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Crack nucleation, in which a crack is propagated via the concentration of stress at its tip, is a
ubiquitous phenomenon. Here we show via simulations and theory that in systems such as fiber
networks that are below the point of mechanical stability continuous nonlinear alignments lead
to a steady state in which new load-bearing fiber chains emerge to replace those lost to fracture,
preventing stress concentration and leading to accumulation of distributed damage over a divergent
length scale. In contrast to linear models that display diverging length scales at a critical point,
this phenomenon occurs over a large parameter range, and is expected to be observed in biopolymer
networks and porous artificial materials. This mixture of fiber alignment and fracture leads to
massively greater energy dissipation and to fracture avalanche statistics distinct from those present
in linear models.

When brittle materials break, long straight cracks
form; fracture occurs along roughly planar fracture sur-
faces (in dimension d = 3) or linear cracks (d = 2). A.
Griffith1 explained this through stress concentration at

the tips of the cracks2, leading to failure propagating
along the cracks through large avalanches. In actual ma-
terials, disorder is always present, which lead to a process
zone of size ξ over which the failure spreads and a wide
distribution of avalanche sizes3,4. There are models with
tunable disorder in which ξ can become large and even
diverge at a critical point 5–9, leading to diffuse failure.

Systems such as biopolymer networks and certain ar-
tificial porous structures have an unusual type of disor-
der: they are composed of under-coordinated cross-linked
fibers or thin elements. With central forces (stretching)
alone, they would fall on the unstable side of a Cen-
tral Force Isostatic Point (CFIP)10–19. When additional
weak forces such as bending stiffness are present, the
materials display nonlinear elasticity (“strain-stiffening”)
even when the constituent fibers are in the linear elastic
regime20–28. Here we show that they have peculiar be-
havior under fracture: for an entire critical phase there is
no remnant of a Griffith crack, and avalanches are always
small.

We capture the failure of these systems below the CFIP
using the diluted triangular lattice (d = 2) in which each
bond is present with probability p (Fig. 1)16,17,24,25,29–31.
Consecutive bonds along a straight line are identified as
a fiber, with average length 1/(1−p) (bond length taken
to be 1), and nodes in the lattice are identified as free-
hinging crosslinks. Elastic energy of the network includes
stretching and bending of the fibers: each existing bond is
a harmonic spring of spring constant k, and two adjacent
bonds along a fiber contribute bending energy κθ2/2. We
focus on κ/k ≪ 1, appropriate for biopolymers such as
collagen-I with ratio ≈ 10−5.

At the CFIP the degrees of freedom (d per node) and
central force constraints (1 per bond) are equal, and the
system is at the verge of mechanical instability. This im-

plies an average coordination number 〈z〉 = 2d and hence
p = 2/310–19, close to the measured central-force rigid-
ity percolation point pc ≃ 0.660211. All fiber networks
with two fibers meet at a crosslink are below the CFIP
(〈z〉 < 2d), and their linear elastic moduli are determined
by bending stiffness κ30. At large strain bonds rotate
and align to bear external stress in new ways, the net-
work enters the stretching dominated regime, the mech-
anism to which strain-stiffening in real biopolymers such
as collagen-I20,23 is attributed.

We focus on fracture below the CFIP (〈z〉 < 2d), in
which bonds break only after nonlinear strain stiffening,
so the entire process is controlled by the formation of
the force chains. We find the system showing remarkable
behavior for very small κ: in the finite parameter range
〈z〉 < 2d (but substantially above geometric percolation),
the process zone ξ → ∞, and the network shows diffuse
failure even in the thermodynamic limit. The system
is so disordered that the Griffith scenario of breaking
near a crack tip is never relevant. Stress concentration is
overwhelmed by disorder.

We construct our network by starting with an L × L
triangular lattice with each bond present with probability
p and elastic energy as discussed above. Each bond is
a linear spring of spring constant k until, at common
strain threshold λ = .03, the bond breaks and removes
its stretching and bending energies. Our model shares
similarities with the RFM5,6,32 in terms of introducing
randomness in a lattice model. However, in contrast to
our natural geometric disorder, the RFM5,6 has disorder
in λ with a prescribed distribution. We will investigate
a close relationship between the RFM and our model
below.

We apply a uniaxial strain uyy = γ and minimize the
system’s elastic energy using the FIRE algorithm33. Peri-
odic boundary conditions are applied for the x-direction,
while the top and bottom boundaries are held as rigid
bars to impose strain. Nodes are allowed to slide along
the bars. We apply strain in small steps such that only
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FIG. 1. (Color online) (a) Stress concentration near crack tips
in dense fiber networks above the CFIP, with the resulting
Griffith crack shown in (b). (c) and (d) show force chains and
diffuse failure in dilute fiber networks below the CFIP. Bonds
are colored according to force; broken bonds are also marked
(see legend). Bonds with larger force are thicker. (e) Stress-
strain curves at various p for L = 128. The critical strain, γc,
is labeled for p = 0.55. Inset: Scaling relation γc ∼ (pc − p)β

with β ≃ 1.325, for different L. (f) The fracture energy reaches
a maximum when p ≃ pc.

one bond initially breaks, but that breakage can trig-
ger an avalanche as stress redistributes itself. Once the
avalanche terminates, the system is further strained, con-
tinuing until the lattice is broken into two disconnected
pieces (final failure). A small notch of 8 broken bonds
is placed in the center of the lattice to nucleate a crack.
We focus on κ = 0, in which strain stiffening is most
pronounced; as we will see small κ leaves the nonlinear
fracture physics qualitatively unchanged.

Results are shown in Fig. 1(a-d) for κ = 0. For
p > pc the network is well described by Griffith theory.
When p < pc, the system is bending dominated at small
strain (elastic moduli proportional to κ), until the strain-
stiffening critical strain γc ∼ (pc−p)β with β ≃ 1.325. Be-
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FIG. 2. (Color online) (a) Nb as a function of p for L =
32, 64, 128, 256, displaying a maximum at pc. (b) Scaling of
Nb for p > pc with ν = 1.21. (c) Scaling of Nb for p < pc with
ν → ∞. Inset: The same plot in a linear-linear scale. (d) The
pair correlation function g(r) of broken bonds at L = 128. (e)
Schematic phase diagram with arrows showing the direction
of flow as L → ∞.

yond γc bonds start to be stretched and will break when
they extend beyond the threshold length; see Fig. 1(c-
e). The total energy absorbed during the fracturing pro-
cess, the fracture energy (the area under the stress-strain
curve), as shown in Fig. 1(f), peaks at p ≃ pc. Networks
close to the CFIP display highest toughness.
To extract ξ, we use a finite-size scaling form for the

total number of broken bonds, Nb, at failure (Fig. 2).
Clearly, Nb ∼ L as p → 1 (crack nucleation) and Nb → 0
as p → pGP ≃ 0.347 (geometric percolation34). Close to
the CFIP the data can be collapsed using:

Nb = LdfN
(

|p− pc|L
1/ν

)

, (1)

with df = 1.35. We find a good collapse for p > pc
using ν = 1.21, the value from rigidity percolation11,35

[Fig. 2(b)], consistent with a correlation length ξ ∼ |p−
pc|

−ν . The physical meaning of ξ in rigidity percolation
is the scale at which the probability for a network being
rigid exhibits significant fluctuations. Here it controls the
size of the process zone, because below this scale stress
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cannot be concentrated at the crack tip. This agrees with
previous results from linear simulations as the CFIP is
approached from above9 (although a different exponent ν
was found for the different network architecture). In the
random fuse model (RFM), the divergence of ξ occurs
at infinite disorder in the fuse thresholds7,8,32. In both
p > pc networks and the RFM the systems flow to the
nucleation fixed point when L ≫ ξ.

In sharp contrast, for p < pc (below the CFIP), the
data collapses using ν → ∞, Fig. 2(c), i.e., an infi-
nite correlation length for the process zone. Networks
below the CFIP break when the strain exceeds γc (on-
set of strain stiffening), deep in the regime of nonlinear
elasticity. Instead of nucleation, a dynamic steady state
emerges during fracture, with force chains continuously
emerging throughout the system as other chains break
and the network strains. Because of nonlinear align-
ments, fiber networks below the CFIP organize into a
state that resembles the critical CFIP throughout the
entire fracture process. Furthermore, for p < pc the scal-
ing function N takes the linear form N (y) = a1 − a2y
where a1 ≃ 0.9 and a2 ≃ 3.8 are constants. Because the
energy dissipated by fracture is proportional to the bonds
broken in Eq. (1), this process dramatically increases the
fracture toughness of the network.

We interpret the exponent df = 1.35 as the fractal
dimension of the cluster of broken bonds in the process
zone. To verify this we measured the pair correlation
function g(r) [Fig. 2(d)]. For p < pc the process zone
is the whole lattice and we observe g(r) ∼ rdf−2. This
crosses over to g(r) ∼ r−1 for p → 1 as a result of crack
nucleation. To get g(r) we used the positions of the bro-
ken bonds in the undeformed state and we disregard the
first 20% of broken bonds for p < pc to eliminate uncor-
related damage at the beginning36,37.

Our scaling collapse of Nb shows that for p > pc the
system always flows to the nucleation fixed point as L/ξ
increases, whereas for p < pc the system does not flow
(ξ → ∞). Rather it drives itself to the CFIP in the
nonlinear regime during fracture. We call this regime the
“critical phase” [see phase diagram in Fig. 2(e)]. This is
similar to the phenomenon of molecular motors driving
biopolymer gels to a critically connected state38.

We now consider the effect of increasing κ from 0,
which gives the lattice a small rigidity in linear regime.
Using simulation we verify that the same physics of dif-
fuse failure applies when κ ≪ k, whereas in the opposite
limit of large bending stiffness, κ ∼ k, Griffith theory
applies [Fig. 3]. We find that Nb plateaus in the limit of
κ → 0 [Fig. 3(b) inset].

We also studied the integrated size distribution
Dint(s, p, L) for all avalanches of size s until failure
(at κ = 0). A standard form3,36,39 is Dint(s, p, L) =
s−τD(s/s0); s0 is a cutoff size for the power law s−τ . As
shown in Fig. 4(a) for our model τ = 3/2. The cutoff
size s0 is a function of p and L, and the scaling we ob-
tained above, ξ ∼ |p− pc|−ν , provides a way to collapse

(a) (b)

FIG. 3. (Color online) (a) Diffuse failure at small bending
stiffness κ = 10−4. (b) Griffith crack at κ = 10−1. L = 128,
p = 0.6. Color coding same as in Fig. 1. Inset in (b) shows
Nb vs κ at two system sizes. As κ → 0, Nb plateaus toward
the κ = 0 limit [dashed lines, upper L = 100, lower L = 64].
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FIG. 4. (Color online) (a) Integrated avalanche size distri-
bution Dint(s, p,L) at L = 128, various p. Dashed line: the
power law s−τ , τ = 1.5. (b) The collapse of Dint(s, p, L) for
L = 32, 64, 128 and p values as listed in (a), following Eq.(2).
Solid line: empirical function that fits the master curve.

Dint(s, p, L) onto a master curve (Fig. 4b):

s0(p, L) = LDS(|p− pc|L
1/ν). (2)

Our data is consistent with D ≈ 1. This should be
compared to the RFM36,40 for which D ≈ 1.1. Also,
S(x) = c0 + c1x for p > pc and S(x) = c0 + c2x for
p < pc, where c0 ≃ 0.11, c1 ≃ 0.024, and c2 ≃ −6.1. We
have used the correlation length exponent we obtained
above, ν = 1.21 for p > pc and ν → ∞ for p < pc. This
collapse is consistent with our interpretation of ξ.
To provide an intuitive picture for the force chain

forming-breaking steady state and for τ = 3/2, we in-
troduce a toy model, the “slack fiber bundle model”
(SFBM, see Fig. 5a) inspired by the fiber bundle model
(FBM) for fracture with random breaking thresholds (as
in the RFM)3,41,42. In the FBM, two plates are con-
nected by fibers of random strengths. The plates are
pulled apart with force F , which is equally shared by
all fibers. Avalanches can occur where the breaking of
one fiber makes others break. The avalanche size dis-
tribution is equivalent to the first return time of a bi-
ased random walk41,43, DFBM (s, F ) ∼ s−3/2e−s/s0(F ),
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where the bias (the ratio between mean and variance) is
b = s0(F )−1/2 ∼ Fc − F , where Fc is the critical force
where the final catastrophic failure occurs. The inte-
grated avalanche distribution over the whole process is:

DFBM
int (s) ∼

∫ Fc

0 DFBM (s, F )dF ∼ s−5/2. The 5/2 expo-
nent is the result of vanishing bias (divergent cutoff s0)
as the final failure is approached [see Fig. 5(b)]44, and is
characteristic of most brittle fracture processes.
In the SFBM, instead of a distribution of the thresh-

old, we assume a distribution of fibers’ rest length, P (x0),
and assume that the fiber will break when it is stretched
beyond (1+λ)x0. Thus, the load F is not equally shared
by all fibers. Instead, fibers with rest length longer than
the distance between the plates remain slack until the
distance between plates increases to their x0. In this
model (as in the original 2D network) new force chains
constantly emerge in the process of failure. We assume
the distribution of x0 is quite random, i.e. the standard
deviation is comparable to the mean. It is shown in de-
tail in44 that the bias in the random walk of force is a
constant (Fig. 5b), s

−1/2
0 ∼ λ, when λ ≪ 1, so that only

a small fraction of the fibers are stretched at any given
force. The integrated avalanche size distribution is:

DSFBM
int (s) ∼

∫ Fc

0

DSFBM (s, F )dF ∼ s−3/2e−
λ2s
2 . (3)

Failure in the SFBM is a steady state where new fibers
join the load-bearing group and ones beyond threshold
break. This steady-state process with τ = 3/2 is remi-
niscent of other mean-field “self-organized branching pro-
cesses” such as plastic slip events45–47. In contrast, in the
FBM, all of the fibers are stretched, and the fracture pro-
cess evolves significantly, culminating in a catastrophic
failure.
The SFBM crosses over to FBM behavior when λ &

1. In this case, a macroscopic fraction of the fibers are
stretched at the same time, the distribution of rest length
is overwhelmed by the distribution of the threshold, and
the avalanches are like those in the FBM. We find that
in the SFBM, taking large λ leads to a crossover from
τ = 3/2 to 5/2 (Fig. 5c). The same phenomena occur in
the fiber networks as well, as shown in Fig. 5(d). With
large λ the exponent is 5/2, and we have localized crack
nucleation, destroying the critical phase for p < pc.
In summary, we have shown via simulations and exact

results that fiber networks, for a finite range of connectiv-
ity below the CFIP, exhibit a remarkable fracture process
deep in the nonlinear elasticity regime, where force chains
steadily emerge and break, stress never concentrate, and
the size of the process zone is divergent.
Our results may apply to failure of some real biopoly-

mer gels, a question that is important in characterizing
tissue failure48–50, provided that the the bending stiffness
is small, the network is mainly athermal, and the failure

of the individual polymer does not involve complicated
macromolecular structures51. Deviations from this sim-
ple limit will likely drive the network to focus stress and
crossover to crack nucleation in the thermodynamic limit.
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FIG. 5. (a) SFBM schematic. (b) Force as a function of
number of broken fibers in FBM and SFBM. (c) Crossover
of τ in the SFBM with λ. (d) Dint(s, p, L) at λ = 0.2 and
various p for the fiber network model at L = 128.

Furthermore, diverse hybrid materials, from hydro-
gels52 to bone53,54, possess not only strong bonds capable
of bearing great stress, but also “sacrificial bonds”55 that
break and unspool hidden length, increasing the mate-
rial’s toughness as measured in its ability to absorb and
dissipate energy. Our simple, non-hybrid materials ex-
ploit nonlinear alignments to spontaneously form “sacri-
ficial bonds” that dissipate energy while also undergoing
great strain. Unlike conventional cracks which dissipate
energy proportional to a material’s cross-section, the dis-
tributed damage has, in our simulations, fractal dimen-
sion 1.35 in dimension 2, a fundamentally distinct struc-
ture which leads to greater damage distribution. Counter
to intuition, this toughening is achieved by removing ma-
terial to improve flexibility and allow the system to bear
distribute stress more efficiently.
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