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Abstract

We demonstrate the agreement between first principle calculations and experimental measure-

ments of size effects in thermal transport in SiGe alloys without fitting parameters. Transient

thermal grating (TTG) is used to measure the effect of grating period on the temperature decay.

The virtual crystal approximation under the density functional theory framework combined with

impurity scattering is used to determine the phonon properties for the exact alloy composition

of the measured samples. With these properties, classical size effects are calculated for the ex-

perimental geometry of reflection mode TTG using the recently-developed variational solution to

the phonon Boltzmann transport equation, which is verified against established Monte Carlo sim-

ulations. We find agreement between theoretical predictions and experimental measurements in

the reduction of thermal conductivity (as much as 4-fold of the bulk value) across grating periods

spanning one order of magnitude. This paper provides a framework for the study of size effects in

thermal transport in opaque materials.
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I. INTRODUCTION

Deviations from the Fourier regime of thermal transport occur when length scales be-

come on the order of the mean free paths of thermal energy carriers. Geometries where the

dimensions of heating or sample size can be shrunk to such a scale have provided experimen-

talists with a tool for probing size effects in thermal transport. For instance, Hu et al. used

nanoscale metal heaters exposed to optical heating in the time domain thermoreflectance

(TDTR) configuration to measure size effects in bulk substrates1 and Cuffe et al. used the

transmission mode transient thermal grating (TTG) geometry to study the effect of film

thickness in silicon membranes2.

The nano-heater technique requires careful fabrication and microscopic knowledge of

the thermal interface between the heaters and substrate for an accurate description of the

transport. The transmission TTG requires optically thin and mechanically free membranes,

limiting the range of materials that can be studied. Thus, a technique which overcomes these

disadvantages is desirable. First used by Johnson et al. to observe non-diffusive transport

in GaAs3, the reflection mode TTG technique is a simple geometry that is not obfuscated

by an interface or limited to thin membranes. The objective of this work is to use a bottom

up theoretical approach and apply the framework to the reflection mode TTG. In doing so,

we are able to unify the pictures obtained from the macroscopic observables of experiment

to the microscopic properties from theory.

Our candidate material is a silicon-germanium (SiGe) alloy, as this system has proven to

be a canonical case for the study of thermal transport in a mass-disordered, yet crystalline

system, evidenced by the plethora of work, dating back to the original work by Stohr4,

Toxen5 and Abeles6,7, where it was noted that the mass-disorder scatters short-wavelength

phonons consequently shifting the dominant contribution to thermal conductivity to long

wavelength phonons.

The concept of large contribution to thermal conductivity from long wavelength phonons

with large mean free paths (MFP) was used to explain the observation from Koh et al.,

who reported a modulation frequency dependent estimate of thermal conductivity under

the Fourier model of the experimental geometry of TDTR 8. The authors suggested that

the frequency dependence corresponds to a reduction in the contribution to thermal conduc-

tivity of the large MFP phonons. This result led to a series of theoretical explanations9–13.
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However, each of these explanations invoked a set of fitting parameters to accurately capture

the experimental observable.

Inspired by the multiple theoretical attempts to explain the experimental observations, we

present theoretical predictions that accurately capture our experimental observables with-

out relying upon fitting parameters or unnecessary approximations. The structure of the

paper is as follows. In Section II we present the phonon properties obtained using density

functional theory. In Section II B, the variational solution to the phonon BTE for the TTG

experimental geometry is developed. In Section III, results obtained from TTG are pre-

sented and compared with our BTE-based predictions. Finally, we close with a discussion

and outlook in Section IV.

II. THEORY

A. First Principle Calculations

We follow the general procedure established by Broido14,15 and Esfarjani16, to obtain the

phonon properties for SiGe. While the details can be found in these works, an outline of

the procedure is included for the sake of completeness.

For a non-alloy system, the harmonic phonon properties are obtained using density-

functional perturbation theory (DFPT). The underlying premise is to treat the mechanical

displacement corresponding the wavevector of a phonon as a linear perturbation to the elec-

tronic Hamiltonian, from which atomic forces can be calculated under the self-consistent

criteria of DFT. These forces are then converted into harmonic force constants and used to

construct the dynamical matrix for the perturbing wavevector, which can then be diagonal-

ized to obtain the corresponding frequencies. The anharmonic properties can be obtained

by extending the perturbation to higher orders17. The approach we follow begins with

constructing a symmetry-reduced set of atomic displacements in a supercell, where each

member of the set undergoes a standard DFT self-consistent calculation, each yielding the

force field for the configuration. With this set of force fields, the third order force constants

are extracted. Phonon lifetimes are related to the third order force constants through the

application of Fermi’s golden rule. Integrating the modal thermal conductivity over the Bril-

louin zone, under the relaxation time approximation to the phonon BTE, yields the lattice
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thermal conductivity. This full procedure is implemented in the ShengBTE package18.

To extend the above procedure to a crystalline alloy, approximations are necessary. As

discussed by Toxen5 and Abeles6, the SiGe alloys are ideal candidates for studying the va-

lidity of the VCA. Following Garg et al.19, we use the VCA to modify the DFT calculations.

Within this approximation, two paths can be taken. One can compositionally average the

pseudopotentials for the constituent atoms, and then proceed with the usual procedure.

Alternatively, one can calculate the harmonic and third order force constants for the unal-

loyed crystalline versions of the constituent atoms, take the mass normalized compositional

average and then proceed to calculate the phonon properties:

AV CA = xASi + (1− x)AGe (1)

where x is the percent composition of silicon and Ai is a placeholder for the harmonic force

constants, the third order force constants, the atomic masses and the lattice constants20 of

the constituent atoms. We have followed both VCA procedures, and find negligible difference

in the phonon properties (see supplementary material).

The penultimate step in the alloy calculation is to include the effect of mass disorder.

Again, following Garg’s work, the phonon lifetimes are modified under Matthiessen’s rule

using the theory established by Tamura21 to treat isotope scattering as an elastic pertur-

bation. Garg et al. went a step further to estimate the anharmonic shifts do due disorder

through supercell calculations. Feng et al. used molecular dynamics to show that the ap-

plication of Matthiessen’s rule leads to an overestimation of thermal conductivity by more

than ∼ 20% in SiGe due to neglecting four and five-phonon processes22. Our experimen-

tal results will show that the harmonic mass disorder approximation under Matthiessen’s

rule produces reasonable theoretical predictions. We note that the procedure followed in

this work will not capture the frequency shifts that can be observed in the SiGe Raman

spectra23,24 (see supplementary material). It is expected that these Raman active modes do

not significantly contribute to thermal conductivity, as their group velocities are small and

their lifetimes have been reduced by mass disorder scattering. The phonon properties are

reported in Figure 1 and details of the DFT calculations are available in the supplementary

material.
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FIG. 1: Si93.4Ge6.6 MFP accumulation of thermal conductivity and heat capacity at 300 K.

B. Solving the Boltzmann Transport Equation

Given the bulk phonon properties of Si93.4Ge6.6, we now turn to the study of the effect

of grating period length on thermal transport in the reflection mode TTG geometry. The

diffusive temperature profile has previously been obtrained in order to analyze the tem-

perature signal using TTG for opaque materials25. For the experimental conditions of a

spatially periodic heat source defined by wavevector q = 2π
λ

, the temperature is given by

T (x, z, t) = T0 + T0e
iqxh(z, t) in complex form, and this serves as a definition of the non-

dimensional temperature h. The temperature T0 is the background equilibrium temperature

of the system, for example the room temperature. The heating by the laser is incorporated

with a volumetric heat generation term, given by the functional form:

Q = δ(t)eiqxU0βe−βz (2)

where U0 represents the energy per unit area deposited into the substrate by the pulse, and

β is the inverse penetration depth of the heating profile. The derivation found in25 takes
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into consideration different in-plane and cross-plane thermal conductivities, however the

experimental signal is mostly sensitive to the in-plane thermal conductivity. For simplicity,

we show the derivation for an isotropic system, where the Fourier heat conduction equation

simplifies to:

∂h

∂t
= −αq2h+ α

∂2h

∂z2
+
βU0

CT0

e−βzδ(t) (3)

with the initial and boundary conditions given by:

h(z, t = 0−) = 0

∂h

∂z
|z=0 = 0

h(z →∞, t) = 0

(4)

which assumes an adiabatic surface at z = 0, and that the system starts at equilibrium prior

to the energy deposited by the laser. We present the solution in the Laplace transformed

domain for convenience:

ĥ(z, s) =

βU0

CT0

s+ α(q2 − β2)

(
e−βz − β√

q2 + s
a

e−z
√
q2+ s

a

)
(5)

We intend to utilize this Fourier heat conduction temperature profile in our variational

solution of the BTE. Taking the inverse Laplace transform of this yields the temperature as

a function of the depth into the substrate and time:

h(z, t) =
βU0

2CT0

e−αt(q
2−β2)

(
eβzerfc(β

√
αt+

z

2
√
αt

) + e−βzerfc(β
√
αt− z

2
√
αt

)

)
(6)

where the surface temperature is:

h(z = 0, t) =
βU0

CT0

e−αt(q
2−β2)erfc(β

√
αt) (7)

1. Temperature integral equation

We begin with the spectral Boltzmann transport equation under the relaxation time

approximation (RTA):
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∂gω
∂t

+ vω · ∇gω =
g0 − gω
τω

+
Qω

4π
(8)

where gω is the phonon energy density per unit frequency interval per unit solid angle above

the reference background energy, related to the distribution function as gω = ~ωD(ω)
4π

(fω −

f0(T0)). vω is the group velocity, τω is the relaxation time, and g0 is the equilibrium energy

density, given by g0 ≈ 1
4π
Cω(T − T0) in the linear response regime. The sinusoidal heating

profile in the x-direction (in-plane), given by the pulse form Qω(x, z, t) = δ(t)eiqxQ̃ω(z),

means we can expect that the spectral and equilibrium energy densities to also obey a

sinusoidal profile gω = eiqxg̃ω and the equilibrium distribution will simplify accordingly to

g̃0 = CωT0
4π

h(z, t). By inputting this in-plane sinusoidal profile and utilizing the Laplace

transform (denoted by theˆsymbol) in the time domain, the BTE simplifies to:

∂ ˆ̃gω
∂z

+ ˆ̃gω
1 + sτω + iηωµx

Λωµz
=

ˆ̃g0 + τω
Q̃ω

4π

Λωµz
(9)

where we have defined ηω = qΛω. For convenience, we define the parameter V = 1+sτω+iηωµx
Λωµz

to group the variables in a compact form for the following solution of the BTE:

ˆ̃gω(z, s, µx, µz) = e−V z ˆ̃gω(z = 0, s, µx, µz) +

∫ z

0

dz′e−V (z−z′)
ˆ̃g0(z′, s) + τω

Q̃ω

4π

Λωµz
(10)

The boundary conditions are taken to be:

ˆ̃gω(z = L, s, µx, µz < 0) = 0

ˆ̃gω(z = 0, s, µx, µz > 0) = σ
(11)

The first boundary condition takes an imaginary blackbody wall at length L into the sub-

strate at the background temperature to account for the semi-infinite substrate, where this

length approaches infinity. The second boundary condition provides the adiabatic boundary

condition with diffuse scattering, where σ = 1
π

∫
dΩΘ(µz)µz ˆ̃gω(z = 0, s, µx,−µz), which is

proportional to the specular heat flux approaching the surface. We have utilized the Heav-

iside step function to reduce the integration over the solid angle only to consider phonons

approaching the surface. Applying the boundary conditions, and taking the artificial length

L to infinity yields the formal solution to the BTE for the spectral energy density in terms

of the equilibrium energy density:
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ˆ̃gω(z, s, µx, µz) = −Θ(−µz)
∫ ∞
z

e−V (z−z′)
ˆ̃g0(z′, s) + τω

Q̃ω

4π

Λωµz

+ Θ(µz)

(∫ z

0

e−V (z−z′)
ˆ̃g0(z′, s) + τω

Q̃ω

4π

Λωµz
+

∫ ∞
0

2e−V (z)F2(z′)
ˆ̃g0(z′, s) + τω

Q̃ω

4π

Λω

)
(12)

where we have defined the following solid angle integral function:

Fn(z) =
1

2π

∫
dΩΘ(µz)µ

n−2
z (e)−V z (13)

The first term represents phonons moving towards the surface of heating at z = 0, whereas

the second term represents phonons moving away from the surface.

The temperature can be derived by utilizing the equilibrium condition obtained by inte-

grating Eq. 12 with respect to frequency and the solid angle26. The equilibrium condition

in this case can be expressed as:

4π

∫
dω

1

τω
ˆ̃g0(z, s) =

∫
dω

1

τω

∫
dΩˆ̃gω(z, s, µx, µz) (14)

Performing the solid angle integral, and inputting the expression for the non-dimensional

temperature expression ˆ̃g0 = CωT0
4π

ĥ(z, s), we obtain the integral equation for the temperature

distribution:

ĥ(z, s)

∫
dω
Cω
τω

=

∫
dω

Cω
2Λωτω

∫ ∞
0

dz′

(
ĥ(z′, s) +

τωQ̃ω(z′)

CωT0

)
(F1(|z − z′|) + 2F2(z)F2(z′))

(15)

This is an integral equation in the spatial variable z for the non-dimensional temperature

in the Laplace domain, which after solving, requires an inverse Laplace transform in order

to obtain the full temperature solution in the time domain. For the thermal distribution,

the spectral heat generation takes the form:

Q̃ω(z) =
Cω
C
U0βe−βz (16)

Note that Cω

C
is a weighting of the contribution of a given mode to heat generation under

the assumption of thermalized distribution27. While other distributions can be taken, we

utilize this form in order to compare to the Fourier heat conduction solution.
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2. Variational solution

Eq. 15 can be numerically solved using finite difference methods28 or Monte Carlo meth-

ods29,30. In this work, we extend a variational approach previously presented for the 1D

TTG31 and thin film TTG geometries32 to the reflection mode TTG geometry. The starting

point of this approach is to select a trial function. The simplest trial function is to take

the diffusive temperature profile and allow just the thermal diffusivity to be a variational

parameter. In general, the size effects exhibited by the BTE will affect both the temporal as

well as the spatial distributions of the temperature. However, the simple variational solution

that varies only one parameter, the thermal diffusivity, performs well by approximately solv-

ing for the thermal decay from the BTE over a broad range of grating period length scales.

We proceed by taking the Fourier heat conduction solution of Eq. 5 as a trial function and

use the thermal diffusivity as the variational parameter.

To solve for the variational parameter, we can utilize mathematical optimization methods

such as least squares on the error residual of the temperature equation31, or impose a physical

condition that we wish the trial function to satisfy. Here, we impose that the trial function

must satisfy energy conservation taken over the control volume of the semi-infinite substrate

over all time, analogous to the condition utilized for the thin film TTG geometry32. This

mathematical condition can be obtained by integrating the BTE of Eq. 14 over the solid

angle and frequency, and then also over the depth variable z as well as over all time to yield:

U0
λ

π
= 2i

∫ ∞
0

dz

∫ ∞
0

dtq̃x(z, t) (17)

This statement says that the total energy per unit area perpendicular to the z-axis de-

posited in the semi-infinite substrate initially (left hand side of Eq. 16) must be equal to the

total energy that moves away in the in-plane direction. The in-plane heat flux is obtained

by utilizing the spectral energy density of Eq. 12, and integrating over the frequency and

solid angle ˆ̃qx(z, s) =
∫
dω
∫
dΩΘvωµx ˆ̃gω(z, s, µx, µz) to obtain the in-plane heat flux:

ˆ̃qx(z, s) =
T0

2

∫
dω
Cωvω
Λω

∫ ∞
0

dz′

(
ĥ(z′, s) +

τωQ̃ω(z′)

CωT0

)
(G1(|z − z′|) + 2G2(z)F2(z′)) (18)

where we have defined the solid angle integral function:
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Gn(z) =
1

2π

∫
dΩΘ(µz)µ

n−2
z µx(e)

−V z (19)

Inserting the heat flux expression of Eq. 18 into the energy conservation statement of

Eq. 17, and inputting the variational trial function of the Fourier heat conduction solution

of Eq. 5 as well as the thermal distribution for the heat generation rate, we can solve for the

effective thermal conductivity after cleaning up some of the solid angle integrals. We obtain

a form similar in structure to the results from the thin film TTG32 and the one-dimensional

limit of the TTG31:

k =
1
3

∫
dωCωvωΛωf(ηω,Knω)

1
C

∫
dωCωg(ηω,Knω)

(20)

where Knω = Λωβ. Note that information concerning the spectral contribution to heat

capacity is needed in the equation for effective thermal conductivity 33. f and g are the

kernels that weigh a given mode’s contribution to effective thermal conductivity under the

imposed size effects, explicitly given as

f(ηω,Knω) =
3

η2
ω

(
1− 1

ηω
arctan(ηω) +

η2
ωΨ(ηω,Knω)−Kn2

ωΨ(ηω,Knω)

η2
ω −Kn2

ω

)
g(ηω,Knω) =

1

ηω
arctan(ηω) + Ψ(ηω,Knω)

(21)

We have defined the following solid angle integral functions:

Ψ(x, z) =
1

2
ψ1(x, z)− 1

1 +
√

1 + x2
ψ0(x, z)

ψn(x, z) =
1

2π

∫
dΩΘ(µz)

zµz
(1 + ixµx)n(1 + zµz + ixµx)

(22)

If we take the limit of Knω → 0, i.e. the case of very long penetration depth, the solid

angle integrals vanish as ψn(ηω,Knω → 0) ∝ Knω, and we recover the one-dimensional

TTG limit described by the previously derived effective thermal conductivity31. The more

interesting case for this problem is the reduction to surface heating, i.e. Knω →∞. In this

case, the kernel functions simplify to:
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f(ηω,Knω →∞) =
3

2η2
ω

(
1− 1

ηω
arctan(ηω)

)
− 1

η3
ω(1 +

√
1 + η2

ω)

(
(1 + ηω)

3
2 − 3

2
η2
ω − η3

ω − 1

)
g(ηω,Knω →∞) =

1

2ηω
arctan(ηω) +

1

1 +
√

1 + η2
ω

(23)

For the general case of arbitrary penetration depth, the solid angle integral functions can

be calculated analytically (available in the supplementary material), which allows for a fully

analytical effective thermal conductivity for any penetration depth into the substrate.

3. Comparison between the Variational Solution and Monte Carlo Simulations

To study the effect of the optical penetration depth in the case of a diffuse surface

boundary condition, we first plot the kernels f and g as a function of η for the extremal

limits of Knω. The one-dimensional limit of Knω → 0 and the surface heating limit of

Knω → ∞ define the envelope of curves for which the kernels for arbitrary values of the

penetration depth must lie between. As the Knudsen number increases, the size effect due

to the optical penetration depth increases, which physically results in a decrease of the

effective thermal conductivity. This occurs due to the decrease in the numerator kernel f ,

and the increase of the denominator kernel g. However, the variational solution produces

a one-dimensional limit and the surface heating limit that are practically indistinguishable

(Figure 2), suggesting that the effective thermal conductivity due to a diffuse boundary

experiences weak effects from the optical penetration depth.

Utilizing the derived kernels to calculate the effective thermal conductivity for Si93.4Ge6.6,

we show in Figure 3 the effective thermal conductivity in the various limits. Note that

the effective thermal conductivity is quite similar in the one-dimensional limit and in the

surface heating limit. As expected, when the thermal grating period is much smaller than

the optical penetration depth, the effective thermal conductivity takes on values of the one-

dimensional limit, as the transport is mostly in-plane. In the opposite case, when the grating

period is much larger than the optical penetration depth, the effective thermal conductivity

approaches the surface heating limit.

Figure 3 demonstrates that the variational technique predicts that transport has a weak

dependence on the optical penetration depth, a consequence of the kernels’ weak depen-
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FIG. 2: Kernels of the effective conductivity in Eq. 20. (a) The numerator kernel f that

shows the size effects and appears beside the differential conductivity and (b) the

denominator kernel g that shows the size effects and appears beside the spectral heat

capacity.

dence on optical penetration depth. In the limit of q/β � 1, the one dimensional TTG is

recovered. In the limit of q/β � 1, the modified Fourier approach fails to capture the short

time behavior. In this regime, the use of effective thermal conductivity (obtained either us-

ing the variational approach or otherwise) is insufficient to characterize thermal transport.

An example of this failure is presented in the supplementary material. Even with such a

limitation, our variational approach sufficiently characterizes the intermediate regime.

In the limit of q/β � 1, the variational method, using the Fourier temperature profile

as input, reveals that the thermal conductivity that best recovers this behavior is the bulk

value. This can be understood as a consequence of the constraint imposed by the equilibrium

condition of Eq. 17, which dictates the behavior of the variational temperature profile in the

large time limit where transport is diffusive. To ensure that this limitation is not present in

the current experimental study, we compare against established Monte Carlo simulations of

the RTA-BTE29,30.

As is seen in Figure 4, agreement at a grating period of 100 nm and an optical penetration

depth of 10 nm and for a grating period of 10 µm and an optical penetration depth of 1 um is

observed. As our experiments have penetration depths on the order of 1 µm for Si93.4Ge6.6
34,
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FIG. 3: Effective thermal conductivity for Si93.4Ge6.6 in the one-dimensional limit and the

surface heating limit. The effective thermal conductivity using the gray suppression

function for one-dimensional TTG (Eq. 24) is also shown 31.

and use grating periods of between 1 and 13.5 µm, we are not in the q/β � 1 regime and

we can move forward with our variational solutions.

III. EXPERIMENT

A. Sample specifications

The SiGe sample was fabricated by metal-organic chemical vapor deposition (MOCVD).

Briefly, SiH4 and GeH4 enter the reactor, which break up into Si, Ge, and H2 from exposure

to high temperatures (750-800C). The composition is controlled by tunning the flow rates

of SiH4 and GeH4. A single crystal sample consisting of 93.4% Si, 6.6% Ge with a thickness

of 6 um on a [1 0 0] oriented Si wafer with 6 degree off-cut towards the [1 1 1] plane was

used for this work. Details of the sample fabrication and characterization can be found in
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FIG. 4: Temperature profiles obtained from Monte Carlo simulations compared with the

corresponding variational predictions for Si93.4Ge6.6 at 300 K with a (a) grating period of

100 nm and optical penetration depth of 10 nm and a (b) grating period of 10 µm and

optical penetration depth of 1 µm. The Monte Carlo trace for case (b) contains noise

because of the computational cost of simulating longer decays for a large number of

effective particles. The Monte Carlo source code is included in the supplementary material.

previous work 35.

B. Transient Thermal Grating Measurements

Transient grating spectroscopy is a variant on four-wave-mixing spectroscopic techniques

that can measure thermal transport dynamics over a well-defined in-plane length scale. In

this technique, two pump laser pulses (515 nm, 60 ps FWHM) are crossed at the surface of the

sample, where they interfere to yield a sinusoidal intensity pattern. Absorption by the sample

creates a matching temperature profile, which evolves as a function of time through in-plane

and cross-plane transport. The time dynamics of this “transient grating” are measured by

the diffraction of a quasi-continuous probe beam (532 nm), and phase-specific information is

extracted through heterodyned detection of the TTG signal by superposition of the diffracted

signal with a reference beam (local oscillator) derived from the probe beam source. The

signal is detected using a fast photodiode (1 GHz bandwidth) and recorded on an oscilloscope
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(4GHz bandwidth). Specific details of the optical setup can be found elsewhere25,36,37 and a

depiction of the TTG setup is shown in Figure 5.

FIG. 5: A diagram of the reflection mode TTG geometry. The pump and probe beams

are passed through the diffraction grating (referred to here as the phase mask), the which

sets the period length of the heating profile. The ±1 orders of the pump and probe are

then imaged on the sample surface using the 4f lens system. An ND filter attenuates the

reference beam of the probe, while an optic (the heterodyne phase control) is placed in the

signal beam of the probe to control the relative phase between the reference and the signal.

The diffracted signal and the reflected reference are collected at the detector.

The TTG signal will in principle have both real and imaginary field contributions due

to “amplitude-grating” and “phase-grating” responses, respectively. The phase grating con-

tributions contains decay components that correspond to thermal expansion and the imagi-

nary part of the thermoreflectance and acoustic oscillations corresponding to the impulsive

stimulation of surface acoustic waves (SAWs), whereas the amplitude-grating response only

contains one term corresponding to the real part of the thermoreflectance25. Analysis of the

amplitude-grating contribution is simpler due to the single contribution, and so this term

was isolated during the measurements by optimizing the heterodyne phase to minimize the

SAW signal which only appears in the phase-grating response25.
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C. Results
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FIG. 6: (a) Raw experimental data for 6.6 µm (top) and 1.8 µm (bottom) grating periods

with the fit obtained from Eq. 7. (b) Green circles correspond to measured TTG data for a

range of grating periods, from 13.5 to 1 µm. The black line is the prediction from the

variational solution with DFT properties as input, while the orange line (yellow line,

purple line) corresponds to the variational prediction for Si97Ge3 (Si80Ge20, Si).

All measurements of the Si93.4Ge6.6 sample were conducted at room temperature. Fig-

ure 6a shows two examples of raw TTG data along with the fits obtained from using Eq. 7.
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These fits yield an effective thermal conductivity as shown in Figure 6b alongside the predic-

tion from the variational solution using properties obtained from first principle calculations

following Section II. We have used an optical penetration depth of 1500 nm, according to34.

The effect of uncertainty in the penetration depth is presented in the supplementary mate-

rial. There is good agreement between theory and experiment, which persists for a range of

grating periods, from ∼ 13.5 to 1 µm. Example fits of the TTG data with comparisons to

the variational predictions are found in the supplementary material.

IV. DISCUSSION AND OUTLOOK

To review, we calculated the first principles phonon properties to match the exact com-

position of the sample studied experimentally. We then used these properties and the vari-

ational solution to the RTA-BTE to predict (without any fitting parameters) the recorded

observable of TTG experiments, the temperature decay. In doing so, we report excellent

agreement between the observables and effective thermal conductivities of theory and ex-

periment. In this section, we draw on past interpretations to provide some context for this

work.

As mentioned earlier, one of the first explanations of size effects in SiGe grew out of the

observation of frequency dependence in TDTR measurements8. This explanation relied on

the application of thermal penetration depth, Ltpd ∼
√

αbulk

ω
, as a heuristic approximation to

estimate the magnitude of the deviation from a bulk thermal conductivity. For Si93.4Ge6.6,

αbulk = 1.2358E-5 m2/s, with 10 MHz, yields a Ltpd ∼ 1 µm. Under this approximation, we

can take the MFP thermal conductivity accumulation function at 1 µm, yielding 0.4kbulk =

7.3 W/mK38. If we apply the same reasoning to our TTG measurements we arrive at a clear

inconsistency: λ = 1 µm yields 0.25kbulk = 4.5 W/mK, indicating that the MFP thermal

conductivity accumulation function alone is insufficient to estimate the deviation from bulk.

The next natural step in the interpretation of deviations from bulk required theory to go

beyond the Heaviside cutoff of the thermal penetration depth and obtain a gray suppression

function, Sgray(ηω), from solving the gray BTE39–41

Sgray(ηω) =
3

η2
ω

(
1− arctan(ηω)

ηω

)(
ηω

arctan(ηω)

)
. (24)

This function is then used as a kernel in the effective thermal conductivity integral, i.e.,
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FIG. 7: Comparison between the predictions from the variational approach to using the

MFP accumulation function or the gray suppression function for one-dimensional TTG

(Eq. 24)31 to estimate the effective thermal conductivity at 1.00 µm grating period.

keff,gray = 1
3

∫ ωm

0
CωvωΛωSgray(ηω)dω. This picture has also turned out to be an oversim-

plification, since the fully spectral solution to the BTE has no suppression function due to

the presence of the denominator term in Eq. 20. The presence of this term is a general fea-

ture of effective thermal conductivity expressions that is not specific to the reflection mode

TTG geometry 28,31. Our work confirms this fact by demonstrating that a fully spectral

solution to the BTE is required to characterize experimental observables. The progression

from thermal penetration depth to gray suppression to fully spectral interpretations in the

context of reflection TTG is shown in Figure 7. While the gray BTE solution has been used

to provide suppression functions for the MFP reconstruction problem1,39, we demonstrate

that this assumption is invalid. Extending the MFP reconstruction problem to allow for

fully spectral solutions is the subject of future work.

In contrast to the interpretation of thermal penetration depth of TDTR, the length
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scales in TTG do not depend on the intrinsic value of a material’s transport coefficient,

and are therefore physically well-defined independent variables. Although the information

concerning the optical penetration depth is required, this is well within current character-

ization technology42. Given that the variational solutions to the 1D and surface heating

TTG geometries predict approximately the same effective thermal conductivity dependence

on grating period, we have obtained estimates for the regimes in which the experiment is

expected to match theory (i.e., when q/β is not much less than 1). In doing so, we have

presented a theoretical framework that is testable, given that experimental deviations from

theory can be understood as departures from the approximations used in this work: the

VCA, the RTA-BTE and the specific trial solution for the temperature profile used in the

variational method. These approximations can be lifted and are left for future work. With

the methodology presented here, the TTG can be used to study in-plane transport in opaque

thin films that require a supporting substrate.

While TDTR measurements are sensitive to the cross-plane transport, the TTG provides

a complementary tool for measuring in-plane transport. The variational method can be

extended to more complicated geometries, such as layered systems with interfaces, ideally

suited for providing insight into the interpretations of TDTR and TTG measurements. Such

an extension would provide a path towards unifying the interpretations of the measurements

from TDTR and TTG.

V. CONCLUSION

Our TTG experimental results augmented with DFT-based modeling and the variational

BTE solution indicate that this experimental geometry is capable of meeting the predictive

criteria necessary for studying size effects on thermal transport in complex materials, such

as the SiGe alloy studied here. Interesting questions can now be asked, such as in what

systems or at what length scales can we expect to find a breakdown of the VCA? Moreover,

this geometry will likely prove useful in the study of systems where the relaxation time

approximation fails, such as graphene, graphite and diamond. The TTG experiment provides

a path towards tabletop studies of the microscopic properties of thermal transport.
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