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École Polytechnique Fédérale de Lausanne, CH-1015, Vaud, Switzerland

Abstract

The 6000 series Al alloys, which include a few percent of Mg and Si, are important in automo-

tive and aviation industries because of their low weight, as compared to steels, and the fact their

strength can be greatly improved through engineered precipitation. To enable atomistic-level sim-

ulations of both the processing and performance of this important alloy system, a neural network

(NN) potential for the ternary Al-Mg-Si has been created. Training of the NN uses an extensive

database of properties computed using first-principles Density Functional Theory, including com-

plex precipitate phases in this alloy. The NN potential accurately reproduces most of the pure

Al properties relevant to the mechanical behavior as well as heat of solution, solute-solute and

solute-vacancy interaction energies, and formation energies of small solute clusters and precipi-

tates that are required for modeling the early stage of precipitation and mechanical strengthening.

This success not only enables future detailed studies of Al-Mg-Si but also highlights the ability of

NN methods to generate useful potentials in complex alloy systems.

PACS numbers: 07.05.Tp, 34.20.Cf, 81.05.Bx
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I. INTRODUCTION

Light weight alloys that show significant solid solution strengthening and precipitation

strengthening have been developed for decades and are widely used in automotive and avia-

tion industries. The 6000 series Al-Mg-Si alloys are an important class of lightweight alloys

that can be formed both by casting and wrought processes. The processes of clustering

of solute atoms and forming of Guinier-Preston (GP) zones or precipitates significantly af-

fect the strength of the alloy as a function of aging time and temperature. The strength

is determined by the interaction of dislocations with the evolving microstructure (random

solutes, solute clusters, GP zones, and precipitates). As a result, considerable experimental

effort has been made to control the formation of precipitates by means of heat treatment

and/or control of the alloy composition. However, direct observation of small clusters and

precipitates is challenging, making it difficult to understand the growth mechanisms, and

associated strengthening mechanisms, from early stages of precipitation up to the peak aging

at which the maximum strength is reached.

Atomistic simulations such as ab initio calculation, molecular dynamics (MD), and ki-

netic Monte Carlo (KMC) are powerful tools for studying the early stage of clustering of

solutes and interaction between dislocations and solutes, clusters and precipitates. Ab initio

methods provide chemical accuracy for arbitrary atomic arrangements but are computa-

tionally prohibitive, with respect to both sizes and times, for addressing problems related

to clustering, precipitation, and strength. Thus, MD and KMC methods must be used, but

these methods require the existence of interatomic potentials for all the interactions among

alloying elements, and require accurate potentials for realistic predictions. The development

of accurate multi-component interatomic potentials has proven to be a serious challenge,

and thus a significant impediment to the application of MD and KMC methods to alloys.

In spite of the challenges, many efforts to create interatomic potentials have been made.

For single element metals and solid solution alloys, the embedded atom method (EAM)

potentials1 has been widely used because of its reasonable accuracy and simple form. The

modified EAM (MEAM)2 approach enables additional directional bonding and so has been

pursued for binary alloys that form intermetallic compounds3,4. However, it is difficult

for both EAM and MEAM methods to reproduce a wide variety of compound phases for

alloys with more than two components. For instance, Jelinek et al. developed an MEAM
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potential with pair and triplet interaction parameters for the five elements Al, Mg, Si, Cu

and Fe that reproduces several properties of binary compounds. However, generally these

potentials do not provide “chemical accuracy” at the level needed (∼ kBT ) for realistic

simulations at characteristic temperatures (T ∼ 300−600K). For the particular Al-Mg-

Si ternary system, the lattice constants and heats of formation of important precipitate

phases are not well-predicted. Thus, there continues to be a great need for accurate multi-

component interatomic potentials.

In this paper, we develop a neural-network (NN) interatomic potential for the ternary

Al-Mg-Si system that is useful for the study of precipitation processes and strengthening

of the Al 6xxx alloys. The NN potential approach, developed by Behler and Parrinello5, is

one of several classes of machine-learning potentials, such as the Gaussian approximation

potential (GAP)6,7 and the linear regression potential8. These potentials introduce a large

number of functions and parameters with no direct physical interpretation, rather than

a few functions based on physical concepts, but the high flexibility then allows for the

fitting of complex potential energy landscapes that govern the observed structures and the

evolution of a material system. Previous studies show that the NN potential can reproduce

the complex potential energy landscape of binary systems such as TiO2
10 and phase-change

materials11, and ternary system such as Cu clusters on ZnO surface9. Recently, Hajinazar

et al.12 developed an approach to construct a NN potential for ternary alloy, Cu-Pd-Ag, in

which the NN potential was optimized hierarchically from unary to ternary systems. Altough

this approach has some practical advantages, some important properties for precipitation

processes such as the heats of solution (e.g., Pd in fcc Cu) are not in good agreement with

reference values, up to ∼ 0.2 eV. Here, we demonstrate application of the NN approach for

the development of potentials for the Al-Mg-Si ternary system, as optimized to match an

extensive set of reference data obtained by ab initio calculations. We thus show that the

NN approach has promise as an approach for obtaining interatomic potentials for complex

alloys and we provide a specific potential for the study of the technologically-valuable Al

6xxx alloy system.

The remainder of this paper is organized as follows. Simulation methods and geometries of

calculated structures are described in Sec. II. Details of the NN potential and the procedures

for parameterization are reviewed in Sec. III. The properties of pure Al as predicted by the

NN potential are presented in Sec. IV and properties of the ternary system are presented in
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Sec. V. We summarize our work in Sec. VI.

II. SIMULATION METHODS AND GEOMETRIES

Energies and forces of all the structures used for training the network are calculated by

density functional theory (DFT) using Quantum Espresso13. In the DFT calculations, the

generalized gradient approximation (GGA) parameterized by Perdew et al.14 (PBE) is used

for the exchange-correlation functional, and ultrasoft pseudopotentials15,16 are employed

with 10, 3 and 4 valence electrons for Mg, Al and Si, respectively. Wave functions are

expanded using plane waves with the cut-off energy 35 Ry (476 eV) and integration over

the irreducible Brillouin zone is done using the Monkhorst-Pack method with k-point pitch

less than 0.1 Å−1 and electron occupation over bands is smeared by the Gaussian function

with width 0.05 Ry. These values were validated via a study of convergence of the lattice

constant and bulk modulus. To estimate the uncertainty within the DFT scheme, some

computations were repeated using the so-called PBEsol exchange-correlation functional17.

Calculations using the NN potential and optimization of parameters in the NN potential

are performed using our own MD program, NAP18. Calculations using the MEAM poten-

tials of both Jelinek’s and Kim’s20 are performed using the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS).21

In calculations of pure bulk structures and ordered compounds, the minimum conven-

tional cells are used with periodic boundary conditions (PBCs) in all the directions. In finite

temperature calculations of pure Al to compute the thermal expansion coefficient, we use

3 × 3 × 3 cubic FCC cells and equilibrate the system to the target temperature using the

Langevin thermostat22 and the target pressure (0 GPa) using the Berendsen barostat23 over

a total time of 10 ps. Atomic volume at a given temperature is obtained as the average

volume during 10 ps after the initial 10 ps equilibration time.

In calculations of single solutes/vacancies and solute-solute or solute-vacancy interactions,

we use 4×4×4 cubic FCC cells with one or two Al atom replaced by solutes as appropriate.

In calculations of “random” distribution of solutes, 2× 2× 2 cubic FCC cells are used and

a half of the atoms (16) are chosen randomly and replaced with two vacancies and 14 solute

atoms, Mg and Si. In both cases, PBCs are applied to all the directions and atom positions

are relaxed with the lattice constants being fixed to that of pure Al. These are reference
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calculations of specified structures for input into the NN algorithm, and so there is no need

to relax these structures fully.

In calculations of stacking faults, the simulation cell is oriented with axes along [11̄0],

[112̄] and [111] as x, y and z directions, respectively. PBCs are used along x and y and

the surfaces along z are free with a vacuum region wider than 11 Å. There are 12 atomic

layers along z and the stacking fault is introduced by the rigid shift of upper half atoms in

z followed by relaxation of all atoms only along the z direction.

In calculations of the properties for the (111), (001) and (110) surfaces, the energy versus

separation is calculated by rigidly separating upper and lower halves of atoms. The slab

was made thicker than 8 Å to reduce spurious interactions between surfaces. The cell size

in the plane of the surface is fixed to the bulk equilibrium value.

In calculations of precipitates, the geometry of the system follows that employed by Ninive

et al.24 (also shown in Fig. 7). A needle-shape precipitate is embedded into Al matrix so

that the longitudinal axis of the needle matches the [001] direction of the Al matrix. The

system size normal to the longitudinal axis is proportional to the number of formula units of

the precipitate embedded in the system. For example, cell sizes of 5×5, 7×7 and 12×12 are

used for precipitates containing 1, 4 and 16 formula units, respectively. The lattice constant

of the system is fixed to that of pure Al at equilibrium.

In calculations of dislocation-solute interactions, the system is prepared by the following

steps. Firstly, we create an orthogonal FCC lattice with x, y and z axes along [11̄0], [112̄]

and [111], with lengths 285.7, 14.8 and 219.6 Å, respectively. A vacuum region along the z

axis wider than the cutoff distance of the NN potential is introduced by removing atoms.

Secondly, a perfect dislocation is introduced along y at the center of x and z coordinate

system by removing one atomic layer normal to x from the bottom half of the system.

Relaxing the atoms while holding the z motions of atoms on (111) surfaces fixed, we obtain

two partial dislocations and a stacking fault between them. The Nye tensor distribution

around the dislocation cores are calculated using the method proposed by Hartley and

Mishin25. To obtain the interaction energy between a solute and a dislocation core, one

Al atom around the dislocation core is replaced with the desired solute. If the system is

relaxed with no constraints, it is frequently the case that the dislocation will glide so that

the solute position, relative to the dislocation, is in a low-energy position (typically either

near a partial core or far away from the dislocation). When this occurs, the measurement of
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“solute/dislocation interaction energy” for the original solute position is not obtainable. To

overcome this problem, we fix one plane of atoms in a plane perpendicular to the dislocation

line, thereby pinning the dislocation core structure in this plane. The solute is then inserted

at the desired y − z position in a plane furthest from the constrained plane of atoms, the

system is relaxed, and the energy measured. Due to the constraint, the dislocation does not

bow-out toward or away from the solute.

III. NEURAL-NETWORK POTENTIAL

A. Structure of the NN potential

The NN potential developed in this paper is basically the same as the one originally

developed by Behler and Parrinello5. However, since there are some differences in detail, we

describe the structure of the NN potential here.

The energy of an atom-i in a structure-s is defined as

Es
i =

∑

m

w2
1my

1
i,m, (1)

y1i,m = fa

(

∑

n

w1
mnGi,n

)

. (2)

Here wl
mn is the weight of a line from a node-n in the (l−1)-th layer to a node-m in l-th layer

of the NN, and yli,m is the value of node-m in l-th layer, Also, Gi,n, the so-called symmetry

function, is the n-th input which depends on the interatomic bond distances Rij from an

atom-i to surrounding atom-j. The activation function fa(x) is defined using the sigmoid

function as

fa(x) =
1

1 + e−x
−

1

2
(3)

where 1/2 is subtracted from the sigmoid function so that y1i,m becomes zero when all the

inputs are zero, resulting in the energy being zero.

There are many choices of the symmetry functions. Here we employ the Gaussian function

Gi,n =
∑

j 6=i

e−ηn(Rij−Rn)2fc(Rij), (4)

where ηn and Rn are the parameters that are determined heuristically before training the
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network. The cutoff function fc(R) is defined as

fc(R) =



















1, for R ≤ R∗,

1
2

[

cos π(R−R∗)
(Rc−R∗)

+ 1
]

, for R∗ < R ≤ Rc,

0, for R > Rc.

(5)

where Rc is the cutoff radius and R∗ = 0.9Rc.

B. Training of the network

The objective function to be minimized in training of the NN potential is

L ({w}) =
1

2M

M
∑

s

[

(

∆Es

εse

)2

+

Ns
a

∑

i

xyz
∑

α

1

3N s
a

(

∆F s
i,α

εsf

)2
]

(6)

where ∆Es =
(

Es,NN −Es,ref
)

/N s
a and ∆F s

i,α = F s,NN
i,α −F s,ref

i,α are the differences in energies

and force components, respectively, as obtained by the NN potential and the DFT calcula-

tions. The super-script s indicates the index of a sample, N s
a is the number of atoms in the

sample-s, and M is the number of samples. The quantities εse and εsf are the convergence

criteria for the energy per atom and the force component for a sample-s, respectively; the

objective function L becomes less than one when ∆Es and ∆F s
i,α are smaller, on average,

than these convergence values.

A parameter-rich model like the NN can often show overfitting, in which the model is

well optimized to the training set data but reproduces very poorly data not included in the

training set. This is also known as low transferability of the interatomic potential. There are

various ways to avoid the overfitting, such as the early stopping approach10,26 which stops

the optimization before the overfitting begins, and the weight decay approach26 which adds a

penalty term to L to suppress the parameters having large values, which usually causes the

overfitting. Because it is not easy to determine when to stop the optimization in the early

stopping, we adopted the weight decay approach by adding a penalty term, the so-called

ridge penalty, to Eq. (6) as

L∗({w}) = L({w}) + λ
∑

i

w2
i (7)

where λ is the penalty parameter to improve the generalization or transferability of the

NN potential. The hyperparameter λ is determined heuristically to be as large as possible
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so that the penalty term is small enough not to exceed the L value. The minimization of

the function L∗({w}) is carried out using a quasi Newton method, the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm.27

C. Reference data

Sample configurations used to train the network should contain structures that well rep-

resent the environments which are relevant for the phenomena of interest. To create the

potential used for the study of precipitation strengthening of Al-Mg-Si alloys, we used the

following base structures: (i) FCC, BCC and HCP structures of Al and Mg, diamond struc-

ture of Si; (ii) the generalized stacking fault (GSF) structure along the {111} plane of Al; (iii)

several surfaces of FCC Al; (iv) FCC Al structures containing one, two, and more vacancies

or solute atoms; and (v) binary compound phases among Al, Mg and Si. From each of those

base structures, we created deformed structures by changing the cell vectors of the system

and displaced structures by random displacements of atoms or from MD snapshots. These

displaced structures are necessary additions to the equilibrium structures because otherwise

the NN could give unphysical lower energies for deformed structures relative to the true

low-energy structures. In total, we generated 10,237 structures and divided them randomly

into a training set used for the training and a test set used for monitoring the convergence.

D. Hyperparameters

Parameters that are not trained from data, the so-called hyperparameters, must be spec-

ified before optimization. In this NN model, the hyperparameters are the number of hidden

layers, the number of nodes in a hidden layer, the number of symmetry functions, ηn and Rn

in the Gaussian function, and the cutoff radius Rc. We determined these hyperparameters

by trial and error, validating the obtained NN potential using several physical values as

shown in the following sections. The resulting hyperparameters of the NN potential pro-

posed were eventually chosen as follows: The number of hidden layers is 1 and the number

of nodes in a hidden layer is 30. The number of symmetry functions for each pair is 20,

so the total number of symmetry function is 120 because there are six pairs among three

elements. For all the symmetry functions, ηn = 10.0 Å−1. There are 20 Rn for each pair
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FIG. 1. Energies per atom of sample structures obtained by the NN potential and the DFT

calculation. The y = x line indicates ideal matching between NN and DFT values.

at regular intervals from 1.5 to 5.7 Å. We set the cutoff radius Rc = 5.8 Å to cover 3rd

neighbors interactions, which is important to distinguish FCC and HCP structures and to

reproduce the generalized stacking fault (GSF) energy curve.

E. Optimized NN potential

Figure 1 compares the energies of sample structures predicted by the optimized NN

potential against the reference values DFT. The root mean square error (RMSE) for the

training data is 0.5 meV/atom. More importantly, the RMSE for the test data is 2.0

meV/atom. This indicates that the present NN potential is able to accurately reproduce all

the structures in the entire sample data set, which is designed to include many structures

and configurations that are relevant for modeling of evolution and mechanical performance

in the Al-Mg-Si system. Because the present NN potential has 120 symmetry functions,

3600 1st-layer weights and 30 2nd-layer weights per atom, the speed of calculating forces of

the NN potential implemented in our own code, NAP. is about 8x slower than that of the

Al-Mg-Si MEAM potential implemented in LAMMPS.

To enable others to reproduce and use the present NN potential, the optimized parameters

and a pseudo code to read those parameters are provided in the Supplemental material. The

NN potential is implemented also in LAMMPS (it is available on request).
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IV. PROPERTIES OF ALUMINUM

There are a number of interatomic potentials for bulk Aluminum that reproduce most

important properties with good accuracy. It is important that the NN potential give similar,

or better, properties for the matrix Al material of the Al-Mg-Si alloy. Here, we thus present

validation of the NN for pure Al.

Table I shows the bulk properties of FCC Al as obtained by DFT (the reference data), the

Jelinek et al. MEAM potential (as an example), and the present NN potential. Although

the present DFT value of cohesive energy is lower than that of experimental data, the lattice

constant, bulk modulus, and other elastic moduli are in good agreement with experimental

and previous ab initio values. The NN potential reproduces the DFT values of elastic

properties with good accuracy.

The generalized stacking fault (GSF) energy is an important property relevant to the

dissociation of a perfect dislocation into partial dislocations and to dislocation emission at

a crack tip. The GSF energy of a shift vector (x, y) on {111} is defined as

γSF(x, y) =
E[N ](x, y)−NεAl

A
(8)

where N is the number of atoms, A the area of xy plane of the calculation cell, and εX the

chemical potential of species-X, which is the cohesive energy of the most stable structure of

the species. Table I shows the stable and unstable stacking fault energies and Fig. 2 shows

the GSF curve along the 〈112〉 direction. The NN potential slightly underestimates the ab

initio results but reproduces the GSF curve well, especially in the range from 0.5 to 1.0 that

includes the stable and unstable stacking fault energies.

The dislocation core structure is also important because it is directly related to disloca-

tion motion, dislocation interactions with solutes and precipitates, and is thus at the heart

of plasticity mechanisms in metals. Figure 3 shows the Nye tensor distribution around the

equilibrated edge dislocation core. The Nye tensor distribution and the partial dislocation

separation distance of 3b− 4b, with b = 2.86 Å the Burgers vector, are in very good agree-

ment with full DFT calculations28,29. This agreement is generally expected because the NN

potential accurately reproduces the controlling stable and unstable stacking fault energies.

The surface energy is defined as

γsurf(d) =
E[N ](d)−NεAl

2A
(9)
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where d is the separation of two surfaces. Figure 4 shows the energy versus rigid separation

of two blocks of Al as computed by DFT, by two MEAM potentials (Jelinek and Kim), and

by the NN potential. The fully-relaxed surface energies γ(111), γ(001) and γ(110) obtained from

the largest d are shown in Table I. Although the two MEAM potentials reproduce the order

of stability of these surfaces, γ(111) < γ(001) < γ110, the Jelinek potential has large unphysical

barriers for separation in all the directions and, although they are much smaller, the Kim

potential also has unphysical barriers. The NN potential reproduces the DFT curves along

all directions and all distances. The NN potential thus accurately reproduces the surface

energies but also forces during separation which are the cohesive tractions relevant in fracture

processes.

We have also performed MD simulation at finite temperatures up to 500 K, which is

higher than the normal paint bake temperature of ∼ 450 K used during aging of Al 6xxx

alloys, to confirm that the present potential is suitable over the necessary temperature range

and also to measure the thermal expansion coefficient. The thermal expansion coefficient is

extracted from the slope of the volume-temperature relation as

α =
1

a0

[

da

dT

]

(10)

where a0 is the equilibrium lattice constant at 0 K. The α value obtained using the NN

potential, shown in Table I, is in good agreement with experimental values. This indicates

that the NN potential captures the anharmonicity around the equilibrium lattice constant

as well as the harmonic region (related to the bulk modulus).

V. PROPERTIES OF THE TERNARY AL-MG-SI SYSTEM

We now turn to comparison of the predictions of the NN potential versus DFT for many

properties of the Al-Mg-Si ternary system. Note that, although a lot of important structures

are included in the training data set, it is impossible to include all the structures of interest

because they require large number of atoms or configurations that are not easily calculated

by DFT. We will mention in each subsection, figure and table if the structures are not in

the training data.
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TABLE I. Pure Al bulk properties from experiments or ab initio calculations and as computed

using the present NN potential and two MEAM potentials (Jelinek and Kim). The structures

relevant to these properties are in the traning data.

Al Exp/ab initio NN Jelinek Kim

a (Å) 4.0530, 4.045 4.045 4.048 4.047

Ec (eV) 3.3931,3.057 3.057 3.353 3.360

B (GPa) 72.231, 79.1 76.9 78.4 79.0

C11 (GPa) 114.331, 106.119 109.9 111.1 113.8

C12 (GPa) 61.931, 31.919 31.6 28.6 31.4

γsf (mJ/m2)
135-16631,32,

116.4 141.9 147.1
122-16428,33–37,125.8

γus (mJ/m2) 22436,37, 166.2 156.7 280.9 236.2

γ(111) (mJ/m2) 71037,720.2, 742.9 716.1 516.3

γ(001) (mJ/m2) 873.8 878.0 1071.6 743.9

γ(110) (mJ/m2) 927.7 945.1 1104.8 820.9

α (10−6/K) 23.6-25.438 23.3 14.4

A. Ordered binary and ternary compounds

The alloy phase with the lowest heat of formation ∆H is the one most likely to form at zero

temperature. For accurate modeling of the evolution of the system toward precipitation of

the thermodynamically favorable phases, the potential must reproduce the heats of formation

of many possible alloy phases. The heat of formation of a compound is defined as

∆Hcomp =
E[{NX}]−

∑

X NXεX
∑

XNX
(11)

where NX is the number of atoms of species X. Table II shows the lattice constants and

heats of formation of binary compound phases, and Table III shows the equilibrium cell

parameters, heats of formation, bulk moduli and elastic moduli of precipitate phases, as

computed by DFT and as predicted by the Jelinek et al. MEAM potential and the present

NN potential. Even for the complex MEAM potential that is calibrated to various binary

phases, the predictions of other binary and ternary phases is challenging. In particular,

the lattice constants and heats of formation of important Mg-Si phases such as Mg2Si and
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FIG. 2. Generalized stacking fault curve for bulk Al along the [112] direction, as computed using

DFT, two MEAM potentials, and the present NN potential. These structures are included in the

training data.

FIG. 3. Nye tensor distribution of the screw component of the Burgers vector for the dissociated

edge dislocation core in pure Al; the result agrees well with direct DFT28,29 x- and y-axes are in

units of the Burgers vector b = 2.86 Å. This structure is not in the training data.

Mg5Si6 are significantly different from the DFT values. The NN potential, on the other hand,

reproduces well the DFT values of the equilibrium cell parameters, bulk moduli and heats

of formation for the important precipitate phases such as Mg5Si6, Al2Mg5Si4 and Al3Mg4Si4

as shown in Table III. Table II and III include some ab-initio values of heat of formation

obtained using the PBEsol functional, from which we see that the difference between DFT

with PBE and NN potential is smaller than the difference between DFT with PBE and

PBEsol; i.e. the NN potential is within the accuracy of the DFT itself. The difference in

lattice constants for Mg5Si6 and FCC Al for the NN potential is less than 1%, indicating

that the precipitates of Mg5Si6 in Al matrix will be stable and remain coherent when using

the NN potential. Some of the shear elastic constants of NN potential differ from those of
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FIG. 4. Energy versus separation for rigid block separation across the (111), (110), and (100)

surfaces of bulk Al, as computed via DFT, two MEAM potentials, and the present NN potential.

These structures are included in the training data.

DFT and could contribute the difference in formation energies of precipitates in Al matrix,

which are evaluated in Sec. VD.

B. Single solute and vacancy properties

Heats of solution of isolated solutes in FCC Al are important because they are relevant to

the solid solution phase and thus to the stability of ordered phases relative to the solid solu-

tion state. The heat of formation of a vacancy is related to equilibrium and non-equilibrium

vacancy concentrations and thus to vacancy-mediated diffusion of solutes and matrix atoms.

The heat of solute or formation energy is computed as

∆Hsol = E[Al(N−1)X1]− (N − 1)εAl − εX. (12)

where X denotes the solute or vacancy, and we hereafter treat a vacancy as a “solute”

with εVac = 0. Table IV shows the calculated heats of solution via DFT, the two MEAM

potentials, and the present NN potential. The Kim MEAM potential gives quite good values

for the heats of formation for Mg and vacancy, whereas the Jelinek MEAM potential is not

good for these solutes. This shows the difficulty in constructing MEAM potentials for more
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TABLE II. Lattice constant a (Å) and heat of solutions ∆Hcomp (meV/atom) for binary and

ternary compounds calculated using DFT-PBE, the Jelinek et al. MEAM potential, and the

present NN potential. Ab-initio values computed using DFT-PBEsol are indicated in parentheses.

These structures are in the traning data.

Composition Structure
ab initio NN Jelinek

a ∆Hcomp a ∆Hcomp a ∆Hcomp

AlMg B1 5.745 424 5.760 425 5.714 236

AlMg B2 3.388 66 3.396 66 3.440 -31

Al3Mg L12 4.138 4 4.145 0 4.238 -39

AlMg3 L12 4.375 5 4.146 4 4.448 -46

Al12Mg17 10.506 -18 10.539 -18 10.315 389

AlSi B1 5.217 261 5.229 261 5.241 280

AlSi B2 3.160 239 3.164 239 3.188 142

Al3Si L12 3.994 96 4.000 96 4.059 113

AlSi3 L12 3.899 333 3.907 333 4.194 532

MgSi B1 5.505 384 5.532 383 5.507 192

MgSi B2 3.308 144 3.313 144 3.384 64

Mg3Si L12 4.263 -7 (-4) 4.267 -8 4.367 24

MgSi3 L12 3.988 269 3.988 269 4.176 322

Mg2Si C1 6.365 -136 (-105) 6.362 -136 6.530 44

than two elements. The NN potential predictions for the heats of solution for Mg and Si

agree well with those computed by DFT.

Table IV also shows the misfit volumes of Mg and Si calculated by DFT and the NN

potential. The DFT misfit volumes are taken from Leyson et al.29 and the NN potential

misfit volumes are calculated using the same method. The NN potential underestimates

the misfit volume of Mg by about 10 %. This is acceptable for reasonable estimates of the

interaction energy of Mg with the Al dislocation or with precipitate-induced pressure fields.

The misfit volume of Si is in very good agreement with the DFT result.
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C. Solute-solute binding and energies of solute clusters

The interactions among solutes and vacancies is crucial to the early-stage formation of so-

lute clusters during aging. Trapping of vacancies by clusters (so-called “vacancy prisons”39)

has been suggested as important in Al-6xxx aging in particular. A useful potential must

therefore reproduce these binding energies within approximately an energy of kBT to provide

accurate metastable energetics during evolution of the system.

The binding energy between two solutes X and Y is defined as

−EX−Y
bind = E[Al(N−2)X1Y1] +NεAl

−E[Al(N−1)X1]− E[Al(N−1)Y1] (13)

With this definition, a positive value indicates that X and Y tend to bind to each other.

Figure 5(a) shows the binding energies of pairs among Mg and Si versus pair separation

distance, and Figure 5(b) the binding energies that involve a vacancy, as computed by the

DFT and as predicted by the NN potential. These values are obtained using 4× 4× 4 cubic

FCC cells and these structures are not in the training data, but the relevant structures with

2 × 2 × 2 cells are in the training data. The figures show that the differences between the

NN prediction and the DFT computation are less than 20 meV in all cases, which is slightly

below kBT = 25.4 meV at T = 293 K. The sign of the nearest-neighbor binding of Si-Si is

the opposite of the DFT results, but the absolute value is small so that this difference is not

of great consequence at the temperatures of interest. Of more importance are the trends of

strong binding between Si-Vac and Mg-Si, and the repulsive interaction between vacancies,

all of which are predicted well with the NN potential. These results indicates that the NN

potential can be useful for meaningful simulations of clustering of solutes.

An important observation we made is that the interaction energy between solutes depend

strongly on the size of the supercell, more than would be expected based on misfit volume

and elastic terms. We traced the source of this discrepancy to long-range charge oscillations

induced by the solute atom. These kinds of long-range effects cannot be captured by a

short-range NN potenial, which partially explains the difficulty in accurately learning solute

interaction energies. We note however that the accuracy we can achieve is sufficient for the

modelling of the early stages of precipitation in Al6xxx alloys: treatment of long-range effect

will be the subject of further studies.
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FIG. 5. (a) Solute-solute binding energies as a function of distance between solutes, and (b) solute-

vacancy binding energies, obtained by the NN potential (filled markers and solid lines) and DFT

(open markers and broken lines). These values are obtained using 4× 4× 4 cubic FCC cells which

are not in the training data, but the relevant structures with 2×2×2 cells are in the training data.

To move beyond simple pair interactions toward larger clusters such as those that might

emerge during aging, we have also computed the heats of formation of rather complex

random Al-Mg-Si-vacancy configurations via both DFT and the NN potential. The many

specific configurations studied here (consisting of 16 Al atoms, 2 vacancies, and a total of

14 Mg and Si atoms) are not important on their own, and hence we do not show all the

structures but rather concentrate on the spectrum of energies. Figure 6 shows the difference

in formation energies of all configurations as computed by the NN potential and by DFT.

The formation energy is defined as

Ef = E[NAl, NMg, NSi]−NAlεAl −NMgε
SS
Mg −NSiε

SS
Si (14)

where εSSX ≡ E[Al255X1] − 255εAl is the solid solution energy of solute X. Since these con-

figurations are not included in the training data set, these results provide a measure of

transferability, or conversely error prediction, for the present NN potential for solute clus-

ters. The mean difference is +6 meV/atom with a standard deviation of +/- 8 meV/atom.

Figure 6 also shows the differences between PBE and PBEsol DFT results, with a mean

difference of +8 meV/atom and standard deviation of +/- 4 meV/atom. The NN potential

predictions are thus somewhat larger than the differences among different DFT methods, but

are almost within the statistical scatter. In contrast, the Jelinek MEAM potential predicts
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FIG. 6. Formation energies per atom of the system described in Sec. II obtained by the NN potential

(red squares) and the DFT-PBEsol (blue circles), as differences from the DFT-PBE results. Since

these structures are not in the training data set, this can be treated as the prediction error of

solution/precipitation energies by the NN potential.

differences with DFT of mean +256 meV/atom and standard deviation +/- 108 meV/atom,

which are not only 10-20 times larger, but far too large to be suitable for studies of aging.

D. Precipitates

In the early stages of precipitation in Al-Mg-Si alloys, the Mg/Si ratio in a needle-shape

precipitate is smaller than that of the larger equilibrium Mg2Si precipitate, which has the

C1 structure. The structure of the early-stage precipitate is thought to be Mg5Si6
40 or the

same crystalline structure but with some Mg or Si atoms replaced by Al24 as shown in

Fig. 7(a). We have thus computed the formation energies of these precipitates as a function

of size when embedded in the Al matrix using the NN potential and have compared the

predictions with DFT results. The DFT study is similar in spirit to that of Ninive et al.,

but not identical in terms of implementation and boundary conditions19. The simulation

cells here for both DFT and NN are identical, making direct comparison possible. These

structures are not in the training data set and thus the comparison shows prediction errors

of the NN potential for precipitates.

The precipitate energy is defined as

Eprec = Ef/NFU (15)

where Ef is defined in Eq. (14) and NFU the number of precipitate formula units in the
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precipitate, as shown in Fig. 7(a). Figure 7(c) shows the precipitate energies obtained by

DFT and by the NN potential as a function of NFU. The DFT and NN results are in good

agreement for larger precipitates, but the NN potential underestimates the precipitate sta-

bility for the smallest precipitates (one formula unit), with a difference of ∼0.2-0.3 eV/unit.

These energy differences are thus rather larger than those found for individual solute-solute

interactions on a per-atom basis as the one precipitate unit contains 11 atoms. If we assume

that not only precipitate atoms but also surrounding Al atoms, for example Al atoms inter-

acting with the precipitate within the cut-off range of the NN potential, are contributing to

the energy difference, it would decrease close to the uncertainty of the DFT method found

for the 32-atom Al-Mg-Si-vacancy clusters.

Proceeding further, the contributions to the precipitation energy can be divided into four

parts: the bulk formation energy, the strain energy, and contributions from interfaces and

edges. The Eprec, which is the precipitation energy per NFU, of bulk and strain parts are

independent of NFU, while the interface and edge energies should scale as N
−1/2
FU and N−1

FU,

respectively. Therefore, as NFU increases, the bulk and strain energies should dominate

Eprec while the edge contribution could be significant at small sizes, e.g. NFU = 1. The good

accuracy of the bulk formation energy and elastic constants as shown in Table I and III the

underestimation of the NN potential for the small precipitates with NFU = 1 imply that the

NN potential overestimates the formation energies of the precipitate edges and surfaces. Of

course, one precipitate unit (11 atoms) is nearly entirely “interface” and “edges”, and hence

deviations per atom are comparable to the deviations for other solute-solute interaction

energies. Nonetheless, the cumulative effect of these per-atom energy differences (reach-

ing 0.2-0.3 eV/unit) can have an effect on overall aging behavior since the total difference

in precipitate energy is not negligible. Improving the error of these energy differences is

still challenging even for the machine-learning potential like NN and may not be necessary

because the uncertainty of the DFT method could also result in non-negligible differences.

E. Dislocation-solute interaction

Interactions between solute and dislocation core, and solute and stacking fault between

dissociated dislocations are important properties for the solution strengthening and for mod-
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FIG. 7. a) Typical simulation cell of Mg5Si6 precipitate of NFU = 4 in Al matrix, which corresponds

to 7×7×1 FCC Al cell. The system is periodic in z-direction, [001]Al. The green rectangle indicates

a monoclinic cell of Mg5Si6. b) Formation unit of Mg5Si6 indicated in the red rectangle in a). In

case of Mg5Al2Si4, Si3 sites in Mg5Si6 are replaced by Al, while Mg1 site is also replaced by Al in

Mg4Al4Si4. c) Size dependency of the precipitation energy of Mg5Si6, Al2Mg5Si4 and Al3Mg4Si4

obtained by the NN potential and the DFT (from D. Giofré et al.19) These structures are not in

the training data set.

eling dislocation motion in alloys. The interaction energy is computed as

Edisl−sol
int (xi, yj) = Edisl−sol(xi, yj)−

[

Edisl + Esol
]

(16)

where Edisl−sol(xi, yj) is the total energy of the system including the dislocation and the

solute atom at position (xi, yj) from the center of the stacking fault, and Edisl is the total

energy of the system including the dislocation without solute. Esol is the solid solution

energy defined as

Esol =
1

Nlayer

Nlayer
∑

j

[

Edisl−sol(xfar,j, yj)− Edisl
]

(17)

where Nlayer is the number of layers considered, which is four in this study, and xfar,j is the

x position farthest from the center of stacking fault within the j-th layer. Since modeling

solute-dislocation interaction requires large system with more than 10,000 atoms, these

structures are not in the training data and thus these properties also show prediction errors

of the NN potential.

Figure 8 shows the interactions between a dislocation centered at the origin and a single

solute at different (xi, yj) positions. Since the misfit volume of Mg in Al is positive, Mg
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FIG. 8. Interactions between a dissociated dislocation core in Al and a solute in (a) Mg and (b)

Si. These structures are not in the training data set.

has negative interaction energy at positions lying on that side of the dislocation glide plane

where the local pressure field is tensile, and a positive interaction energy at positions on

the compressive side. The range of the interaction energy is about 0.2 eV, which is in

good agreement with DFT29. Conversely, since the Si misfit volume in Al is negative, the

interaction energy between the dislocation and Si atoms should be negative (binding) on

the compressive side of the glide plane and positive on the tensile side. However, Fig. 8(b)

shows that the interaction energy for Si atoms close to the partial dislocation core tends to

become negative even if Si is on the tensile side; this is not seen in the DFT calculations29. In

addition, on the compressive side near the partial cores, the interaction energy is somewhat

larger (2-3x) then the DFT values. Since the misfit volume of Si in Al is captured well

by the NN potential (Table IV), the NN potential prediction of strong binding of Si in the

partial dislocation core stems from an artificial “chemical” interaction in this region of high

lattice distortion core. The NN potential is thus inaccurate for this situation, which will

influence predictions of the solute-strengthening of dislocations as they move through a field

of Si solutes. This may also impact dislocation interactions with Si-containing precipitates,

for which there are no reference DFT computations.
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VI. CONCLUSION

We have developed a NN potential for studying the precipitation strengthening in the

ternary Al-Mg-Si alloy. The NN potential is trained to reproduce DFT energies and forces for

numbers of structures including several bulk phases, surfaces, stacking faults, vacancies and

solid solutions. The NN potential is accurate in its prediction of (i) the lattice constant, bulk

modulus, elastic moduli, stacking-fault and surface energies of pure Al, (ii) the solute/solute

and solute/vacancy binding energies to within 20 meV/pair, relative to the DFT results.

Errors for properties included in the training data set are smaller than the uncertainties

in the DFT method, as assessed by comparisons of DFT using two exchange-correlation

functionals for a subset of properties. Errors for properties not included in the training data

set are slightly larger but still generally comparable to the uncertainty of the DFT method.

Only the Si/dislocation interaction energies near the partial cores of the Al edge disloca-

tion show differences that could be important for quantitative predictions of strengthening.

The energies of small Al-Mg-Si clusters are also less accurate than other quantities, although

not significantly on a per-atom basis, but trends with size and composition are followed quite

well. Since the machine learning-type potentials such as the NN potential are basically in-

terpolating a potential energy landscape, these inaccurate properties could be improved by

including training data such as dislocation core structures and small precipitate structures

unless they have intrinsic long-range interactions that cannot be captured by the short-

range NN potential as we observed for solute-solute interactions. We also note that certain

DFT results (dislocation structure28,29, dislocation/solute interactions and solute misfits29)

were calculated using different codes and possibly different specific parameters such as the

k-point mesh and the cut-off energy, and the dislocation cases using a multiscale method –

therefore, in all of these cases, some differences are expected within the error/uncertainty of

these other DFT numbers. These differ from the DFT results used in the training data.

The overall success of the NN potential indicates that it can be used for the studies of

precipitate strengthening of Al-Mg-Si alloys involving the evolution of solute clusters, early

formation of nano precipitates, and their interactions with dislocations. More broadly, these

results show that machine learning-type potentials such based on the Neural-Networks can

be quantitatively successful, and thus powerful tools, for modeling complex alloys that have

proven to be extremely challenging cases for the other physics-based interatomic potential
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formulations.
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TABLE III. Equilibrium cell parameters, heat of solutions ∆Hcomp (meV/atom), bulk modulus

B (GPa) and elastic constants Cij (GPa) of precipitate structures obtained using the DFT-PBE,

the present NN potential and Jelinek et al. MEAM potential. The geometry of the preciptate

systems follow that employed by Ninive et al.24 (also shown in Fig. 7). Heat of solutions computed

using DFT-PBEsol is indicated in parenthese. Elastic constants Cij’s by the ab initio caluclation

are taken from D. Giofré et al.19 The structures relevant to these properties are included in the

training data.

Mg5Si6 Al2Mg5Si4 Al3Mg4Si4

ab initio NN Jelinek ab initio NN ab initio NN

a (Å) 15.138 15.173 17.012 15.299 15.343 15.095 15.109

b (Å) 4.040 4.074 4.322 4.044 4.052 4.113 4.131

c (Å) 6.982 6.940 7.142 6.818 6.846 6.633 6.651

α 90.0 90.0 89.2 90.0 90.0 90.0 90.0

β 110.4 109.9 89.6 105.9 106.0 106.5 106.6

γ 90.0 90.0 89.9 90.0 90.0 90.0 90.0

volume (Å3) 400.4 403.2 525.0 405.7 408.9 395.0 397.7

∆Hcomp (meV/atom) 18 (24) 17 311 -60 -67 -32 -39

B (GPa) 62.1 58.5 125.0 61.2 62.5 63.8 64.4

C11 (GPa) 98.4 109.4 107.1 118.3 106.7 110.1

C22 (GPa) 84.6 94.0 94.7 98.6 96.5 102.6

C33 (GPa) 88.0 103.6 99.1 112.4 97.1 108.5

C44 (GPa) 21.9 29.8 26.9 27.4 25.9 30.3

C55 (GPa) 29.1 38.6 36.3 45.3 35.6 48.0

C66 (GPa) 51.2 68.1 49.4 60.8 46.3 52.7

C12 (GPa) 50.0 26.1 40.3 33.0 46.5 36.6

C13 (GPa) 47.7 46.2 45.6 60.0 48.0 55.6

C23 (GPa) 45.7 46.7 43.0 44.0 48.8 42.3

C15 (GPa) 8.2 -0.2 -13.1 3.6 9.3 5.9

C25 (GPa) 5.8 -2.5 4.3 9.5 5.7 7.0

C35 (GPa) 5.4 -1.6 11.9 -3.8 9.3 -6.2

C46 (GPa) -10.1 0.8 5.4 2.6 6.3 4.8
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TABLE IV. Heats of formation ∆Hsol (eV) and misfit volumes (Å3) (in parentheses) of a substi-

tutional solute and vacancy in FCC Al. These values are obtained from 4× 4× 4 cubic FCC cells

that are not in the training data, but the relevant structures with 2 × 2 × 2 cubic FCC cells are

included in the training data.

Substitute ab initio NN Jelinek Kim

Mg 0.090 (5.71) 0.100 (5.15) -0.200 0.098

Si 0.375 (-2.65) 0.376 (-2.63) 0.500

Vacancy 0.654 0.647 (-3.39) 0.670 0.708
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