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The structural phase transitions of MF3 (M=Al, Cr, V, Fe, Ti, Sc) metal trifluorides are studied
within a simple Landau theory consisting of tilts of rigid MF6 octahedra associated with soft
antiferrodistoritive optic modes that are coupled to long-wavelength strain generating acoustic
phonons. We calculate the temperature and pressure dependence of several quantities such as the
spontaneous distortions, volume expansion and shear strains as well as T − P phase diagrams. By
contrasting our model to experiments we quantify the deviations from mean-field behavior and found
that the tilt fluctuations of the MF6 octahedra increase with metal cation size. We apply our model
to predict giant barocaloric effects in Sc substituted TiF3 of up to about 15 JK−1kg−1 for modest
hydrostatic compressions of 0.2 GPa. The effect extends over a wide temperature range of over 140 K
(including room temperature) due to a large predicted rate dTc/dP = 723 K GPa−1, which exceeds
those of typical barocaloric materials. Our results suggest that open lattice frameworks such as the
trifluorides are an attractive platform to search for giant barocaloric effects.

I. INTRODUCTION

Metal trifluorides (or simply trifluorides) are a class
of materials with chemical formula MF3 (M=Al, Cr,
V, Fe, Ti, Sc) and with an open lattice framework in
which the trivalent metal ion M is surrounded by an
octahedron of corner-shared fluorine atoms.1,2 They are
isostructural to ReO3 a well-known ABO3 perovskite
in which the A-site is vacant.3 They can exhibit large
thermal expansion (TE) which can be reversibly tuned
from positive (PTE) to negative (NTE) by temperature,
pressure, cation substitution, or redox intercalation.4–10

This makes the trifluorides attractive for designing
materials that are dimensionally stable and resistant to
thermal shocks.11

At ambient pressure, most trifluorides exhibit
antiferrodistortive structural transitions with cubic-to-
rhombohedral (c-r) transformations in which the MF6

octahedron tilts around the (111) axis. The tilting angles
are large, e.g., about 14◦ in AlF3 at room temperature,12

and are accompanied by spontaneous shear and volume
strains.13 Such lattice instability is the result from the
condensation of a three-fold zone-boundary R+

4 phonon
mode of the cubic phase located at the wavevector
(1, 1, 1)(π/a).14 Below the transition, the R+

4 mode splits
into a low energy Eg-doublet and a high energy A1g-
singlet.15

Density functional theory,14 molecular dynamics (MD)
simulations,16 and electrostatic energy considerations17

have shown that the driving force of the lattice instability
in the trifluoride is of dipolar origin. When the M-F-
M bond bends, fluorine displaces transverse to the bond
length generating an electric dipole with a negative end
at the F− anion and a positive end at its cubic lattice
site. This distortion concomitantly induces a polarization
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FIG. 1. A (001) section of the MF3 lattice illustrating
the displacement of fluorine ions described by the soft-mode
coordinate Q3 and the antiferrodistortive rotation φ3 of the
MF6 octahedra around (001).

in the fluorine electron cloud that is opposite to the
displacive dipole. While there is an energy penalty for
creating such induced dipoles, the resulting interactions
between the induced-dipoles and between the induced-
dipoles with the ionic charges lower the total energy to
favor the r-phase over the parent c-structure preferred by
the purely ionic Madelung energy.

A trifluoride of special recent interest is ScF3 - an ionic
insulator with a wide indirect energy band gap of about
8−10 eV.18 It does not have a structural transition to an
r-phase at ambient pressure but rather exhibits incipient
behavior in which a nearly flat M-R phonon branch
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softens without condensing, as it has been observed by
inelastic x-ray scattering experiments (IXS)19 and found
in ab-initio calculations.20 It exhibits strong negative TE
(-34 ppm K−1 near RT) from 10 − 1100 K21 and and
very strong lattice anharmonicities (its soft R+

4 mode
is described by a quartic potential energy in the tilts).22

Its incipient behavior and proximity to a r-phase induced
by, e.g., cation substitution4,5,7 suggest that ScF3 is one
of few known stoichiometric materials near a quantum
structural phase transition.19

With hydrostatic compression, the r-phase can be
induced at higher temperatures. For example, at
about 0.6 GPa, a c-r transition is observed near
RT in the incipient ScF3.21,23,24 X-ray diffraction
experiments have determined the temperature-pressure
phase diagrams for Sc substituted AlF3 (Sc1−xAlxF3).7

Very significantly, they have observed linearly increasing
transition temperatures with pressure with large rates
(dTc/dP ' 400 − 500 K GPa−1) that vary little
with Sc concentration and pressure.7,21 Additional
pressure-induced transitions have been reported at higher
pressures. 23–25

While microscopic models for the trifluoride are
available,14,16,17 there is currently no macroscopic
approach based on the simple Landau phenomenology.
The purpose of this work is thus to construct such
theory. Our model consists of rigid tilts of the MF6

octahedra associated with the soft R+
4 optic mode

coupled to long-wavelength strain generating acoustic
phonons. The model is similar to those used to
describe the widely studied antiferrodistortive transitions
of SrTiO3 and LaAlO3,26,27 but with the important
distinctions that in the trifluorides the phase transition
can be discontinuous and that there are large excess
volume strains. By comparing our model to experiments
on several trifluorides we quantify the deviations from
mean-field behavior and found trends with the metal
cation size.

We also apply our model to predict the barocaloric
effect (BCE) in the trifluorides. BCEs are reversible
thermal changes in a substance in response to changes
in hydrostatic pressure and are currently of enormous
interest for their potential in developing clean and
efficient solid-state cooling technologies.28 It is expected
that materials with strong TE such as the trifluorides
should give rise to large barocaloric responses, as
their entropy rate (∂S/∂P )T = −(∂V/∂T )P , according
to the Maxwell’s relations.28 Indeed, we show that
the isothermal changes entropy in the trifluorides are
comparable to those of other classes of materials
exhibiting so-called giant BCEs,29–37 and that it can
extend over a broad temperature range which includes
RT for modest changes in pressure as a result of
their large barocaloric coefficients dTc/dP . So far, the
BCE in the trifluoride has not been studied neither
experimentally nor theoretically.

This paper is organized as follows: in Sec. II we present
our Landau theory to describe the structural transitions;

in Sec. III we show our results and discussion including
a comparison to the isostructural compounds ReO3 and
WO3; and in Sec. IV we present our conclusions.

II. LANDAU THEORY

A. Free energy

We choose the order parameter as the linear
displacement Q = (Q1, Q2, Q3) which represents, in
first order, an antiferrodistortive rotation of the MF6

octahedra through angles φi and −φi, (i = 1, 2, 3) about
axes parallel to a cube edge. We normalize the Q’s
in such a way that they are numerically equal to the
linear fluorine displacements. They are related to φi
by tanφi = 2Qi/a, where a is the lattice constant, see
Fig. (1). In addition to the antiferrodistortive distortion,
we introduce elastic strains ηα as a secondary order
parameter. We write the components of the strain tensor
in the usual Voigt notation: ηα ≡ εαα = ∂uα/∂xα (α =
1, 2, 3), η4 = 2εyz = 2 (∂uy/∂z + ∂uz/∂y) , η5 =
2εxz = 2 (∂ux/∂z + ∂uz/∂x), and η6 = 2εxy =
2 (∂ux/∂y + ∂uy/∂x). We do not consider fluctuations
in Q and ηα.

Our Landau free energy density is given as follows,

GQ +Gη + P

3∑
α=1

ηα, (1)

where GQ is a strain-free free energy,
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where A = A0(T − T0) and T0 is the supercooling
temperature that limits of stability of the parent c-phase.
Gη is an energy density with elastic couplings,
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A0, u, v, w, ea, et and er are model parameters
independent of temperature and pressure and C0

αβ
are the usual elastic constants of the parent phase in the
Voigt notation. The third term in the free energy (1)
is a hydrostatic compression where P is measured from
atmospheric pressure.

In writing the free energy (1), we have not considered
any polar degrees of freedom associated with phonon
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modes that break inversion symmetry as there is no
evidence that such lattice modes are unstable in the
trifluorides, e.g., the zone-center TO phonon modes do
not condense and remain fairly energetic such as in ScF3

(4 − 5 THz) 20,38,39 and other trifluorides.40 Moreover,
Clausius-Mossotti theory predicts that the ground state
exhibits antipolar order from the MF6 tilts with null
polarization.17 We have also ignored sixth-order cubic
anisotropies. Our results will show that this is justified
as long as we are describing the the r-phase. In appendix
B, we show, however, that they are essential to describe
other pressure induced phases. We have also neglected
any polar degrees of freedom associated with phonon
modes that would break inversion symmetry as there is
no evidence that such lattice modes are unstable in the
trifluorides.

Minimizing Eq. (1) with respect to the strains gives,
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)
is the bulk modulus,
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12

)
, and Cr = C0

44 are the shear
tetragonal and rhombohedral moduli, respectively.

When the spontaneous strains of Eq. (4) are
substituted back into Eq. (1), we obtain, as expected,26

that the free energy has the same form as that of
Eq. (2) for the strain-free case except with renormalized
quadratic (A) and quartic coefficients (u and v) and a
uniform energy shift due to pressure,
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Ã
(
Q2

1 +Q2
2 +Q2

3

)
+
ũ
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where,

Ã = A− 2eaP

Ca
, (6)

and,
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)
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We conclude the presentation of the free energy here. In
the next section we apply our model to describe the c-r
transition of the trifluorides.

B. c-r transition

The symmetry of the ground state and order of the
phase transition is determined by the choice of ũ and ṽ.
For a c-r discontinuous (continuous) transition, we must
have ṽ < 0 and ũ+ ṽ < 0 (ũ+ ṽ > 0).26

To describe the r-phase, we take Q = (Qs/
√

3)(1, 1, 1),
where Qs is determined by minimization of the free
energy (5),

Qs(T, P ) = ±


√(
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)
1/2

.

(8)

Substitution of the order parameter (8) into Eq. (4) gives,
respectively, the following the spontaneous volume and
shear strains,

ηa = η1 + η2 + η3 = − ea
Ca

Q2
s − P/Ca, (9a)

ηr = η4 = η5 = η6 =
er

3Cr
Q2
s = cosαC , (9b)

where αC as the angle between any two axes of the c-unit
cell.

Experiments5,7,12 usually report the ratio between the
lattice constants cH and aH of a hexagonal unit cell,

cH
aH

=

√
3

2

1 + 2 cosαR
1− cosαR

. (10)

where αR is the angle between any two vectors of a r-unit
cell. αR and αC are related as follows,

cosαR =
1

2

1 + 3 cosαC
1 + cosαC

. (11)

We now derive expressions for the relevant temperature
scales. From Qs of Eq. (8), we find that the stability of
the r-phase ends at the superheating temperature,

T ∗(P ) = T ∗(0) +

(
2

A0

ea
Ca

)
P, (12)
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where T ∗(0) = T0 + w1

A0

(
ũ+ṽ
w1

)2
is the superheating

temperature at ambient pressure. By equating the free
energies G̃Q of the high and low temperature phases, we
find the transition temperature,

Tc(P ) = Tc(0) +

(
2

A0

ea
Ca

)
P, (13)

where Tc(0) = T0 + 3
4
w1

A0

(
ũ+ṽ
w1

)2
is the transition

temperature at ambient pressure. In the next
sections, we calculate several thermodynamic quantities
of interest.

1. Coefficient of thermal expansion, entropy, latent heat,
heat capacity, and barocaloric effect

We begin with the volume change with temperature
and the coefficient of thermal expansion (CTE). The
temperature and pressure dependence of the volume V is
given by,41

V (T )/V0 =
∂G̃

∂P
=

{
1− P

Ca
, T > Tc

1− ea
Ca
Q2
s − P

Ca
, T < Tc.

(14)

V0 is a reference volume and (∂G0/∂P ) = 1. As expected,
the relative change in volume in the r-phase is equal to
the volumetric strain η1 + η2 + η2. The CTE is given as
follows,

κ(T ) =
∂2G̃

∂T∂P
,

=


(∂V0/∂T ) = κ0, T > Tc

κ0 + 1
2
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A0/w1√(
ũ+ṽ
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)2
− Ã
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, T < Tc. (15)

We calculate the entropy per unit volume from the free
energy of Eq. (5),

S(T, P ) = −∂G̃
∂T

=

{
S0, T > Tc,

S0 − A0

2 Q
2
s, T < Tc.

(16)

The latent heat per unit volume of the transition at
P = 0 is then given as follows,

Tc∆S(Tc, 0) = Tc ×
A0

2
Q2
s(Tc, 0), (17)

where ∆S(Tc, 0) is the entropy jump at the c-r transition.
We now calculate the heat capacity per unit volume,

CP = T
∂S(T, P )

∂T

=


C0
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4
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where C0
P = T (∂S0/∂T ) is a reference heat capacity in

the high temperature phase.
From Eq. (16), we calculate the isotropic changes in

entropy,

∆S(T, P ) =

{
0, T > Tc,

−A0

2

(
Q2
s(T, P )−Q2

s(T, 0)
)
, T < Tc.

(19)

We conclude the presentation of our model here. In
the next section we apply it to several trifluorides.

III. RESULTS AND DISCUSSION

A. Fits and comparison to experiments

We now discuss our fits to several trifluoride
compounds. For pure TiF3 and AlF3, we fit our model
to their observed cH/aH , M-F-M bond angle, volume
expansion, CTE and latent heat of the transition,2,5,7,12

see Fig. 2. For Sc1−xAlxF3 with x < 1, we do a slightly
different fit since their latent heats are unknown: we
fix the ratio dTc/dP = 2ea/(A0Ca) to that of the pure
compound AlF3. This is justified by the observed linear
T − P phase diagram of Sc1−xAlxF3 with a slope that
varies little with composition x.7 We do a similar fit for
Sc1−xTixF3. The resulting parameters together with the
calculated supercooling and superheating temperatures
are given in Table I.

Overall, we find that that there is good agreement
between our model and experiments. The discrepancies
between the observed and calculated M-F-M bond angles
above Tc shown in Figs. 2 (g) and (h), are due to
local lattice distortions from the average c-structure,16,42

which we have not considered in our model. More
importantly, the deviations from mean-field behavior are
most noticeable in the volume expansions of ScF3 and
AlF3, (see Figs. 2 (c) and (d)), which correspond to
the extreme cases of large and small metal ion radius
considered in this work (rSc = 0.745 Å, rAl = 0.535 Å).
This suggests a trend with M-cation size. In ScF3, NTE
is the result of cooperative tilt fluctuations of the rigid
ScF6 octahedra which reduce the average Sc-Sc distance
while keeping the Sc-F distance fixed. Such fluctuations
can only give rise to NTE, therefore the PTE in AlF3

must originate from non-rigid modes such as Al-F bond
stretching, which we have not considered in our model.
Sc1−xTixF3 with x = 0.7 has a mean B-site radius in
between these two extremes (0.69 Å) and the deviations
from our model and its observed volume expansion
are tiny, which indicates that the fluctuations of both
rigid and non-rigid modes are unimportant. A picture
therefore emerges in which rigid octahedra fluctuations
dominate the TE for large metal ions and decrease with
their size; while non-rigid vibrational modes dominate
the TE for small metal ions and decrease with increasing
radius.
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FIG. 2. Comparison between our model (solid line) and
experiments (dots) for the temperature dependence of (a)-
(b) ratio hexagonal lattice constants, (c)-(d) unit cell volume,
(e)-(f) CTE, and (g)-(h) metal-F-metal bond angle θ in
Sc1−xTixF3 and Sc1−xAlxF3. Data taken from Refs. [5, 7, and
12].

Fig. 3 shows the predicted spontaneous shear strains,
order parameter, and specific heats for Sc1−xAlxF3 and
Sc1−xTixF3 using our parametrization. Our prediction
for the shear strains in AlF3 compares well with

TABLE I. Model parameters for Sc1−xAlxF3 and Sc1−xTixF3

and predicted supercooling (T0) and superheating (T ∗)
temperatures at ambient pressure. Transition temperatures
(Tc) taken from Refs. [5, 7, and 12]

Sc1−xAlxF3 Sc1−xTixF3

x = 1.0 x = 0.4 x = 1.0 x = 0.7
κ0 [10−6 K−1] 10 10 0 0

ũ+ ṽ [meV Å−7 ] −0.78 0.05 −0.81 −0.27
A0 [10−3 meV K−1 Å−5] 3.7 5.8 2.9 3.1

w [ meV Å−9] 12 48 13 17
ea/Ca [ Å−2] 0.13 0.20 0.17 0.17
er/Cr [Å−2] 0.14 0.27 0.28 0.30

T0 [K] 703 493 327 227
T ∗ [K] 718 493 344 228
Tc [K] 713 493 340 228
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FIG. 3. (a)-(b) Sponteanous shear strains, (c)-(d) excess
specific heat, and (e)-(f) order parameter predicted from the
fits obtained from Fig. 2 for Sc1−xTixF3 and Sc1−xAlxF3.
Measured spontaneous strains (dots) taken from Ref. [13].
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FIG. 4. Calculated T −P phase diagrams for (a) Sc1−xTixF3

and (b) Sc1−xAlxF3.

Figures 4 (a) and (b) show the T − P phase
diagrams of Sc1−xTixF3 and Sc1−xAlxF3 calculated from
Eq. (13). The linear dependence between T and P of
our model agrees with the observed phase diagram for
Sc1−xAlxF3.7,21 Using Eq. (13) and the parameters from
Table I, we find that dTc/dP ' 0.4 × 103 K GPa−1

which is in excellent agreement with experiments.7,21
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For Sc1−xTixF3, we predict that dTc/dP ' 0.7 × 103

K GPa−1. There are no reports on the calculated or
measured T − P phase diagram for Sc1−xTixF3 in the
literature.

In the appendix A, we derive expressions for the
temperature dependence of the soft mode frequencies. In
the parent c-phase, we find the usual mean field behavior
for the R+

4 mode, ωR+
4
∝
√
A0(T − T0), which is in

agreement with IXS.19 In addition, our values for A0

given in Table I are about what is expected from the
observed soft mode ( A0 ' 3 × 10−3 meV K−1 Å−5)
for ScF3.19 The temperature dependence of the A1g and
Eg phonon frequencies in the r-phase has been measured
by Raman scattering experiments for AlF3,2 however, we
cannot compare to our model as the shear moduli Ct and
Cr are unknown.

B. Barocaloric effect

Figure 5 shows the predicted BCE for Sc1−xTixF3 (x =
0.85) calculated from Eq. (19). We have chosen this
composition as its c-r transition occurs near room
temperature (Tc = 283 K) and exhibits a strong first
order character.5 As expected from the large CTEs, the
resulting isothermal changes in entropy are comparable
to those exhibiting giant effects,35 as it is shown in
Table II. Moreover, the effect extends over a temperature
range of about 140 K for pressure changes of 0.2 GPa
which includes RT. The wide temperature range is a
consequence of the large predicted value of dTc/dP (=
723 KGPa−1), which exceeds those of typical barocaloric
compounds, see Table II. The inset in Fig. 5 shows the
expected monotonic growth of maximum entropy changes
at Tc, ∆Smax, with changes in pressure.

C. Comparison to ReO3

It is interesting to compare ScF3 with the isostructural
compound ReO3. At ambient pressure, ReO3 exhibits a
perovskite c-lattice structure from the lowest observed
temperature up to its melting point despite its empty
A-site and therefore low tolerance factor. The stability
of the c-phase is a consequence of its metallicity: the
Fermi pressure of delocalized Re 5d electrons that
occupy the π∗ conduction band keep the ReO6 octahedra
from tilting.42 On the other hand, such states are
empty in the wide-gap insulator ScF3

18. Its lattice
structure remains cubic at all temperatures due to its
purely ionic Madelung energy.14 Both compounds exhibit
incipient lattice instabilities in their c-phases. In ScF3,
softening of the entire M-R phonon branch (with lowest
point at R) has been observed by IXS19 from 300 −
8 K at ambient pressure and also found by a first-
principles calculation.20 The temperature dependence
of the phonon energies is well-described by mean-field
theory, as discussed above. Condensation of the R+
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FIG. 5. Calculated isothermal changes in entropy for
Sc1−xTixF3, x = 0.85. Inset: Pressure dependence of the
maximum changes in entropy.

mode and its associated c-r transition can be induced
by modest hydrostatic compression (∼ 0.6 GPa at
RT)21,23,24 or cation substitution.4,5,7 It is unknown
whether the transition is of first or second order.
In ReO3, inelastic neutron scattering experiments43

(INS) have observed softening from 280 − 2 K without
condensation of the M+

3 phonon mode, which consists
of in-phase rotations of rigid ReO6 octahedra along a
[100] axis that passes through the metal cation. The
supposedly observed linear temperature dependence of
the mode energy is unusual as it is shown by the blue
dashed line in Fig. 6. However, we make the observation
that the linear fit is hardly distinguishable from the
standard mean-field behavior, ωM+

3
∝
√
A0 (T − T0),

with physically reasonable parameters (A0 ' 2.5 ×
10−3 meV K−1 Å−5, and T0 ' −296 K), see solid
red line in Fig. 6. The mode can be condensed upon
application of moderate pressures (∼ 0.5 GPa at RT)
and a P − T phase diagram has been established by
neutron diffraction experiments44 in which the high-
pressure phase has c-symmetry (Im3) and the transition
line is of second-order.45 Additional pressure-induced
transitions have been reported in ScF3

23–25 and ReO3
46 at higher pressures.

Both ScF3
21 and ReO3

47–49 exhibit negative TE over
a wide temperature range with a common origin: large
quartic anharmonicities of their corresponding soft R+

4

and M+
3 modes consisting of rigid antiphase rotations of

the ScF6 and ReO6 octahedra, respectively.22,43 The size
of the effect, however, is an order of magnitude larger in
ScF3 than in ReO3. This can be understood from the
distinct nature of their metal-nonmetal bonds. In ScF3,
there is little overlap between the charge densities that
form the ionic bond between Sc3+ and F−,39 which favors
large buckling fluctuations in the Sc-F-Sc chains. In
ReO3, the buckling fluctuations of the Re-O-Re bonds are
reduced by the stiffer covalent bond formed by hybridized
Re 5d and O 2p electrons.42,50
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TABLE II. Transition temperatures (Tc), isothermal entropy changes (∆S), isothermal heats (Q = Tc∆S), pressure changes
(∆P ), caloric strengths (∆S/∆P ), refrigerant capacity (RC), and T − P slope (dTc/dP ) of giant barocaloric materials.

Compound Tc [K] ∆S [JK−1kg−1] Q [kJkg−1] ∆P [GPa] ∆S
∆P

[JK−1kg−1GPa−1] RC [Jkg−1] dTc
dP

[KGPa−1] Ref.

Ni49.26Mn36.08In14.66 293 24 7.0 0.26 92 120 18 29
LaFe11.33Co0.47Si1.2 237 8.7 2.0 0.20 43.5 81 73 30
(NH4)3MoO3F3 297 55 16.3 0.5 110 5200 202 31
Gd5Si2Ge2 270 11 2.9 0.20 55 180 32 32
Fe49Rh51 308 12.5 3.8 0.11 114 105 54 33
Mn3GaN 285 21.6 6.2 0.09 240 125 65 34
(NH4)2SO4 219 60 13.2 0.10 600 276 45 35
BaTiO3 400 1.6 0.64 0.10 16 10 −58 36
[TPrA] [Mn(dca)3] 330 35.1 11.6 0.00689 5094 62 231 37
Sc1−xTixF3 (x = 0.85) 283 12 3.4 0.10 120 406 723 This work

0 50 100 150 200 250 300
2.5
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3.5

4.0

T (K)

ℏ
ω

(m
eV

)

ReO3

FIG. 6. Temperature dependence of the M+
3 phonon mode in

ReO3. Dashed-blue and solid-red lines correspond to purely
linear and classical mean-field behavior, respectively. Data
taken from Ref. [43]

D. Comparison to WO3

Another interesting compound to compare with is
tungsten bronze WO3. Like ScF3, WO3 is an insulator
but its high temperature phase is tetragonal (t) and it
goes through several structural transitions upon cooling.3

Its hypothetical c-structure has an unstable M−
3 mode

consisting of oposite displacements of the cations and
anions from unit cell to unit cell along the [110]
directions,51 which generate off-center displacements of
W6+ towards one of its nearest O2− with concomintant
increase in their covalency.52 Condensation of this
mode leads to a t-structure of highly distorted WO6

octahedra.53 The energy gain due to the increase in
covalency between W6+ and O2− favors the t-phase over
the ionic c-structure.52 The c-phase can be stabilized in
WO3 by introducing electrons: when doped with Na,
3s electrons begin to occupy the conduction band and,
for sufficiently large concentrations, their Fermi pressure
stabilizes the c-phase.50 Such c-phase displays PTE and
mean-field softening with temperature of its M−

3 phonon
mode down to about 416 K where a structural transition
to a t-phase occurs.54

IV. CONCLUSIONS

We have presented a Landau theory for trifluoride and
have used it to calculate and predict the temperature
and pressure dependence of several thermodynamic
quantities. We have compared our results to existing
experimental data on triflourides and have quantified
the deviations from mean-field theory. We have found
that the fluctuations of their rigid MF6 octahedra tend
to increase with the metal cation size. We have used
our model to predict a giant BCE in Sc1−xTixF3 (x =
0.85) of up to 15 JK−1kg−1 for a pressure change of
0.2 GPa. This effect extends over a temperature range
of over 140 K, which includes room temperature. Our
results suggest that open lattice frameworks such as the
trifluorides could be a promising platform to search for
giant barocaloric effects.
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Appendix A: Soft Mode Frequencies

The soft mode frequencies are computed from the free
energy (2) with the η’s constant,27

% (ωi)
2
δij =

∂2(GQ +Gη)

∂Q̂i∂Q̂j
, (i, j = 1, 2, 3) (A1)
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where Q̂i are principal-axis coordinates of the soft-mode
and % = 2mF /a

3 is the mass density of fluorine atoms
participating in each mode, where mF is the mass of
the fluorine atom. The soft mode frequencies given in
Eq. (A1) must be evaluated at the equilibrium points
given in Eqs. (8) and (4). The free energy G appearing
in Eq. (A1) is that of Eq. (2) rather than that of Eq. (5)
because the frequency of the acoustic modes associated
with uniform strains vanishes in the long-wavelength
limit.27

In the c-phase, the frequency of the R+
4 mode is

threefold degenerate since all strains vanish,

%ω2
R+

4
= Ã. (A2)

In the r-phase, the mode splits into the Eg-doublet and
the A1g- singlet,

%ω2
Eg

= Ã+

(
2ũ+ 8

e2a
Ca

+ 6
e2t
Ct

+
1

3

e2r
Cr

+ w1Q
2
s

)
Q2
s,

(A3a)

%ω2
A1g

= Ã+

(
6 [ũ+ ṽ] + 28

e2a
Ca

+
4

3

e2r
Cr

+ 5w1Q
2
s

)
Q2
s

(A3b)

where Qs is given in Eq. (8).

Appendix B: Sixth-order c-anisotropy

In this Appendix, we discuss the effects of sixth-
order anisotropies in some of our previous results. We
will show that such anisotropies allow us to describe
a possible phase competition between pressure-induced
phases. So far,the evidence for phase competition
has been experimentally reported in ScF3

23–25 where
near about 3.0 GPa, the r-phase destabilises and a
structural transition to an orthorhombic (o) phase
occurs. In addition, a MD simulation of AlF3 has
found a metastable o-phase in the free energy at ambient
pressure and below the c-r transition temperature.16 No
r-o transition has been observed in TiF3, FeF3, and
CrF3.55,56

It is well known that the free energy (5) does not
support an stable o-phase.26 To include it, we must add
sixth-order c-anisotropies,

3w2

4

(
Q2

1(Q4
2 +Q4

3) +Q2
2(Q4

1 +Q4
3)

+Q2
3(Q4

1 +Q4
2)
)

(B1)

+
9w3

2
Q2

1Q
2
2Q

2
3.

where w2 and w3 are parameters independent of
temperature and pressure. We consider the following

order parameters for the t-, o- and r-phases,

t : (Q1, Q2, Q3) = Qs (0, 0, 1) ,

o : (Q1, Q2, Q3) =
Qs√

2
(1, 1, 0) ,

r : (Q1, Q2, Q3) =
Qs√

3
(1, 1, 1) .

The contribution from the anisotropic terms of
Eq. (B1) to the free energy is,

G̃AN (t) = 0, (B2a)

G̃AN (o) =

(
3

8
ṽ +

3

16
w2Q

2
s

)
Q4
s, (B2b)

G̃AN (r) =

(
1

2
ṽ +

1

6
(w2 + w3)Q2

s

)
Q4
s. (B2c)
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FIG. 7. Schematic phase diagrams of the trifluoride
(a) at ambient pressure and (b) with applied hydrostatic
compression. All transition lines are of first-order. Here,
A0T0/(w1a

4) = 1.0 × 10−3, ũ/(w1a
2) = 6.0 × 10−2, and

ṽ/(w1a
2) = −7.0× 10−2. P is in units of CaA0T0/(2ea).
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For simplicity, we take w2 = 0. Then, for ṽ < 0
and w1 + w3 > 0, we find that the r-phase is the
global minimum for small spontaneous distortions (Q2

s <
−(3/4)(ṽ/w3)) while the o-phase is a local minimum; and
viceversa for large distortions (Q2

s > −(3/4)(ṽ/w3)). For
ṽ < 0 and w1 + w3 ≤ 0, the energy has unphysical
divergences implying that higher-order terms must be
taken into account. The t-phase is always metastable.

The order parameter of the o-phase with w2 = 0 is
given as follows,

Qs(T, P ) = ±


√(

ũ+ 3ṽ/4

w1

)2

− Ã

w1
−
(
ũ+ 3ṽ/4

w1

)
1/2

,

where Ã is given by Eq. (6). The order parameter of
the r-phase with sixth-order anisotropies is obtained by
replacing w1 → w1 + w3 in Eq. (8).

Figure 7 (a) shows a generic w3 − T phase diagram

at ambient pressure calculated by comparing the free
energies of the c-, r- and o-minima. For small
anisotropies (w3/w1 . 2.2), we find there is only a c-r
phase transition; while for large anisotropies (w3/w1 &
2.2), an additional r-o phase change occurs at low
temperatures. Figure 7 (b) shows the w3 − T phase
diagram at an applied pressure. As expected, pressure
favors ordering: as the c-r and r-o transitions are pushed
to higher temperatures. The corresponding free energy
changes ∆G̃ = G̃ − G0 + P 2/(2Ca) of the r- and o-
phases for w3/w1 = 2.0 are shown in Fig. 8. The
free energy of the metastable t-phase is not shown for
clarity. At ambient pressure, the r-phase is a global
minimum while the o-phase is metastable, which is in
agreement with MD simulations.16 With large enough
applied pressures, the situation reverses and the r-phase
becomes a local minimum while the o-phase is the ground
state. Metal trifluorides must then lie in the region of low
anisotropy (w3/w1 < 2.2), as no transition to an o-phase
has been observed at ambient pressure.
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