	up	near	the	interface-dividing	plane.	(b)	Orientational	FE	landscape	for	
cube	(e=5σ)	marked	with	the	locations	of	{100},	{110},	and	{111}	up	orientations	(scale	bar	in	kBT	
units).	(c)	Depiction	of	the	{100},	{110},	and	{111}	up	orientations	of	the	cube,	with	the	grey	region	
representing	the	finite	interfacial	mixing	region	(for	simplicity,	the	polybead	cube	is	shown	as	a	
perfect	cube).	

	

In	 general,	 it	 was	 observed	 that	 pinning	 the	 NP	 at	 different	 vertical	 positions	 (H)	 causes	 a	

change	in	its	orientational	preference.		To	probe	this	behavior,	we	break	down	the	FE	landscape,	

along	 the	 NP	 vertical	 position,	 into	 independent	 contributions	 from	 various	 orientational	

configurations.	To	do	this,	we	fixed	the	orientation	(θ	and	ψ)	of	the	NP,	and	performed	a	1D	US	

calculation	 (similar	 to	 that	 described	 in	 Sec.	 II.B)	 with	 the	 vertical	 position	 as	 the	 only	

parameter.	This	procedure	was	repeated	for	3	orientations,	namely	{100},	{110},	and	{111}	up	

[shown	in	Fig.	4(c)].	Figure	5(a)	shows	the	FE	profiles	for	a	polybead	cube	of	size	5σ	with	these	

fixed-orientations	and	for	the	unconstrained	case.	It	is	observed	that	the	unconstrained	vertical	

FE	 landscape	 forms	 the	 lowermost	 envelope	 of	 all	 such	 possible	 curves	 corresponding	 to	

different	 orientations.	 For	 any	 vertical	 position,	 the	 orientation	 with	 the	 lowest	 free	 energy	

would	be	expected	to	be	most	stable.		This	implies	that	each	point	in	said	envelope	corresponds	

to	the	most	stable	orientation	(lowest	FE)	at	that	vertical	position.	
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FIG.	5.	FE	vs	H	for	a	cube	at	the	base	conditions	corresponding	to	three	major	orientations	(blue,	
red,	and	green)	(a)	Polybead	model	with	e	=	5σ.	The	dotted	black	curve	represents	the	
unconstrained	(or	free-to-rotate)	case	[Fig.	4(a)]	(b)	Continuum	model.	(c)	Most	preferred	
orientation	for	4	studied	polyhedral	shapes	at	base	conditions	(from	top	to	bottom)	Cube:	{111},	
Cuboctahedron:	{111},	Rhombicuboctahedron:	{1n0},	Octahedron:	{100}.	

	

It	 can	be	seen	 [in	Fig.	5(a)]	 that	 the	FE	of	 the	 {111}	 facet	up	orientation	 is	 lower	 than	 that	of	

both	 the	 {100}	 and	 {110}	 facet	 up	 orientations.	 The	 {100}	 facet	 up	 configuration	 is	 stable	

beyond	a	certain	distance	(~0.4e)	from	the	interface-dividing	plane.	This	{111}-up	to	{100}-up	

change	 in	 preferential	 orientation	 is	 characterized	 by	 a	 slight	 flattening	 of	 the	 FE	 profile,	

followed	by	a	change	in	its	slope.	These	characteristics	are	correctly	predicted	by	our	version	of	

the	continuum	model	as	seen	in	Fig.	5(b).	The	parameters	needed	in	the	model	are	calculated	by	

fitting	the	MD	simulation	results	to	Eq.	(4)	(details	given	in	the	SI,	Sec.	2).		

The	 US	 approach	 to	 find	 the	 most	 preferred	 orientation	 of	 NPs	 can	 be	 applied	 to	

different	polyhedral	shapes.	We	present	results	for	4	different	NP	shapes	[in	Fig.	5(c)]	of	similar	

sizes,	with	additional	details	given	in	the	SI,	Sec.	5.		

	

B.	Tuning	orientation	preference	of	NP	by	changing	relative	contact	angles	

For	 practical	 applications,	 it	 is	 important	 to	 understand	 how	 the	 interfacial	 properties	 of	 the	

fluids	and	the	NP	affect	the	preferential	orientation	that	an	isolated	NP	will	exhibit	at	the	fluid-

fluid	interface.	We	show	here	how	different	such	NP	orientations	can	be	accessed	and	favored,	

by	tuning	the	relative	inter-species	interaction	parameters.	In	particular,	we	consider	two	cases:	
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1) Changing	 εS1,S2	 −	 the	 degree	 of	 miscibility	 between	 the	 two	 solvents:	

Increasing	εS1,S2	 increases	the	miscibility	of	 the	two	fluids	and,	 to	some	degree,	 leads	to	an	

increase	 in	 the	 width	 of	 the	 mixing	 region.	 For	 a	 higher	 value	 of	 εS1,S2,	 we	 observed	 a	

relatively	shallower	free	energy	profile	[Fig.	6(c)]	along	the	vertical	position.	This	result	 is	

consistent	 with	 the	 predictions	 from	 the	 continuum	 model	 since	 if	 the	 fluids	 are	 more	

miscible,	the	energy	per	unit	volume	(βi)	in	the	mixing	region	is	relatively	lower.	As	per	Eq.	

(4),	a	smaller	negative	value	of	the	prefactor	(βBulk	2	-	βi)	for	the	excluded	volume	term	(VP,i)	

will	give	a	shallower	FE	profile.	A	shallower	FE	well	allows	the	NP	to	symmetrically	access	

higher	vertical	positions	by	virtue	of	its	thermal	energy.		

2) Changing	 θNP,S	 –	 the	 contact	 angles	 between	 solvents	 and	 the	 NP: 

By	decreasing	θNP,S1	(i.e.,	increasing	εNP,S1),	we	give	the	NP	an	enthalpic	preference	to	solvent	

1	 relative	 to	 solvent	 2.	 The	 NP	 now	 prefers	 to	 be	 solvated	 by	 solvent	 1	 and	 thus	 has	 an	

incentive	to	move	away	from	the	interface-dividing	plane.	As	shown	in	Fig.	6(a),	this	change	

expectedly	shifts	the	global	minimum	of	the	vertical	FE	profile	to	a	higher	H=H*,	effectively	

changing	the	NP's	mean	position	from	0.0	to	H*.	From	the	continuum	perspective,	due	to	the	

lower	energy	of	interactions	between	NP	and	fluid	1,	fluid	slabs	with	a	higher	concentration	

of	fluid	1	have	a	lower	value	of	γP,i.	Thus,	the	FE	in	the	bulk	of	fluid	1	is	lower	than	that	in	the	

bulk	of	fluid	2.	

	

As	 discussed	 before	 (for	 the	 symmetric	 case	 in	 Sec.	 IV.A),	 there	 exists	 a	 strong	 correlation	

between	 the	NP’s	vertical	position	and	preferred	orientation.	Thus,	by	altering	 the	NP’s	mean	

vertical	 position	 through	 changes	 in	 θNP,S1,	 we	 can	 indirectly	 change	 its	 orientation	 behavior.	

This	 is	shown	in	Fig.	6(b),	where	for	εNP,S1=0.7	we	see	a	change	in	the	preferred	orientation	of	

the	NP	from	{111}	to	{100}.	We,	however,	also	see	that	the	depth	of	the	orientational	bias	well	is	

small	(~3	kBT).	This	is	the	result	of	the	effective	flattening	of	the	vertical	FE	profile	over	a	large	

range	of	positive	H	values	[Fig.	6(a),	green	curve]	for	εNP,S1=0.7.	In	such	a	situation,	the	NP	can	

reside	 over	 a	 wide	 range	 of	 H	 with	 almost	 equal	 probability,	 while	 accessing	 different	

orientations	 at	 different	 H.	 So,	 in	 this	 case	 a	 reduction	 in	 positional	 selectivity	 leads	 to	 a	

corresponding	reduction	in	orientational	selectivity.		

If	maintaining	orientational	selectivity	is	important,	an	alternative	approach	to	tune	NP	

orientation	 involves	modifying	both	εS1,S2	 and	θS1,NP	 synergistically	 to	gain	a	 finer	 control	over	

the	shape	of	the	FE	profile.	We	can	see	from	Fig.	6(d)	that	for	εS1,NP=0.7	and	εS1,S2=0.6	for	a	cube	

of	5σ	size,	the	FE	minima	is	shifted	from	H=0.0	to	H=1.5σ,	without	flattening	the	profile.	In	this	

manner,	 we	 retain	 the	 positional	 selectivity	 while	 accessing	 a	 different	 preferential	 NP	

orientation	(namely,	{100}	facet	up).	
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FIG.	6.	FE	characteristics	for	a	cube	of	edge	5σ;	(a)	FE	vs	H	for	different	values	of	εNP,S1	keeping	
εS1,S2(=0.5)	fixed.	(b)	Orientational	FE	landscape	marked	with	the	locations	of	{100},	{110},	and	{111}-
up	orientations	with	εNP,S1	=	0.7	and	εS1,S2=0.5.	(c)	FE	vs	H	for	different	values	of	εS1,S2	keeping	
εNP,S1=εNP,S2=0.5	fixed.	Higher	values	of	εS1,S2	generate	successively	shallower	wells.	(d)	FE	vs	H	with	
εS1,S2=0.6,	εNP,S1=0.7;	the	cube’s	most	preferred	position	shifts	upwards	to	~0.3e,	and	its	most	
preferred	orientation	changes	from	{111}	to	{100}	facet	up.

C.	Assembly	of	two	particles	at	the	interface	

Toward	a	 future	 goal	 of	 describing	multi	NP	 interfacial	 assembly,	we	 attempt	here	 to	 explain	

two-NP	behavior	at	the	interface	as	an	extension	to	the	insights	on	single	NP	behavior	described	

in	Sec.	 IV.A	and	IV.B.	As	 it	will	be	shown,	two-NP	interfacial	assembly	can	be	explained	by	the	

interplay	 of	 the	 underlying	 FE	 characteristics	 for	 individual	 NPs	 at	 the	 interface	 and	 the	 FE	

associated	 with	 NP-NP	 interactions.	 For	 this	 purpose,	 we	 illustrate	 our	 analysis	 using	

cuboctahedra	 (CO)	 whose	 NP-NP	 interactions	 are	 richer	 than	 those	 of	 cubes	 given	 that	 the	

former	 can	 contact	 each	 other	 through	 two	 different	 types	 of	 facets.	 Also,	 to	 model	 NP-NP	

interactions,	 we	 need	 to	 specify	 the	 interaction	 parameter	 εNP,NP	 between	 two	 Lennard-Jones	

beads	 belonging	 to	 the	 two	 different	 NPs	 (details	 in	 SI,	 Fig.	 S7).	 By	 synergistically	 selecting	

appropriate	 values	 of	 εNP,NP	 and	 εNP,S1,	 one	 can	 potentially	 calibrate	 the	 inter-NP	 attraction	 to	

mimic	experimental	behavior.	

As	dictated	by	 its	FE	characteristics	 (see	Fig.	S4),	 for	 the	base	case	 (i.e.,	 εS1,NP	=	εS2,NP	=	

εS1,S2	=	0.5)	an	 isolated	CO	prefers	 to	stay	close	 to	 the	 interface-dividing	plane	while	orienting	

with	its	{111}	facet	up.	However,	as	soon	as	two	Cuboctahedra	join	at	the	square	{100}	facet,	an	

additional	constraint	is	added	to	the	system.	Now,	it	is	geometrically	impossible	for	both	COs	to	
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individually	satisfy	all	three	(positional,	orientational,	contact)	constraints	simultaneously.	If	we	

assume	 a	 situation	 wherein	 the	 inter-NP	 attraction	 is	 strong	 enough	 to	 force	 a	 complete	

(square-square)	 contact	 constraint	 (e.g.,	 for	εNP,NP	≥	 0.15),	 the	 system	now	 faces	 the	 following	

choices:	

1)	If	the	COs	remain	close	to	the	interface-dividing	plane,	they	can	either	orient	with	their	{100}	

facets	up	to	form	a	square	motif	or	they	can	orient	with	their	{110}	facets	up	to	form	a	 linear	

rod-like	motif.	In	both	of	these	situations,	the	COs	pay	an	orientational	FE	penalty	(~10	kBT	per	

CO),	or		

2)	 If	 the	 COs	 attempt	 to	 orient	 in	 the	 desired	 {111}	 facet	 up	 orientation,	 a	 vertical	 distance	

separates	their	centers,	as	seen	in	Fig.	7(a).	In	this	case,	they	pay	a	penalty	(~15	kBT	per	CO)	for	

moving	up	in	the	positional	FE	well	(Fig.	S4).	Moreover,	if	the	particles	move	too	far	away	from	

the	interface-dividing	plane,	their	orientation	preference	changes	from	{111}	facet	up	to	{110}	

facet	up.	

	

Depending	 on	 the	 specific	 values	 of	 the	 parameters	 characterizing	 the	 NP-NP	 and	 NP-fluid	

interactions	 (θNP,S,	 size	 of	 the	 CO	 etc.),	 the	 system	 finds	 a	 preferred	 configuration	 that	

constitutes	 a	 compromise	 between	 the	 competing	 constraints.	 For	 e	 =	 5σ,	 the	 order	 of	

magnitude	of	positional	and	orientational	FE	penalties	(as	measured	from	the	minimum	value)	

is	comparable,	so	the	system	spontaneously	choses	a	state	intermediate	between	states	(1)	and	

(2)	as	shown	in	Fig.	7(c).	
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FIG.	7.	(a)	and	(b)	are	cartoon	representations	of	two	COs	at	the	interface	(grey	region)	with	their	
{111}	facets	pointing	vertically	upwards.	In	(a)	the	contact	between	the	square	faces	of	the	COs	is	
complete,	causing	the	COs	to	move	away	from	the	interface-dividing	plane	and	out	of	the	interface,	
hence	decreasing	the	system’s	stability.	In	(b)	the	COs	can	slip	along	their	contacting	surface	and	
move	into	the	interface,	reducing,	in	the	process,	the	vertical	separation	between	their	centers	of	
mass.	(c)	Snapshot	from	brute-force	MD	simulation	of	two	CO	with	e=5σ	and	εNP,NP	=0.15.	The	
complete	contact	constraint	(due	to	high	εNP,NP	value)	forces	the	joined	structure	to	rotate	as	a	
whole,	thereby	bringing	the	NP	centers	closer	to	the	interface	dividing	plane.	The	solvent	beads	are	
represented	as	small	dots	for	better	visibility.	(d)	e=5σ,	εS1,S2	=0.7	and,	εNP,NP	=0.125.	The	COs	
eventually	attain	and	retain	this	structure	even	when	initialized	far	away.	(e)	FE	profile	for	a	CO	
(e=5σ)	and	εNP,S1	=	0.7.	Under	these	conditions,	CO	prefers	to	stay	at	H~0.4e	and	with	its	{110}	facet	
up.	(f)	Stable	rod-like	motif	formed	by	two	COs.	The	interfacial	region	in	the	snapshots	is	shown	in	
grey.		
	

By	setting	the	inter-NP	attraction	to	a	relatively	low	value	(e.g.,	εNP,NP	=	0.125),	it	is	possible	to	

relax	the	strong	contact	constraint.	In	such	a	scenario,	the	NPs	forgo	the	energetic	advantage	of	

a	 complete	 (square-square)	 contact,	 and	 slip	 along	 the	 contact	 surface.	 In	 doing	 so,	 the	 NPs	

reduce	 the	 vertical	 separation	 between	 their	 centers	 and,	 as	 a	 result,	 come	 closer	 to	 the	

interface-dividing	plane.	This	structure	 [shown	 in	Fig.	7(b)	and	Fig.	7(d)]	 is	 the	basic	motif	 in	

the	superstructure	referred	to	as	the	Puckered	Honeycomb	structure.		

The	strategy	developed	for	modifying	the	FE	for	a	single	NP	(Sec.	IV.B)	can	be	extended	

to	a	 two-NP	system	as	 follows.	For	 the	purpose	of	stabilizing	 the	Puckered	Honeycomb	motif,	

the	degree	of	miscibility	between	the	two	fluids	(εS1,S2)	can	be	increased	(without	changing	the	
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relative	contact	angles	of	the	fluids	with	the	CO).	By	doing	this,	the	FE	well	associated	with	the	

vertical	position	becomes	shallower,	thereby	allowing	the	CO	to	access	a	wider	range	of	vertical	

positions	around	the	interface	dividing	plane	(as	shown	in	Sec.	 IV.B).	Similarly,	we	can	reduce	

the	contact	angle	between	the	NP	and	the	top	fluid,	θNP,S1	(corresponding	to	εNP,S1=0.7)	such	that	

the	most	preferred	position	is	centered	about	1.5	-	2.0σ	[Fig.	7(e)].	At	this	vertical	position,	the	

COs	preferentially	orient	themselves	with	the	{110}	facet	up	configuration,	with	no	significant	

relative	 separation	 distance	 between	 NP	 centers.	 This	 gives	 rise	 to	 stable	 linear,	 rod-like	

structures	[Fig.	7(f)].	It	is	important	to	note	that	if	εNP,S1	is	increased,	εNP,NP	has	to	be	re-adjusted	

to	mitigate	the	NP's	solvation	preference	to	fluid	S1;	specifically,	if	εNP,S1	is	set	to	0.7,	then	εNP,NP	

must	be	increased	from	0.125	to	~0.25.	

	

D.	Validity	of	the	Continuum	Model	

As	can	be	seen	 in	Fig.	5(b),	 the	continuum	model	proposed	 in	Sec.	 III	 is	able	 to	capture	semi-

quantitatively	the	key	features	and	trends	of	behavior	of	the	FE	plots	for	the	polybead,	solvent	

explicit	model	and	associated	orientational	and	positional	preferences	of	a	single	NP	at	a	fluid-

fluid	 interface.	 Compared	 to	 the	 sharp-interface	 model	 [24],	 the	 continuum	 model	 that	 we	

propose	here	gives	a	more	detailed	description	of	the	system	when	the	size	of	the	NP	is	within	

the	same	order	of	magnitude	as	the	size	of	 the	 liquid	molecules	[O(10)].	An	elegant	 feature	of	

this	formulation	lies	in	the	fact	that	it	reduces	to	the	previous	sharp-interface	model	in	the	limit	

of	very	large	NP	sizes,	as	illustrated	in	Fig.	8(a).	Indeed,	when	the	size	of	the	NP	is	much	greater	

than	the	width	of	the	interface,	we	can	write:		

	

Excluded	volume	(Vex)	≈	(Excluded	area	×	interface	width)	

	

NP	area	in	contact	with	the	mixing	region	≈	(Perimeter	×	interface	width)	
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FIG.	8.	(a)	Illustration	of	the	idea	that	if	the	NP	size	is	much	bigger	than	the	characteristic	thickness	
of	the	interface	(as	in	the	rightmost	cube),	the	proposed	finite-interface	model	approaches	the	
sharp-interface	model.	(b)	(Top)	MD	simulation	results	for	a	polybead	Cube	(e=5σ)	for	different	sets	
of	(εS1,S2,	εNP,S1)	parameter	values;	(Bottom)	The	sum	(red	curve)	of	changes	in	FE	(ΔF)	caused	by	
independent	changes	in	parameters	to	the	base	FE	profile	matches	with	the	profile	generated	by	
changing	both	parameters	simultaneously	(target	function,	blue	curve).	

	

As	we	saw	in	Sec.	IV.A,	this	continuum	model	correctly	predicts	the	positional	FE	minimum	for	a	

cube.	 As	 further	 validation,	 we	 generated	 FE	 vs	 H	 profiles,	 for	 a	 single	 cube	 (e=5σ)	 at	 the	

interface,	 for	 different	 sets	 of	 (εS1,S2,	 εNP,S1)	 values	 [Fig.	 8(b),	 top	 panel].	 Each	 profile	 is	

represented	using	the	F(εS1,S2,	εNP,S1)	notation.	Next,	we	calculated	the	change	in	the	FE	(ΔF)	(at	

corresponding	values	of	H)	caused	by	a	change	 in	one	parameter	at	a	 time.	We,	 then,	add	 the	

change	caused	by	both	parameters	individually	to	the	base	value	(F(0.5,0.5)).	It	can	be	seen	in	

the	 bottom	 panel	 of	 Fig.	 8(b)	 that	 this	 sum	 is	 equal	 to	 the	 target	 function	 (F(0.6,0.6)).	 This	

additivity	of	individual	FE	effects	for	the	solvent-explicit	polybead	model	agrees	with	the	linear	

structure	of	the	relevant	terms	in	the	continuum	model	formulation	[Eq.	(4)]	(non-linear	effects	

are	absent):	

	

𝐹 0.5, 0.5 + 𝐹 0.6, 0.5 –𝐹 0.5, 0.5 + 𝐹 0.5, 0.6 –𝐹 0.5, 0.5 = 𝐹 0.6, 0.6 	 (5)	

or,	

𝐹!"#$ + ∆𝐹 𝜀!!,!! + ∆𝐹 𝜀!",!! = 𝐹!"#$%!	 	 	 	 	 	 (6)	

	

	



18	
	

V.	CONCLUSIONS	

By	 using	 a	 polybead	 model,	 we	 simulated	 an	 isolated	 NP	 at	 an	 explicitly	 defined	 fluid-fluid	

interface.	 Using	 biased	 sampling	 techniques,	 we	 mapped	 the	 orientational	 and	 positional	 FE	

function	for	a	cubic	NP.	In	general,	this	methodology	can	be	applied	to	any	polyhedral	shape	(as	

illustrated	in	the	SI,	Sec.	5),	provided	it	can	be	formed	using	a	polybead	model.	We	found	that	an	

isolated	cube	at	 the	 interface,	with	no	selective	preference	 to	either	 fluids,	prefers	a	 {111}	up	

orientation.	 A	 Pieranski-type	 formulation	 [22]	 of	 the	 continuum	 model	 presented	 in	 Refs.	

[23,24],	 however,	 predicts	 a	 {110}	 up	 orientation.	 It	 was	 found	 that	 when	 the	 width	 of	 the	

mixing-region	is	not	negligible	relative	to	the	size	of	the	cube,	the	effect	of	this	finite	interface	on	

the	underlying	FE	 is	 significant.	The	FE	 trends	observed	 in	 the	MD	simulations	were	 justified	

based	 on	 the	 proposed	 finite-interface-thickness	 continuum	 model.	 This	 model	 enacts	 the	

principle	of	minimization	of	interfacial	energy	based	on	reducing	the	interfacial	volume	(i.e.	the	

volume	of	the	mixing	region)	by	maximizing	the	volume	occupied	therein	by	the	NP.	

Thereafter,	 we	 proposed	 a	 strategy	 to	 gain	 access	 to	 different	 orientational	

configurations	for	a	given	NP	shape.	By	changing	the	contact	angles	between	the	three	system	

components,	we	can	alter	the	shape	and	depth	of	the	FE	wells	(that	govern	both	positional	and	

orientational	behavior)	 to	create	conditions	at	which	different	 target	configurations	of	 the	NP	

can	be	stabilized.	We	showed	that	for	certain	conditions	(εS1,S2	=	0.6,	εNP,S1	=	0.7)	a	cube	of	edge	

size,	e=5σ	moves	away	from	the	interface-dividing	plane	and	orients	with	its	{100}	facet	up.	We	

then	 built	 upon	 these	 principles	 to	 explain	 and	 control	 the	 assembly	 of	 two	 COs.	 Indeed,	we	

predicted	 conditions	 for	 the	 stability	 of	 different	 types	 of	 assemblies	 and	 validated	 our	

predictions	through	direct	MD	simulations.		

We	 expect	 that	 the	 approaches	 developed	 in	 this	 study	 and	 the	 results	 generated	

therefrom	 to	 be	 potentially	 translatable	 to	 real	 systems	 and	 guide	 experimental	 efforts	 to	

improve	protocols	for	interfacial	assembly	of	NPs.	Although,	specific	NP	materials	and	

fluids	can	be	approximately	mapped	into	our	coarse-grained	model	by	calibrating	the	different	

contact	angles	between	the	solid	and	 fluid	phases,	several	refinements	can	be	 introduced.	For	

example,	 the	NP	model	 can	be	more	detailed	by	using	more	numerous	beads	 to	 represent	 its	

surface.	We	 could	 even	 introduce	 facet-specific	 interactions	 (patchy	NPs)	 by	 setting	 different	

εNP,S	values	for	beads	belonging	to	different	types	of	facets.	This	would	be	of	interest	for	certain	

kinds	of	NP	shapes	like	cuboctahedra	or	rhombicuboctahedra.	Alternatively,	this	could	also	be	

achieved	 by	 adding	 grafted	 ligands	 onto	 the	 NP	 beads	 [37]	 (if	 existing	 in	 the	 real	 system).	

Likewise,	more	atomistic	models	could	be	used	to	describe	specific	solvents	[38].	

The	implicit-solvent	continuum	model	we	propose	and	validate	is	also	expected	to	be	a	

valuable	tool	to	model	the	interfacial	behavior	of	NPs	in	the	regime	where	the	NP	size	is	of	the	

same	 order	 of	 magnitude	 as	 the	 solvent	 size	 or	 the	 interface	 thickness.	 For	 small	 NPs,	 we	
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conjecture	 that	 the	 dynamic	 nature	 of	 the	 NP	 motions	 (both	 translation	 and	 rotation)	

perpendicular	 to	 the	 interface	 tends	 to	 average	 the	 capillary	 deformations	 into	 an	 effective	

mixing	region.	Through	application	of	this	analytical	model,	one	can	gain	a	more	complete	and	

intuitive	understanding	of	the	underlying	physics	that	govern	the	relative	stability	of	different	

NP	 orientations	 at	 various	 vertical	 positions.	 There	 exist	 different	 directions	 that	 can	 be	

pursued	 to	 improve	 the	 theory.	 For	 example,	 a	 more	 detailed	 model	 could	 be	 developed	 by	

further	 decoupling	 the	 effect	 of	 the	 deformation	 of	 the	 diving-surface	 in	 contact	with	 the	NP	

from	 the	average	width	of	 the	mixing	 region.	 In	 this	 context,	 simulations	of	NPs	of	 increasing	

larger	sizes	(relative	to	the	interface	thickness)	will	also	be	informative	to	detect	and	quantify	

the	contributions	of	capillary	deformations	and	interfacial	mixing.		

	

Future	 modeling	 studies	 could	 extend	 our	 work	 by	 probing	 the	 effect	 of	 NP	 solvent	

wetting	 at	 a	 vapor-liquid	 interface	 instead	 of	 a	 liquid-liquid	 interface.	 Also,	 multi-particle	

interfacial	assembly	behavior	can	be	studied	by	using	solvent-explicit	coarse-grained	models	or	

be	 aided	 by	 a	 solvent-implicit	 continuum	model	 like	 those	 presented	 here.	Work	 along	 these	

lines	is	currently	under	way.	
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