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We quantify the accuracy of different non-self-consistent and self-consistent spin-orbit coupling
(SOC) treatments in Kohn-Sham and hybrid density-functional theory by providing a band structure
benchmark set for the valence and low-lying conduction energy bands of 103 inorganic compounds,
covering chemical elements up to Po. Reference energy band structures for the PBE density func-
tional are obtained using the full-potential (linearized) augmented plane wave code Wien2k, employ-

ing its self-consistent treatment of SOC including Dirac-like p1/2 orbitals in the basis set. We use this
benchmark set to benchmark a computationally simpler, non-self-consistent all-electron treatment
of SOC based on scalar-relativistic orbitals and numeric atom-centered orbital basis functions. For
elements up to Z≈50, both treatments agree virtually exactly. For the heaviest elements considered
(Tl, Pb, Bi, Po), the band structure changes due to SOC are captured with a relative deviation
of 11% or less. For different density functionals (PBE vs. the hybrid HSE06), we show that the
effect of spin-orbit coupling is usually similar but can be dissimilar if the qualitative features of the
predicted underlying scalar-relativistic band structures do not agree. All band structures considered
in this work are available online via the NOMAD Repository to aid in future benchmark studies
and methods development.

I. INTRODUCTION

Spin-orbit coupling (SOC) is an essential ingredient
for quantitatively correct energy band structures of ma-
terials composed of any but the few lightest elements, ap-
pearing in materials applications as diverse as heavy-light
hole masses in conventional semiconductors,1–3 Rashba
splittings in reduced dimensionality systems,4–6 topolog-
ically insulating phases,7 and Berry phase physics8. Yet,
for reasons of cost and convenience, the effects of spin-
orbit coupling in different computational studies are of-
ten approximated based on different underlying scalar-
relativistic orbitals and, at the simplest level, in a non-
self-consistent fashion. In standard or generalized Kohn-
Sham density-functional theory ((g)KSDFT),9–11 the ef-
fects of SOC on electronic levels can be incorporated into
calculations by way of the spin-orbit-coupled effective
Hamiltonian

Ĥ[n] = t̂SR + v̂ext + v̂es + v̂xc + v̂SOC

= t̂SR + v̂ + v̂SOC

= ĤSR[n] + v̂SOC ,

(1)

where n is the electron density obtained from a scalar-
relativistic (SR) calculation, t̂SR is the SR kinetic en-
ergy operator, v̂ext is the external potential operator, v̂es
is the electrostatic or Hartree potential operator of the
electrons, v̂xc is the exchange-correlation potential oper-
ator, ĤSR is the SR Hamiltonian operator, and v̂ is the
effective or Kohn-Sham potential operator. v̂SOC is the
spin-orbit coupling operator

v̂SOC =
i

4c2
σ̂ · p̂v̂ × p̂, (2)

where atomic units are used. “Hatted” quantities indi-
cate operators. Spacial vector quantities are indicated by

boldfaced characters, and scalar quantities (and individ-
ual components of vectors) are unbolded. Here, p̂ is the
momentum operator and σ̂ is the vector spin operator of
Pauli matrices, assumed to be polarized along the z axis,

σ̂x =

[
0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
, σ̂z =

[
1 0
0 −1

]
. (3)

Equation 1 is the textbook expression and is itself al-
ready an approximation to the more accurate, fully rel-
ativistic Dirac-Kohn-Sham equations (see below). SOC
can be added as part of routine computations in many
electronic structure codes, but in fact a variety of dif-
ferent approximations to capture the effects of SOC
are commonly employed. Some of the many possi-
ble approaches include: (i) solving the Dirac-Kohn-
Sham equation directly12–15, (ii) including the SOC term
in the zero-order regular approximation (ZORA)16,17,
(iii) the non-self-consistent or (iv) self-consistent second-
variational method following a self-consistent scalar-
relativistic calculation,18,19 or (v) the direct inclusion of
SOC effects into pseudopotentials17,20–23. In the second-
variational method, matrix elements for the full Hamil-
tonian

Hmα;m′α′ = 〈ψmαα| [ĤSR[n] + v̂SOC ] |ψm′α′α′〉
= δmm′δαα′εmα + 〈ψmαα| v̂SOC |ψm′α′α′〉 ,

(4)

are calculated and diagonalized, where α is a spinor, ψmα
is the scalar-relativistic KS eigenvector for energy index
m and spin channel α, and εmα is the SR energy eigen-
value of ψmα. Second-variational SOC is performed as a
post-processed correction on a reduced set of SR eigen-
vectors with size 2Nstates, where Nstates is the number
of SR eigenvectors included. This is in contrast to the
first-variational method, in which the problem is solved
on the full set of SR eigenvectors with size 2Nbasis, which
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is equivalent up to unitary transformation to calculation
and diagonalization of matrix elements of the full Hamil-
tonian defined on computational basis functions ϕn,

Hnα;n′α′ = 〈ϕnα| [ĤSR[n] + v̂SOC ] |ϕn′α′〉 . (5)

Since the final diagonalization step of the second-
variational method is performed on a system with dimen-
sion 2Nstates � 2Nbasis, the second-variational method
constitutes a notable reduction in problem size compared
to the first-variational method. In principle, both the
first- and the second-variational approach can be em-
ployed non-self-consistently (following a self-consistent
SR calculation) or self-consistently by iterating over the
eigenvectors obtained from the diagonalization of the
Hamiltonians (4) or (5).

Second-variational spin-orbit coupling (non-
selfconsistent or self-consistent) is expected to offer
a performance advantage over a full two- or four-
component treatment from the outset, as it preserves
the fundamental symmetries of scalar relativity for the
initial self-consistency cycle of an electronic structure
calculation. Scalar-relativistic self-consistency can be
obtained with the assumption of spin collinearity and,
depending on the system, real algebra. The more costly
complex linear algebra and doubling of the problem size
due to spin non-collinearity, implicit in Eqs. (2), (4) and
(5), are then introduced only after the scalar-relativistic
SCF cycle has finished.

Non-self-consistent second-variational spin-orbit cou-
pling has an additional performance advantage, as no
additional SCF steps are required and spin-orbit cou-
pling is applied only once per calculation. In particular,
the non-self-consistent approach avoids computationally-
expensive operations such as additional density and
Fock matrix evaluations, which are required for a self-
consistent approach. Towards large system sizes, the
O(N3) diagonalization would become costly and also oc-
curs only once. On the other hand, the accuracy of non-
selfconsistent SOC is expected to decrease with increas-
ing elemental atomic numbers Z, as is documented in the
literature.24–27 A detailed quantitative assessment is thus
needed to gauge the expected reliability of the approach
across the periodic table.

In this paper, we provide a broad assessment of the ac-
curacy of first- or second-variational, non-self-consistent
(n.s.c.) SOC for all-electron energy band structure calcu-
lations, based on numeric atom-centered orbital (NAO)
basis sets. NAO basis sets are widely used in elec-
tronic structure theory.28–37 Here, we focus on the NAO
basis sets provided with the FHI-aims38 code, a high-
accuracy39,40 implementation of electronic structure the-
ory for molecules and solids, suitable for large-scale
simulations41–43. To benchmark the NAO-based n.s.c.
approach to SOC, we consider band structures for 103
crystalline solids, incorporating 66 chemical species (up
to Po) and using the semi-local PBE44 functional. The
benchmark set includes 45 elemental materials and 21 al-
kali halides in addition to a group of 37 compound semi-

conductors. Band structures considered in this work are
provided online via the NOMAD Repository45 and are
citable via digital object identifiers (DOIs). These band
structures will aid the community in future methods de-
velopment involving relativistic effects.

We compare our results to a self-consistent (s.c.)
SOC implementation based on (linearized) augmented
plane wave46 and local orbital47,48 ((L)APW+lo) basis
sets, which we abbreviate as “APW s.c. SOC”, in the
all-electron code Wien2k49 Optionally, the accuracy of
the (L)APW+lo approach may be improved by includ-
ing Dirac p1/2 local orbitals in the second-variational
step.24,25 We abbreviate this improved handling of SOC
as “APW+p1/2 s.c. SOC”.

Finally, we also investigate the exchange-correlation
functional dependence of second-variational SOC by
comparing band structures calculated by the PBE and
the short-range screened hybrid exchange-correlation
HSE06 functional50–52 using the NAO basis set. SOC-
related quantities calculated on semi-local and hybrid-
functional levels of theory show close agreement for most
materials, but important exceptions exist where qual-
itative differences in the scalar-relativistic band struc-
tures yield quantitative differences for SOC-related quan-
tities. This highlights the need for qualitative accuracy in
the underlying (g)KS scalar-relativistic band structure to
achieve quantitative accuracy in spin-orbit-coupled cal-
culations.

II. BACKGROUND

In relativistic Kohn-Sham density-functional
theory53–57, the many-particle wavefunction Ψ of
the system is rewritten by ansatz to a single Slater
determinant of single-particle 4-component wavefunc-
tions ψ interacting with an effective relativistic potential
operator v̂[n, j], where the dependence on current
density j arises from covariance. Each single-particle
wavefunction ψ then satisfies the Dirac-Kohn-Sham
equation57,58,[

v̂ cσ̂ · p̂
cσ̂ · p̂ v̂ − 2c2

] [
ψL
ψS

]
= ε

[
ψL
ψS

]
(6)

where we have neglected the current density dependence
of v̂ to introduce a scalar v̂, and the single-particle
bispinor ψ is decomposed into individual spinors ψL and
ψS . In principle, solution of this equation would suffice
to cover (almost) all relevant effects in chemistry and
condensed matter science. However, the 4-component
approach necessitates additional computational expense
and special care regarding basis sets and other quantities
(e.g., energy gradients) and is therefore not commonly
pursued in most implementations.

Three energy branches exist for the Dirac-Kohn-Sham
equation: a positive continuum of unbound energy states
with ε ≥ 0, a negative continuum of unbound energy
states for finite systems with ε ≤ −2c2, and a discrete
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spectrum of bound states lying within the [0,−2c2] gap.
The energy needed to couple the bound spectrum with
the negative continuum solutions, ε ≈ 2c2, would allow
for electron-positron pair formation. However, this en-
ergy scale well exceeds the energy scales of electronic
structure theory59 for elements of interest in chemistry
and materials science (usually Z ≤100). Accordingly,
in the “no-pair” approximation, the negative contin-
uum spectrum may be viewed as well-separated from
the bound spectrum and neglected, and the bound states
may be regarded as electron-like.

Although Equation 6 is a set of four differential equa-
tions, in the presence of a scalar potential it has only two
degrees of freedom. There exists a coupling operator R̂
such that the “kinetic balance” condition

ψS = R̂ψL ≡ K̂σ̂ · p̂ψL. (7)

is satisfied for some operator K̂, yielding an equation for
ψL independent of ψS

[cσ̂ · p̂K̂σ̂ · p̂+ v̂]ψL = εψL. (8)

By simply using Equation 6, K̂ can written down exactly
in closed form,

K̂ =
1

2c
(1 +

ε− v̂
2c2

)−1, (9)

for electron-like solutions, with a similar equation holding
for positron-like solutions. However, the explicit depen-
dence on ε complicates the solution, and various further
approximation schemes58,60 exist for R̂.

Equation 8 alone does not reduce Dirac-Kohn-Sham
theory to a two-component formalism, as ψS is non-zero
for non-trivial solutions and contributes to the normal-
ization condition

1 = 〈ψ|ψ〉 = 〈ψL|ψL〉+ 〈ψS |ψS〉 (10)

defined on the full 4-component wavefunction. Elimina-
tion of ψS can be accomplished by exact 2-component
formalisms59–61 which fully decouple ψL and ψS using
numerical construction of R and suitable unitary trans-
formation of Equation 6, but this formalism will not be
considered in this paper.

The Dirac identity, valid for operators â which satisfy
[â, σ̂] = 0, asserts that

(σ̂ · â)(σ̂ · b̂) = â · b̂Î2 + iσ̂ · â× b̂. (11)

Making the identification â ≡ p̂K̂ and b̂ ≡ p̂, Equation
8 becomes

[cp̂K̂ · p̂+ icσ̂ · p̂K̂ × p̂+ v̂]ψL = εψL (12)

where × is the usual cross product between spacial vec-
tors. Equation 12 disentangles the two major relativistic
corrections to the non-relativistic Schrödinger equation
considered in condensed matter physics and quantum

chemistry. The first term, the scalar-relativistic kinetic
energy term cp̂K̂ · p̂, is independent of spin and modi-
fies the non-relativistic kinetic energy operator p̂2/2 by a

relativistic renormalization factor 2cK̂. The second term
couples the spin operator acting on spinors to spacial op-
erators operating on spacial degrees of freedom. This sec-
ond term is accordingly called the “spin-orbit coupling”
term.

For states weakly affected by relativity, e.g. valence
and conduction states, the contribution of ψS to the nor-
malization condition (10) is weak and may be neglected
in the non-relativistic limit. ψL may then be solved and
normalized independently of ψS , functioning essentially
as the non-relativistic spinor. From here on, we will
rewrite ψL → ψ, which we identify as the Schrödinger-
like 2-component spinor. We will, however, return briefly
to the small component ψS in the context of free-atom
orbitals.

Though both the SR kinetic energy term and the SOC
term arise from relativistic modification of the kinetic en-
ergy operator in the Dirac equation, the SR kinetic en-
ergy term is often considered the stronger relativistic ef-
fect in electronic structure theory. Relativistic effects are
mostly significant in the nuclear region, where a highly
negative v induces large kinetic energy densities via the
relation t̂ψ = (ε − v̂)ψ even for the lightest atoms. Ac-
cordingly, Schrödinger-like atomic l=0 orbitals are most
strongly affected by scalar-relativistic effects, which di-
minish in strength for orbitals of increasing l, as the elec-
tronic density of the orbital spreads further away from
the nuclear region of the system.

In contrast, the spin-orbit coupling term is anti-
symmetric in p̂ due to the presence of the cross product.
Its effect is formally zero on the spherically-symmetric
Schrödinger atomic l = 0 orbital. Higher l orbitals have
zero electron density at the nuclei, requiring a compen-
sating increase in the potential energy near the nucleus
v ≈ −Z/r for SOC to overcome the nodal structure of the
Schrödinger orbitals and have an appreciable effect. This
gives rise to the well-known dependence of SOC-related
effects on the atomic number Z of atoms in a molecule
or solid.

The expected difference in strength between these two
relativistic corrections suggests an approximation where
the two relativistic terms are conceptually decoupled
from one another62 and may be treated by different ap-
proximations,

[cp̂K̂SR · p̂+ icσ̂ · p̂K̂SOC × p̂+ v̂]ψ = εψ. (13)

K̂SR refers to the approximation for K̂ used in the scalar-
relativistic term, and K̂SOC refers to the approximation
for K̂ used in the SOC term. Using Equation 9, the
lowest-order approximation for K̂SOC is

K̂SOC ≈
1

2c
. (14)

In this approximation, the SOC term in Equation 13 is
proportional to σ̂ · p̂ × p̂ = 0. This eliminates the SOC
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term and yields the scalar-relativistic Schrödinger equa-
tion,

[cp̂K̂SR · p̂+ v̂]ψ = εψ. (15)

The SR Schrödinger equation is the workhorse equa-
tion of electronic structure theory. For suitable choice
of K̂SR, this equation has the same symmetries as the
non-relativistic Schrödinger equation. Most of the theo-
retical and conceptual machinery of the non-relativistic
quantum theory can be imported into analysis of the SR
Schrödinger equation, while still including the dominant
relativistic correction for lighter materials to energy lev-
els. Several different successful approximations for K̂SR

exist in the literature. In the present work, two specific
variants of K̂SR will be considered (outlined in Sec. IV
below): (1) the “atomic zero-order regular approxima-
tion” (atomic ZORA) as used in the FHI-aims code38 and
a combination of a Dirac code and the Koelling-Harmon
approximation62 for valence states as implemented in
Wien2k.49

To reintroduce SOC, Equation 9 is taken to first order
in (ε− v̂)/c2,

K̂SOC ≈
1

2c
− ε− v̂

4c3
, (16)

and inserted in Equation 13, yielding the spin-orbit-
coupled Schrödinger equation

[cp̂K̂SR · p̂+
i

4c2
σ̂ · p̂v̂ × p̂+ v̂]ψ = εψ (17)

The main effect of SOC on energy levels of materi-
als is the splitting of energy levels that were predicted
to be degenerate in SR electronic structure theory. Fig-
ure 1 illustrates this effect for the split valence band of
the (cubic) zincblende compound semiconductor GaAs
near the Γ point. This effect, known as spin-orbit split-
ting, can be understood as a Zeeman-like effect owing to
the form of the perturbing SOC operator, and formally
as the change in the irreducible representations of the
Hamiltonian when transitioning from the single group of
non-relativistic/scalar-relativistic quantum theory to the
double group of relativistic quantum theory.3,58
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FIG. 1: SR and SOC band structures of zincblende GaAs
near Γ for the HSE06 functional, calculated using FHI-
aims with a 16×16×16 k-grid and the “tight” NAO basis
set. “really tight” integration settings of the FHI-aims
code (see Section IV B) were used.

III. EVALUATION OF THE SPIN-ORBIT
COUPLING OPERATOR

1. Calculation of Matrix Elements of the Spin-Orbit
Coupling Operator

We next summarize the computational approach to
evaluate the spin-orbit-coupled Hamiltonian matrix el-
ements Hmα;m′α′ in the second-variational method and
using a localized basis set. Repeating Eq. (4),

Hmα;m′α′ = δmm′δαα′εmα + 〈ψmαα| v̂SOC |ψm′α′α′〉 ,
(18)

where εmα is the SR eigenvalue for the self-consistent SR
eigenstate ψmα with energy index m and spin channel α.
For periodic boundary conditions, Hmα;m′α′ , ψmα, and
εmα acquire a k dependence by way of the Bloch theorem,
and Eq. (18) must be evaluated for each k.

The SOC operator v̂SOC , when explicitly decomposed
in terms of its spacial components, has the form

v̂SOC =
−i
4c2

[(
d

dy
v̂
d

dz
− d

dz
v̂
d

dy
)σ̂x

+ (
d

dz
v̂
d

dx
− d

dx
v̂
d

dz
)σ̂y

+ (
d

dx
v̂
d

dy
− d

dy
v̂
d

dx
)σ̂z]

≡ −i
4c2

∑
xi

Π̂xi σ̂xi . (19)

(xi = x, y, z). Each term in this decomposition is a tensor

product of a spacial operator Π̂xi
, which acts on the spa-

cial wavefunctions |ψmα〉, and a spin operator σ̂xi
, which

acts on the spinors |α〉. The resulting matrix elements in
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the basis of SR eigenfunctions have the form

〈ψmαα| v̂SOC |ψm′α′α′〉 =

−i
4c2

∑
xi

〈ψmα| Π̂xi
|ψm′α′〉 〈α| σ̂xi

|α′〉 . (20)

Assuming polarization of α in the z-direction (|α〉 =
|↑〉 , |↓〉,) the matrix elements of v̂SOC assume a block
form with respect to the spinor basis via the decomposi-
tion

v̂SOC =

[
v̂SOC,↑↑ v̂SOC,↑↓
v̂SOC,↓↑ v̂SOC,↓↓

]
=
−i
4c2

[
Π̂z Π̂x − iΠ̂y

Π̂x + iΠ̂y −Π̂z

]
.

(21)

Within each sub-block, one only considers operations on
spacial wavefunctions of form 〈ψmα| Π̂xi |ψm′α′〉.

2. Calculation of the Spacial Components of SOC Matrix
Elements

a. Non-Periodic Case The spacial component of a
non-periodic eigenvector |ψmα〉 defined on a set of local-
ized spacial basis functions ϕn is representable as a linear
combination

|ψmα〉 =
∑
n

cmαn |ϕn〉 , (22)

The matrix elements for the Π̂xi operators are

〈ψmα| Π̂xi
|ψm′α′〉 =

∑
n,n′

c∗mαnMxi;nn′cm′α′n′ (23)

where

Mxi;nn′ = 〈ϕn| Π̂xi
|ϕn′〉 (24)

=

∫
ϕn(r)Π̂xi

ϕn′(r)dr.

Mxi;nn′ depends only on the spacial basis set and needs
to be evaluated only once for a given v̂. It can be eval-
uated efficiently using the same real-space, linear-scaling
integration scheme as described for FHI-aims’ Hamilto-
nian matrix elements in Ref.63

b. Periodic Case The spacial component of a peri-
odic eigenvector |ψmα(k)〉 may be written in terms of
Bloch basis functions |χn(k)〉

|χn(k)〉 =
1√
Ncell

∑
T

eik·T |ϕn,T 〉 , (25)

where |ϕn,T 〉 is the periodic image of the nth spacial basis
function in the unit cell indexed by T and limNcell→∞ is
implicit. The eigenvectors then acquire a k index,

|ψmα(k)〉 =
∑
n

cmαn(k) |χn(k)〉 . (26)

Using Equation 25 and 26, the matrix elements for the
Π̂xi

operators are

〈ψmα(k)| Π̂xi
|ψm′α′(k)〉

=
1

Ncell

∑
n,n′

c∗mαn(k)cm′α′n′(k)×

∑
TT ′

eik·(T
′−T ) 〈ϕn,T | Π̂xi |ϕn′,T ′〉 (27)

By translational symmetry,

〈ϕn,T | Π̂xi
|ϕn′,T ′〉 ≡ 〈ϕn,T | Π̂xi

|ϕn′,τ+T 〉
= 〈ϕn,0| Π̂xi

|ϕn′,τ 〉 ,
(28)

that is, we may rewrite these matrix elements without
loss of generality in terms of a “central unit cell” (with
index T = 0) and index τ = T ′−T relative to the central
unit cell. Equation 27 then becomes

〈ψmα(k)| Π̂xi |ψm′α′(k)〉

=
1

Ncell

∑
n,n′

c∗mαn(k)cm′α′n′(k)×

∑
Tτ

e−ik·τ 〈ϕn,0| Π̂xi
|ϕn′,τ 〉

=
∑
n,n′

c∗mαn(k)cm′α′n′(k)
∑
τ

e−ik·τ 〈ϕn,0| Π̂xi
|ϕn′,τ 〉

=
∑
n,n′

c∗mαn(k)[
∑
τ

e−ik·τ 〈ϕn,0| Π̂xi
|ϕn′,τ 〉]cm′α′n′(k)

(29)

Equation 29 may be cast in a form analogous to the
non-periodic case,

〈ψmα(k)| Π̂xi
|ψm′α′(k)〉

=
∑
n,n′

c∗mαn(k)Wxi;nn′(k)cm′α′n′(k). (30)

Here,

Wxi;nn′(k) =
∑
τ

e−ik·τMxi;nn′τ (31)

incorporates all interactions between a given localized ba-
sis function ϕn in the central cell and all periodic images
of ϕn′ with overlapping support, and

Mxi;nn′τ = 〈ϕn,0| Π̂xi |ϕn′,τ 〉 , (32)

is the periodic analogue of Mxi;nn′ .
Mxi;nn′τ is independent of k and depends only on the

spacial basis, so it is evaluated once for a given v̂. The
matrix Wxi;nn′(k) is evaluated once for each k-point k.
Once Wxi;nn′(k), is computed, solution of Equation 30
requires two matrix multiplications for each k.
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c. Avoiding explicit derivatives of the potential.
Consider Mz;nn′ in the non-periodic case, where it has
the form

Mz;nn′ = 〈ϕn|
d

dx
v̂
d

dy
|ϕn′〉 − 〈ϕn|

d

dy
v̂
d

dx
|ϕn′〉 . (33)

This matrix is anti-symmetric, with the hermiticity of
the SOC operator v̂SOC preserved by the strictly imag-
inary coefficient of the overall operator. For localized
basis functions, this matrix element can be rewritten by
integration by parts to read

Mz;nn′ = −〈dϕn
dx
| v̂ |dϕn

′

dy
〉+ 〈dϕn

dy
| v̂ |dϕn

′

dx
〉 . (34)

due to anti-hermiticity of the gradient operator, with sim-
ilar forms for the matrix elements of Π̂x and Π̂y. An
analogous result holds for the periodic case.

By using Equation 34, gradients of the potential ∇v̂
do not need to be calculated. The gradients of the wave-
functions of basis elements ∇ϕn,τ needed can be readily
computed in any electronic structure code based on lo-
calized basis functions.

3. Steps for Second-Variational SOC in a Localized Basis
Set

To summarize, we briefly outline the steps for incor-
porating SOC in a second-variational approach.

Non-Periodic Case

1. Perform a self-consistent scalar-relativistic calcula-
tion to obtain SR eigenfunctions ψmα and eigenval-
ues εmα.

2. Select a subset of SR eigenvectors ψmα for inclusion
in the second-variational method.

3. Calculate Mxi;nn′ , the matrix elements of the oper-

ators Π̂xi
between localized basis functions ϕn, via

Equation 24.

4. Use Equation 23 to calculate the matrix elements
of Π̂xi

between the scalar-relativistic eigenvectors
chosen in Step 2.

5. Use Equation 20 and Equation 18 to construct the
Hamiltonian matrix elements Hmα;m′α′ of the sys-
tem.

6. Diagonalize Hmα;m′α′ to obtain the resulting SOC
eigenvalues and (if needed) eigenvectors of the sys-
tem.

Periodic Case

1. Perform a self-consistent scalar-relativistic calcula-
tion to obtain SR eigenfunctions ψmα(k) and eigen-
values εmα(k).

2. Select a subset of SR eigenvectors ψmα(k) to in-
clude in the second-variational method.

3. Calculate Mxi;nn′τ , the matrix elements of the op-

erators Π̂xi
between localized basis functions ϕn,T ,

via Equation 32.

4. For each k-point k, use Equation 31 to calculate
the matrix Wxi;nn′(k).

5. For each k-point k, use Equation 30 to calculate
the matrix elements of Π̂xi between the scalar-
relativistic eigenvectors chosen in Step 2.

6. For each k-point k, use Equation 20 and Equation
18 to construct the Hamiltonian matrix elements
Hmα;m′α′(k) of the system at k.

7. For each k-point k, diagonalize Hmα;m′α′(k) to ob-
tain the resulting SOC eigenvalues and (if needed)
eigenvectors of the system at k.

In practice, our NAO-based implementation in FHI-
aims includes one further approximation, which is to omit
v̂xc from the effective potential operator v̂ appearing in
v̂SOC . The effect of this omission is small since rela-
tivistic effects only contribute significantly to the Hamil-
tonian deep in the nuclear region. This simplification
yields a form for the SOC operator

v̂SOC ≈
i

4c2
p̂ˆ̃v × p̂ · σ̂, (35)

where

ˆ̃v ≡ v̂ − v̂xc = v̂ext + v̂es. (36)

This approximation is assessed for the Perdew-Wang pa-
rameterization of the local-density approximation func-
tional (PW-LDA)64 in Table I, where spin-orbit split-
tings for select materials are calculated without and with
the inclusion of v̂xc in the effective potential operator v̂
used for v̂SOC . The spin-orbit splitting at VBM for a
given material is presented, with the exception of the
Pb-containing compounds where the spin-orbit splitting
in the first conduction band at Γ is presented. Calcu-
lations were performed using FHI-aims at “Benchmark
Settings”, described in Section IV B.

We find that inclusion of v̂xc changes spin-orbit split-
tings by 1% for these materials. While the omission of ˆvxc
does not affect the previous derivation conceptually, in
practice it simplifies the implementation (higher deriva-
tives of gradient-based exchange-correlation functionals
that would be needed for the potential expression are
avoided) and also allows one to use a local potential op-
erator in calculations involving hybrid functionals.
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Material Prototype VBM Splitting VBM Splitting
No vXC in vsoc vXC in vsoc

ZnS ZB 0.064 0.065
GaP ZB 0.089 0.090
AlAs ZB 0.312 0.315
GaAs ZB 0.350 0.353
ZnSe ZB 0.403 0.406
KBr RS 0.517 0.522
RbCl RS 0.137 0.140
CdS ZB 0.047 0.048
CdSe ZB 0.382 0.385
InP ZB 0.108 0.109
AlSb ZB 0.687 0.691
NaI RS 1.107 1.113
CsF RS 0.157 0.160
HgS ZB 0.692 0.692

Material Prototype CB Splitting CB Splitting
No vXC in vsoc vXC in vsoc

PbS RS 2.793 2.804
PbSe RS 2.619 2.629
PbTe RS 2.350 2.359

TABLE I: A comparison of select spin-orbit splittings
using the PW-LDA functional, with and without the

XC contribution to the effective potential operator used
in v̂SOC . Values are presented in units of eV. “RS” and

“ZB” denote rocksalt and (cubic) zincblende
prototypes, respectively.

IV. COMPUTATIONAL DETAILS

A. Materials and k-Paths for Band Structures

We use the band structures of 103 materials for bench-
marking the implementation of spin-orbit coupling. A
brief overview of these materials is presented in Table
II. Structural prototypes and the lattice parameters used
may be found in Tables 3-5 of the Supplemental Material
(SM).

For most materials, we use experimental lattice pa-
rameters taken from Pearson’s Handbook65. Notable ex-
ceptions are noble gas solid phases, for which lattice pa-
rameters are taken from Villars and Daams66, and al-
kali halides, for which lattice parameters are taken from
Wyckoff67.

We use the k-paths proposed by Setyawan and
Curtarolo68 for all band structures presented, with 21
even-spaced k-points per k-path segment. The energy
zero in band structures is set to the valence band maxi-
mum for insulators and to the Fermi level for metals. All
reported energies are in units of eV. All scalar-relativistic
calculations reported in the main text of this paper were
performed without spin polarization. A comparison of
the calculated band structures for FCC Ni on the spin-
polarized scalar-relativistic and subsequent spin-orbit-
coupled levels of theory is provided in Figure S1 in the
SM. Excellent agreement is observed between FHI-aims
and WIEN2k on both levels of theory, consistent with the

Family # Materials Materials
Elementals 45 Be, C [GRA], Ne, Mg,

Al, Si, Ca, Sc, Ti, V,
Cr, Mn, Fe, Co, Ni,
Cu, Zn, Ge, Sr, Y,

Zr, Nb, Mo, Tc, Ru,
Rh, Pd, Ag, Cd, Sn,
Xe, Ba, Lu, Hf, Ta,
W, Re, Os, Ir, Pt,
Au, Tl, Pb, Bi, Po

Compound 37 C [DIA], MgO, AlN [WUR],
Semiconductors AlN [ZB], SiC, BP, AlP,

MgS, ZnO, ZnS [WUR],
ZnS [ZB], GaN [WUR],
GaN [ZB], GaP, AlAs,

BAs, GaAs, MgSe, ZnSe,
CdS [WUR], CdS [ZB],

CdSe [WUR], CdSe [ZB],
InN, InP, InAs, AlSb,

GaSb, InSb, ZnTe, CdTe,
HgS, HgSe, HgTe,
PbS, PbSe, PbTe

Alkali 21 LiF, NaF, LiCl, NaCl,
Halides KF, KCl, LiBr, NaBr,

KBr, RbF, RbCl, RbBr,
LiI, NaI, KI, RbI,
CsF, CsCl [CSCL],

CsCl [RS], CsBr, CsI

TABLE II: Materials used in this study, grouped by
type. For materials with identical chemical composition

but differing prototypes, the prototype has been
indicated in brackets (see Section 3 of the SM).

Underlined materials were used for the “band delta”
benchmark (Section V C 1) but not in the comparison of

spin-orbit splittings.

trends observed in the main text. We briefly summarize
code-dependent settings in the following two subsections;
details may be found in Section 2 of the SM.

B. FHI-aims benchmark calculations

All NAO calculations are performed using FHI-
aims38,43,63,69,70, a full-potential all-electron DFT code.
In FHI-aims, basis functions have the form

ϕn(r) =
un(r)

r
Ylm(Ω), (37)

where r is the distance from the nucleus of the atom asso-
ciated with the basis function, Ω is the solid angle with
respect to the associated atom, un(r) are numerically
tabulated functions, and Ylm(Ω) are real-valued spheri-
cal harmonics, with l and m implicitly depending on the
index n. un(r) may be constructed to be exactly zero for
r ≥ rcut, introducing spacial locality and linear scaling
(with respect to system size) of computational effort for
integrals.38
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FHI-aims includes preconstructed NAO basis sets for
elements Z=1-102. These basis sets are organized in so-
called “tiers” or levels of increasing accuracy (see Table
1 in Ref.38 and Section 3 in Ref.71 for several examples)
and are constructed for DFT-based total energy calcu-
lations. In Ref.39, the accuracy of these basis sets was
shown to be on par with the best available benchmark
codes for calculated scalar-relativistic equations of state
for 71 elemental solids. All basis sets include the occupied
Kohn-Sham core and valence orbitals for spherical free
atoms, known as the “minimal basis” in the literature.
Additional basis functions can be added individually or
in groups (tiers). The numerical definition of these ba-
sis functions is element-specific; for instance, a C atom
has three radial functions of s, p, d character in the first
tier, five radial functions of s, p, d, f , g character in the
second tier, and so on.38 Additionally, defaults for basic
numerical settings (integration grids, Hartree potential,
and basis functions) are provided at three levels: “light”,
“tight”, and “really tight.” We use “really tight” inte-
gration settings throughout this paper.

For the scalar-relativistic kinetic energy operator of
Eq. (13) in FHI-aims, we use the atomic zero-order
regular approximation (“atomic ZORA”) as defined in
Eq. (55) of Ref.38, and as benchmarked in Ref.39 In
atomic ZORA, the kinetic energy operator operating on
an atom-centered orbital ϕn(r) centered about atom j is
expressed as

t̂at.ZORA ϕn(r) = p̂ · c2

2c2 − vfreeat(j)(r)
p̂ ϕn(r), (38)

where vfreeat(j)(r) is the on-site free-atom potential near the

nucleus of atom j. Since the form of t̂at.ZORA depends
explicitly on the atom index of the basis function ϕn that
it acts upon, and since the operator can either act to the
left or to the right in a matrix element, the atomic ZORA
matrix elements are symmetrized to restore hermiticity.

We use two classes of settings in this paper, described
in detail in the Section 2.1 of the SM. For comparison
between NAO and (L)APW+lo data, “Benchmark Set-
tings” are used, in which Monkhorst-Pack72 k-grids with
k-point densities similar to the ∆ project39,73 are used.
Tier 2 basis sets are used in FHI-aims for all Benchmark
Settings calculations. Usually, all possible eigenstates
consistent with the basis set are calculated and included
in second-variational spin-orbit coupling (exceptions may
be found in Section 2.1 of the SM). Band structures cal-
culated using FHI-aims and Benchmark Settings may be
found on the NOMAD Repository via Ref.74

For comparisons between PBE and HSE06 calcula-
tions, “Tight Production Settings” are used, in which
FHI-aims’ tight basis sets are used and Γ-centered
16x16x16 k-space integration grids are generally em-
ployed. Materials using coarser k-space grids are given
in detail in Table 1 of the SM. The HSE06 functional
in this work is defined by a fixed screening parameter
(ω = 0.2 Å−1) and a fixed exchange mixing parameter

(α=0.25). Band structures calculated using FHI-aims
and Tight Production Settings may be found on the NO-
MAD Repository via Ref.75

For materials with maximum atomic numbers smaller
than Z ≤ 79 (Au and lighter), we use FHI-aims’ default
value for the number of calculated eigenstates in Tight
Production Setting, which is given approximately by the
empirical formula

nstates ≈ nelectrons +
∑
atoms

(2 + (1 + lmax,atom)2) (39)

where nelectrons is the number of electrons in the calcu-
lation and lmax,atom is the maximum (occupied) angular
momentum channel for the indicated atom. In practice,
the default value gives roughly 35%-75% of all possible
eigenstates consistent with the tight basis set and is suf-
ficient to converge second-variational spin-orbit coupling
in valence and lowly-lying conduction states. For mate-
rials containing species with Z ≥ 80 (Hg and heavier),
we increase the number of calculated empty states per
atom to 50. For reference, the default total number of
empty states calculated for HgS is 24. A study of the ef-
fect of basis set size and number of empty states included
in second-variational SOC on calculated spin-orbit split-
tings may be found in Appendix B of the SM.

C. Wien2k benchmark calculations

All (L)APW+lo-based calculations are performed us-
ing the Wien2k code.19,49 In the (L)APW approach, each
atom has a “muffin-tin radius” RMT , defining a sphere
that partitions space into two types of regions: core re-
gions S [r ≤ RMT ] near each nucleus, where each basis
function is represented by a linear combination of atom-
centered functions, and an interstitial/valence region I
in the rest of space, where each basis function has the
form of a single plane wave with wave vector kG, i.e.,
proportional to eikG·r.

In (L)APW+lo, the basis set size is determined by
1
2K

2
max, the highest-energy plane wave included in the

basis set. Kmax is often specified as a product with the
smallest muffin-tin radius RMT in the calculation, and
this quantity RMTKmax serves as an indicator of how
many (L)APW+lo basis functions are used in a given run
and thus the degree of basis set convergence achieved.

We present only PBE results using Benchmark Set-
tings for Wien2k. We generally use the converged
“WIEN2k/acc” settings from the ∆-project,39,73 which
were constructed for calculation of total energies of low-
temperature elemental structures. The settings used may
be found in Section 2.2 of the SM. Band structures cal-
culated using WIEN2k and Benchmark Settings may be
found on the NOMAD Repository via Ref.76

The relativistic approximations used in Wien2k vary
based on the character of the states. For core states,
a spin-compensated Dirac solver is used. For semi-
core and valence/conduction states in the atomic-sphere
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region, scalar-relativistic effects are included using the
Koelling-Harmon approximation62 and SOC effects can
be included using the self-consistent second-variational
method adapted for the (L)APW+lo method. No rela-
tivistic corrections are applied in the interstitial region.
We only consider valence/conduction states in this pa-
per, and accordingly we will refer to the (L)APW+lo
basis set as scalar-relativistic. A cutoff energy of 10
Ry was used, below which all states were included in
the second-variational SOC calculation. As mentioned
above, Wien2k optionally allows one to include Dirac
p1/2 local orbitals in the second-variational SOC step,
denoted as “APW+p1/2 s.c. SOC” below.

V. RESULTS

A. Comparison of Different Approaches to
Relativity and SOC in Spherical Free Atoms

Since SOC effects arise predominantly in the “deep”
potential regions near a nucleus, it is instructive to
first recall the effects of SOC and relativity on the
atomic radial functions and energy levels of moderate
to heavy atoms. The spherically symmetric, closed-shell
Hg (Z=80) atom is chosen to allow for a comparison to
exact atomic Dirac radial functions. The reference so-
lutions are orbitals and energies obtained using the fully
relativistic Dirac-Kohn-Sham solver dftatom77 for spheri-
cal free atoms. For the exchange-correlation treatment in
the atomic calculations, we use the Perdew-Wang param-
eterization of the local-density approximation functional
(PW-LDA).64

In Figure 2, the fully relativistic radial functions of
several core (1s, 2p), semicore (5p) and valence (5d) Hg
orbitals are contrasted with the radial functions from a
non-relativistic treatment and from the atomic ZORA
scalar-relativistic treatment as implemented in FHI-aims.
The scale on the x axes is logarithmic. It is worth not-
ing that, in the area very close to the nucleus, large to-
tal energy contributions can originate already from small
radial function changes due to the very deep Z/r nu-
clear Coulomb potential in this range. For the 1s or-
bital (which cannot show any spin-orbit splitting), the
maximum of the non-relativistic radial function occurs
at a noticeably larger value than that of the large com-
ponent radial function. The maximum of the radial func-
tion of ZORA lies even further inward. In line with the
literature,78,79 the 1s orbital energy of ZORA is therefore
significantly lower than the proper Dirac solution, while
the non-relativistic 1s orbital energy is higher. However,
since the contribution from the core orbital is almost en-
tirely dominated by the nucleus, this particular effect
cancels practically exactly in any total-energy difference
(as evidenced in Ref.39) or in the SR orbital energy asso-
ciated with semicore and valence levels. The small com-
ponent (also shown in Fig. 2a) is not at all negligible,
but also cancels in energy differences. It is noteworthy

that the overall combined density of the small and large
1s components is closer to the atomic ZORA 1s radial
function than the large component on its own.

The 2p core orbital (Fig. 2b) is the radial function
with the largest overall SOC effect, since its relativistic
version is split into a j=1/2 component and a j=3/2
component; as is well known,19,24,25 the j=1/2 compo-
nent differs fundamentally from the scalar-relativistic 2p
function in that it has no angular momentum barrier and
thus a finite probability density to find a 2p electron at
the nucleus. For the Hg atom, the split is clearly reflected
in the two different components. The non-relativistic 2p
function is close to the Dirac j=3/2 function but interest-
ingly, the SR ZORA 2p radial function near its maximum
resides inbetween the two Dirac 2p components.

The same trend persists into the 5p semicore func-
tions (Fig. 2c), i.e., the ZORA 5p radial function resides
between the j=3/2 and j=1/2 Dirac components. The
Dirac 5p functions inherit the visible difference between
the radial function components that is already apparent
in the 2p functions. This means that a n.s.c. second-
variational treatment of SOC following a SR treatment
must face limits for the 5p functions, since the second-
variational treatment will only approximate their energy
difference but will not restore the difference of the un-
derlying j=1/2 and j=3/2 radial functions themselves.
In contrast, the difference between the 5d valence radial
functions of Hg in Fig. 2d is much smaller.

These trends manifest themselves quantitatively in
Fig. 3, which compares the actual energy levels of the
Cd 4d and the Hg 5d valence orbitals, as well as the Hg
5p semicore orbitals. This figure incorporates energy lev-
els obtained using the Wien2k code, the FHI-aims code,
and the dftatom code as a reference. To allow for a
comparison of atomic energy levels in periodic and non-
periodic calculations, the highest occupied energy lev-
els (5s orbital for Cd, 6s orbital for Hg) are chosen as
the energy zero. For Wien2k, the second-variational s.c.
(L)APW+lo levels of theory without and with additional
p1/2 local orbitals are shown. In Wien2k, the free atoms
were placed in cubic unit cell with edges d=10 Å, and
Benchmark Settings (with RMT increased to 2.26 for Hg)
were used. In FHI-aims, non-periodic calculations with
Benchmark Settings were performed.

For each orbital, Figs. 3(a-c) include non-relativistic
orbital energies for FHI-aims, Wien2k, and dftatom.
Since this level of theory is formally identical in all three
codes, the differences due to the different numerical im-
plementations are small (within several tens of meV),
as expected. The SR treatments in Wien2k and FHI-
aims are different regarding the core orbitals, but for the
atomic semicore and valence orbitals investigated here,
the differences are again small.

For the spin-orbit split levels, the Dirac solution given
by the dftatom code is the appropriate reference. For the
valence orbitals, 4d for Cd and 5d for Hg, all three alter-
native approaches (NAO n.s.c. SOC, APW s.c. SOC,
and APW+p1/2 s.c. SOC) yield practically identical re-
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sults at the same scale (differences of a few tens of meV
at most) as the NR and SR treatments in all three codes.
This is consistent with the observation that the SOC-
split d valence radial functions are practically identical
in these cases. In contrast, the Hg 5p semicore orbital is
a semicore state, more closely localized near the nucleus
than a valence orbital. The 5p j=1/2 and j=3/2 radial
functions are appreciably different, so the three different
SOC treatments show noticeable differences as well.

B. Comparison of Different Approaches to SOC in
GaAs and Other Compound Semiconductors

We next exemplify the differences that arise for scalar-
relativistic and spin-orbit coupling treatments, as well as
from different basis sets choices. We will focus on the cal-
culated band structure of the semiconductor GaAs65 (cu-
bic zincblende structure, experimental lattice parameme-
ter a=5.6532 Å), but we will briefly assess other com-
pound semiconductors for which VBM spin-orbit split-
tings been reported in the literature. Figure 4(a) overlays
scalar-relativistic band structures at the level of DFT-
PBE, calculated using (L)APW+lo (red) and a tier 2
NAO basis set (blue). Figure 4(b) shows the segment
around the band gap on a five times larger scale. In the
physically important range of the valence bands and low-
lying conduction bands (up to 5 eV above the conduc-
tion band minimum [CBM]) both sets are visually prac-
tically indistinguishable. Some visible differences arise
only in the higher-energy bands (more than 7 eV above
the CBM). These differences are a consequence of the
more limited size of the NAO basis set (designed for ac-
curate representations of occupied orbitals and the re-
sulting density in DFT), compared to the overall larger
(L)APW+lo basis set. For any scenarios requiring quan-
titatively more precise higher-lying states, further in-
creasing the size of the NAO basis set used would be
an adequate approach.

Similarly, Figure 4(c) shows overlayed DFT-PBE band
structures for GaAs including SOC, overlaying NAO
n.s.c. band structures with APW+p1/2 s.c. band struc-
tures. Excellent visual agreement for the valence and low-
lying conduction bands shows that the n.s.c. SOC treat-
ment based on atomic ZORA yields results that are es-
sentially identical to the more sophisticated APW+p1/2

s.c. treatment. In particular, the hallmark SOC-related
features in the GaAs band structure are precisely repro-
duced. The fundamental gap of GaAs decreases by ap-
proximately 100 meV when applying SOC. This decrease
arises from the splitting of the SR Γ25′v state into SOC
Γ8v and Γ7v states, where Γ8v is the new VBM. This
splitting drives up the VBM (here defined to be the zero
of energy) and consequently reduces the relative energy
of the conduction band Γ6c, which itself is negligibly af-
fected by SOC due to its s-like nature.

In Table III, we provide quantitative values for the va-
lence and conduction band edges at the SR NAO, SR

NAO APW NAO APW APW+p1/2 NAO Exp.
PBE PBE PBE PBE PBE HSE06
SR SR SOC SOC SOC SOC

n.s.c. s.c. s.c. n.s.c.

ΓV 0.000 0.000 0.000 0.000 0.000 0.000 0.00
ΓSO N/A N/A -0.340 -0.329 -0.332 -0.323 -0.34
LV -1.139 -1.139 -1.150 -1.149 -1.148 -1.125 -1.30
XV -2.674 -2.672 -2.746 -2.742 -2.742 -2.988 -2.80

ΓC 0.527 0.526 0.418 0.417 0.416 1.210 1.52
LC 1.004 1.012 0.889 0.902 0.902 1.596 1.78
XC 1.467 1.481 1.353 1.371 1.371 1.964 2.00

TABLE III: Comparison of calculated single-particle
energy levels of GaAs with experimental quasi-particle
energy levels. Values are presented in units of eV. The

first column labels the associated high-symmetry
k-point, with a subscript of “V” denoting the valence
band and “C’ the conduction band. ΓSO denotes the

split-off valence band at Γ. The experimental
room-temperature lattice parameter65 of 5.6532 Å is

used. Experimental energy levels are taken from
Adachi80.

(L)APW+lo, NAO n.s.c. and APW+p1/2 s.c. levels of
theory for DFT-PBE at three high-symmetry k-points.
We place this comparison in the perspective of the quan-
titatively more accurate HSE06 density functional and
of experimentally obtained energy levels at the same k-
points (taken from Ref.80). For the SR energy levels,
agreement within 14 meV is observed; similarly, agree-
ment within 19 meV is observed for the two different
treatments of SOC. As is well known, the DFT-PBE
level of theory itself shows key differences to experi-
ment, which are partially alleviated by the more expen-
sive HSE06 treatment.

We end this section with a brief comparison of PBE-
calculated spin-orbit splittings to experimental values for
the valence bands of select compound semiconductors
(Table IV). General agreement between calculated and
experimental values to within 50 meV is observed for
lighter materials, consistent with earlier validation work
performed by Peralta et al.87 and Carrier and Wei.25. For
the heaviest materials considered (CdTe, HgSe, HgTe),
deviations on the order of 200 meV are observed. No-
tably, deviations between calculated and experimental
values for HgSe are similar in magnitude to the calcu-
lated spin-orbit splittings themselves. Similar disagree-
ment was observed for mercury chalcogenides on the LDA
level by Sakuma et al.26, who attributed the deviation to
a lack of many-body renormalization effects on the KS
level of theory. We will return to the question of choice
of level of theory (in the context of density functionals)
later in this paper.
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FIG. 2: Orbital shapes for the (a) 1s, (b) 2p, (c) 5p, and (d) 5d orbital(s) of a free Hg atom calculated with the
PW-LDA functional for various relativistic approximations. FHI-aims (tier 2) was used for non-relativistic and

scalar-relativistic (atomic ZORA) orbitals, and dftatom was used for Dirac orbitals.

C. Non-Self-Consistent vs. Self-Consistent
Treatment of Spin-Orbit Coupling: Trends Across

103 Materials

1. Quantifying Band Structure Differences: “Band Delta”

We first define a simple, quantitative metric for the
difference between two calculated band structures, called
“band delta” or ∆band in the following. ∆band is analo-
gous to a root mean square deviation, defined on the en-
ergy levels of two energy band structures {ε1,n[ki]} and
{ε2,n[ki]} within a given energy window [−εl,εu]:

∆band[−εl, εu] =

√√√√√√√√
1

NE

Nk∑
i=1

∑
εn,1≤εu
εn,2≤εu
εn,1≥−εl
εn,2≥−εl

(εn,1[ki]− εn,2[ki])2 .

(40)
Nk is the number of unique k-points calculated along
the k-path, NE is the total number of energy eigenval-

ues across all ki that both band structures predict to
lie within the energy window [−εl,εu], and ε1,n[ki] and
ε2,n[ki] are the energy eigenvalues for the two band struc-
tures being compared at the k-point ki. For example,
the SR valence bands of GaAs shown in Figure 4 have a
∆band[VBM-10 eV, VBM] value of 4 meV.

2. “Band Delta” Analysis of Valence Bands of 103
Compounds

Figure 5a and 5b show ∆band values between SR
band structures for 103 elemental and multi-atomic
compounds (Table II), calculated using NAO and
(L)APW+lo basis sets, respectively. Since the pur-
pose of this paper is to highlight differences of differ-
ent SOC treatments, we focus on the range of valence
bands [VBM-10 eV, VBM] and low-lying conduction
bands [CBM, CBM + 5 eV], i.e., the energy windows
for which both basis set types are expected to give the
most accurate answers. The ∆band values in Fig. 5 are
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FIG. 3: Energy levels of select orbitals of free Cd and
Hg atoms calculated with the PW-LDA functional64 for

various relativistic approximations. Red denotes
non-relativistic calculations, black denotes

scalar-relativistic calculations, and blue denotes
SOC/Dirac-based methods. Spin-orbit splittings are

listed in the inset table, and the energy levels are given
in Appendix A of the SM.

Structure NAO APW APW+p1/2 Exp. (Ref.)
PBE PBE PBE
SOC SOC SOC
n.s.c. s.c. s.c.

Ca 0.01 0.01 0.01 0.01 (Ref.81)
Si 0.05 0.05 0.05 0.04 (Ref.81)

ZnSb 0.03 0.03 0.03 0.09 (Ref.81)
GaNc 0.01 0.01 0.01 0.02 (Ref.80)
GaP 0.08 0.08 0.08 0.08-0.1 (Ref.80)
AlAs 0.30 0.30 0.30 0.28-0.33 (Ref.80)
GaAs 0.34 0.33 0.33 0.34 (Ref.80)
ZnSe 0.39 0.38 0.38 0.40 (Ref.81)
CdSb 0.07 0.07 0.07 0.06 (Ref.81)
CdSeb 0.39 0.37 0.38 0.42 (Ref.81)

InP 0.10 0.09 0.10 0.10-0.12 (Ref.80)
AlSb 0.70 0.64 0.66 0.67 (Ref.80)
ZnTe 0.93 0.83 0.89 0.91 (Ref.81)
CdTe 0.90 0.80 0.86 0.80 (Ref.81)
HgSe 0.25 0.22 0.23 0.38-0.40 (Refs.82–84)
HgTe 0.83 0.71 0.78 0.89-0.93 (Refs.85,86)
aDiamond structure.
bWurtzite structure.
cCubic zincblende structure.

TABLE IV: Comparison of PBE-calculated spin-orbit
splittings to experimental values for the valence band of
select compound semiconductors. Values are presented

in units of eV. Benchmark Settings were used.

ordered according to the maximum atomic number Zmax

within a given material, i.e., the principal quantity with
which relativistic effects are expected to increase.

In brief, at the SR level of theory, we find excellent
agreement between NAO and (L)APW+lo basis sets for
the valence and low-lying conduction bands of all com-
pounds. A maximum ∆band value of 20 meV in the
valence bands and 47 meV in the low-lying conduction
bands is observed for alkali halides containing three spe-
cific elements: the large alkali atoms K (Z=19), Rb
(Z=37), and Cs (Z=55). The reason why these spe-
cific elements stand out is unclear and could reside either
on the NAO side or on the (L)APW+lo side, or both.
(Regarding NAOs, we note that no special behavior or
uncertainties regarding alkali atoms were observed dur-
ing the construction of the NAO basis sets as reported
in Ref.38.) However, even the maximum ∆band for these
three outliers is so minor that it does not affect the con-
clusions regarding SOC, which is the main purpose of
this work.

In Figures 5c and 5d, an analogous comparison of
∆band is reported, but this time for NAO n.s.c. SOC
vs. APW+p1/2 s.c. SOC band structures. Remark-
ably, for materials with Zmax ≤ 50 (Sn), ∆band for SOC
band structures are similar to those seen in SR band
structures, i.e., extremely low. The “outlier materials”
containing K, Rb, and Cs also agree somewhat better
for valence bands between both methods. This suggests
that the changed basis set on the (L)APW+lo side may
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FIG. 4: A comparison of PBE band structures of GaAs calculated using FHI-aims (tier 2) and WIEN2k
(RKmax = 10) on (a) SR and (c) SOC levels of theory. Close-ups on the band edges for SR and SOC levels of theory

are shown in (b) and (d) respectively. The experimental room-temperature lattice parameter of 5.6532 Å is used.
Slight differences can be seen between NAO n.s.c. SOC and APW+p1/2 s.c. SOC at X and in the Γ→ L direction.

Band structures calculated using APW s.c. and APW+p1/2 s.c. SOC are visually indistinguishable.

have some accidental beneficial effect. (The NAO basis
set remains unchanged compared to the SR case.) As
shown in Figure 4 and Table III, the effects of SOC in
the Zmax ≤ 50 range can already be appreciable. How-
ever, they appear to be captured essentially exactly by
the n.s.c. approach to SOC. This justifies the use of the
computationally relatively cheap post-processing of a s.c.
SR calculation even for high-accuracy band structures at
least up to Zmax ≈ 50.

From Zmax = 51 (Sb) to Zmax = 80 (Hg), Fig. 5b shows
elevated but consistent ∆band values , up to ∆band=84
meV (Zmax = 71, Lu) for valence bands and 131 meV
(Zmax = 78, Pt) for low-lying conduction bands. Most
∆band lie between 30 meV and 70 meV. This implies that
n.s.c. SOC should safely serve to capture any qualita-
tively relevant band structure effects even in this range.

The associated uncertainty is well below the overall un-
certainty implied, e.g., by the use of DFT itself, and
potentially other approximations inherent in the Born-
Oppenheimer treatment of materials in most standard
computations.

For the heaviest materials in the benchmark set (Zmax

= 81 onwards), ∆band as large as 196 meV (Zmax = 81,
Bi) for valence bands and 312 meV (Zmax = 83, Po) for
low-lying conduction bands are observed. These elements
feature open 6p valence shells, i.e., the shell that is most
affected by SOC on a qualitative level (see Fig. 2 and the
associated discussion).

The quantitative band structure deviations associated
with 6p elements are thus significant (a fact well known in
the community24,25,88,89). However, as we show specifi-
cally for spin-orbit splittings below, even in this range the
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comparing NAO and (L)APW+lo basis sets and (c-d) for SOC calculations comparing NAO n.s.c. and APW+p1/2

s.c. handlings of SOC. Outliers have been labeled.

relative accuracy of n.s.c. SOC (compared to the overall
magnitude of SOC effects) is still within 11%, justifying
the use of n.s.c. SOC treatments for qualitative analyses
of band structures even for very heavy elements.

3. Spin-Orbit Splittings

Figure 6 shows spin-orbit splittings ∆SOC at specific
k points, calculated using NAO n.s.c., APW s.c., and
APW+p1/2 s.c. SOC and the PBE functional. Bench-
mark Settings are used. For each material in our band
structure benchmark set, we select the largest unambigu-
ous spin-orbit splitting of valence and conduction states
for inclusion in this study. Materials for which spin-orbit
splittings could not be unambiguously identified by vi-
sual inspection of band structures were omitted. The
spin-orbit splitting chosen for each material are provided
in Section 5 of the SM.

Figure 6a illustrates the expected strong dependence
of the magnitudes of spin-orbit splittings on Zmax. In
addition to the values of the splittings, the difference be-

tween the calculated NAO n.s.c. and APW+p1/2 s.c.
splittings is also shown. Interestingly, for the selected
splittings, the magnitude of the difference remains very
small compared to the overall spin-orbit splittings, in-
dicating relative deviations of the n.s.c. approach are
within 11% for the heaviest tested materials in this plot
(Tl, Pb, Pb chalcogenides, Bi, and Po).

For a more quantitative comparison, we turn to
Fig. 6b, which shows the difference between the expected
highest-accuracy APW+p1/2 s.c. spin-orbit splittings
and two different approximate approaches: NAO n.s.c.
spin-orbit splittings and APW s.c. spin-orbit splittings,
respectively, again as a function of Zmax. Qualitatively,
the observed deviations for these specific spin-orbit split-
tings are well in line with the broader comparison of
∆band values in Fig. 5. For materials exclusively con-
taining elements lighter than 6p, we find a maximum
deviation of 156 meV (HgS) between NAO n.s.c. and
APW+p1/2 s.c. spin-orbit splittings. This deviation is
within the margin of error expected due to usage of the
(g)KS level of theory, as previously shown in Table IV.

Interestingly, both NAO n.s.c. and APW s.c. spin-
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FIG. 6: NAO n.s.c., APW s.c., and APW+p1/2 s.c.
spin-orbit splittings for the benchmark set of 103
materials calculated using the PBE functional. In
subfigure (c), the y=x line corresponds to perfect

agreement between APW+p1/2 s.c. SOC and the other
two levels of theory.

Material VB NAO APW APW+p1/2 Exp.
Spin-Orbit SOC SOC SOC
Splitting n.s.c. s.c. s.c.

PbS Γ−
8 − Γ−

6 0.37 0.31 0.36 0.3a

PbS X−
7 −X−

6 0.33 0.28 0.32 0.2a

PbSe Γ−
8 − Γ−

6 0.69 0.60 0.67 0.6a, 0.75b

PbSe X−
7 −X−

6 0.51 0.43 0.49 0.5a, 0.55b

PbTe Γ−
8 − Γ−

6 1.18 1.00 1.12 1.15a, 1.10b

PbTe X−
7 −X−

6 0.77 0.63 0.72 0.9a , 1.10b

aTaken from Ref.90
bTaken from Ref.91

TABLE V: Comparison of PBE-calculated valence band
spin-orbit splittings for lead chalogenides. Values are

presented in units of eV. Benchmark Settings were used.

orbit splittings differ noticeably from APW+p1/2 s.c.
spin-orbit splittings for materials containing 6p elements,
suggesting that the dominant contribution is the purely
SR nature of the basis set considered and not the approx-
imation of non-self-consistency used in the calculation.
The deviations of the NAO n.s.c. splittings are actually
smaller than that of the APW s.c. splittings. Maximum
differences of 688 meV (APW s.c. SOC) and 435 meV
(NAO n.s.c. SOC) from APW+p1/2 s.c. SOC values
were observed for Bi (Zmax = 83.) Although this obser-
vation is difficult to generalize, it could be that the lo-
cation of the atomic ZORA p functions between the p1/2

and p3/2 radial functions (Figure 2) renders the atomic
ZORA p function a slightly better starting point for the
second-variational treatment without explicit p1/2 radial
functions.

We replot the splittings of Fig. 6a in Fig. 6c as a func-
tion of the APW+p1/2 s.c. splittings. This reveals an
interesting trend, namely that NAO n.s.c. SOC consis-
tently predicts larger values and APW s.c. SOC generally
predicts smaller values for the splittings than the refer-
ence approach, i.e., APW+p1/2 s.c. SOC. This trend
may be related to the difference of the underlying SR
core orbitals of both approaches.

The spin-orbit splittings reported in Figure 6 were cho-
sen by the criterion of being the largest spin-orbit split-
ting observed in the band structure for a material within
a [-10 eV, 10 eV] energy range around the VBM/Fermi
level. Band structures contain multiple spin-orbit split-
tings in this energy range, and the largest spin-orbit
splitting cleanly observable in a computed band struc-
ture may be difficult to observe in experimental spectra
(e.g. it may lie in the middle of the conduction band).
This was observed for the lead chalcogenides, for which
the spin-orbit splittings reported in Figure 6 lie within
the conduction band at Γ.

We provide the calculated valence band spin-orbit
splittings for the lead chalcogenides alongside experimen-
tal values in Table V. Notably smaller maximum devia-
tions were observed for VB splittings (60 meV for NAO
n.s.c., 120 meV for APW s.c.) compared to the maximum
deviations in the CB splitting at Γ for lead chalcogenides
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reported in Figure 6 (280 meV for NAO n.s.c., 390 meV
for APW s.c.). The improved agreement is consistent
with the trends reported in this paper, as the VB split-
tings arise primarily from the p orbitals of the lighter
chalcogenides (though with some contribution from Pb p
orbitals90) whereas the CB splitting at Γ are dominated
by the p orbitals of heavier lead. Calculated spin-orbit
splittings in Table V are generally in agreement with ex-
periment, with the exception of the X splitting for PbTe
where calculated values underestimate the splitting on
the order of 400 meV. Similar results were observed by
Svane et al.92 at the level of quasiparticle self-consistent
GW many-body theory, also employing a post-processed
non-self-consistent treatment of SOC.

Returning to the spin-orbit splittings reported in Fig-
ure 6, we end this section by putting the largest observed
quantitative deviations into proper context with a com-
parison of the computed band structures for Bi (Figure
7). The reported spin-orbit splitting occurs at the lowest-
lying conduction band at Γ and is marked by an arrow
in subfigure (c). The SOC-perturbed band structures on
the three levels of theory, though visually distinguishable,
all predict the same qualitative behavior. In the region
near the Fermi level (subfigures b and d) critical for mod-
eling electronic transport properties, the three levels of
theory are vertically shifted relative to one another, but
this translate to small lateral shifts in the Fermi surface in
practice. The lingering quantitative deviations induced
by usage of NAO n.s.c. versus APW+p1/2 s.c. SOC
are much smaller than the qualitative (and quantitative)
improvement relative to the original SR band structure.
Overall, Fig. 6c and 7 together visually reaffirm the im-
pression that the NAO n.s.c. SOC approximation to SOC
still captures SOC effects on the band structure correctly
even for the heaviest elements investigated here.

4. PBE versus HSE06

We next investigate the dependence of calculated SOC
effects on the underlying density functional, using the
PBE and HSE06 functionals as examples. The NAO
n.s.c. SOC approach with Tight Production Settings is
used. We consider spin-orbit splittings as well as changes
of the fundamental gap changes due to SOC,

∆Eg = ESOCg − ESRg . (41)

Here ESRg is the scalar-relativistic fundamental gap and

ESOCg is the spin-orbit-coupled fundamental gap. The
fundamental gaps and spin-orbit splittings calculated us-
ing Tight Production Settings for gapped materials are
listed in Section 6 of the SM. We omit Co and Fe from
the comparison of spin-orbit splittings at Tight Produc-
tion Settings due to difficulty converging the electronic
structures on the HSE06 level of theory.

Figure 8a shows spin-orbit splittings calculated with
the PBE and HSE06 functionals and supports the as-
sertion in the literature87 that different functionals yield

similar spin-orbit splittings. Most differences lie below
60 meV. A notable exception is Tl, with an absolute dif-
ference of 189 meV. We note that the spin-orbit splitting
chosen for Tl occurs for a high-lying state, and this devi-
ation is likely due to a combination of the basis set size
used for these calculations and the open-shell 6p orbital.

We next turn to SOC-induced changes of the band gap,
∆Eg, in Figure 8b. Only gapped materials are included
in the ∆Eg comparison. We note that SOC consistently
decreases the fundamental gap relative to the SR funda-
mental gap (∆Eg ≤ 0).

Regarding the dependence on the density functional
used, it is striking that there is no significant functional
dependence of the SOC-induced gap change, except for
a few materials that show surprisingly stark differences
between the PBE and HSE06 functional (Figure 8c). We
discuss these materials in more detail in the next subsec-
tion.

5. The Outliers: Ge, InAs, GaSb, InSb, HgS

The five “outlier” materials (Ge, InAs, GaSb, InSb,
HgS) in Fig. 8b are either predicted to be zero-band-
gap semiconductors (InAs, InSb, HgS) or have negligible
fundamental gaps of 0.13 eV or less (Ge, GaSb) in SR
DFT-PBE. In contrast, in SR HSE06, they have gaps of
0.35 eV or more.

To pinpoint the origin of this behavior, in Figure 9 we
consider the example of HgS, considered here in the (cu-
bic) zincblende β phase. The PBE functional predicts
SR HgS to be a zero-band-gap semiconductor at a lattice
parameter of 5.874 Å. SOC intermixes the valence and
conduction bands at Γ (Figure 9b), opening an indirect
fundamental gap of 38 meV. A similar behavior is ob-
served for Wien2k and APW+p1/2 SOC at Benchmark
Settings (Figure 9a). The HSE06 functional predicts a
separation of the valence and conduction band on the
SR level of theory, and application of SOC preserves the
direct nature of the fundamental gap (Figure 9c).

Analogous observations were made by Aguilera et al.27,
Svane et al.93, and Sakuma et al.26 in the context of
GW quasiparticle energy calculations. For mercury
chalcogenides26,93 and bismuth,27 (g)KS-DFT predicts
qualitatively incorrect features for SOC band structures.
It is necessary to include SOC self-consistently within the
GW method for these materials to achieve qualitatively
accurate results26,94,95.

VI. CONCLUSIONS

In this paper, we established a band structure
benchmark set and systematically examined the depen-
dence of SOC-related phenomena on basis sets (NAO,
(L)APW+lo, and (L)APW+lo including a p1/2 orbital),
handling of self-consistency within post-processed SOC
(n.s.c. and s.c.), and functionals (PBE and HSE06)
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SOC levels of theory. Close-ups near the Fermi level for SR and SOC levels of theory are shown in (b) and (d)

respectively. The midpoint of the spin-orbit splitting reported in the text is marked by an arrow in subfigure (c).
Benchmark Settings and the experimental room-temperature lattice parameter65 of 3.800 Å were used.

Scalar-relativistic band structures calculated using NAO and (L)APW+lo basis sets are visually indistinguishable.

across 103 materials and two different, high-accuracy all-
electron DFT codes (FHI-aims and Wien2k). At the
scalar-relativistic level of theory, near-complete agree-
ment between band structures calculated with the differ-
ent basis sets and codes is found. Regarding SOC effects,
we find quantitative agreement between all basis sets and
SOC approaches used up to the 5p block of the periodic
table. We provide these benchmark-quality band struc-
tures to the community via the NOMAD Repository45

citable by Ref.76 for WIEN2k-calculated band structures
and Ref.74 for FHI-aims-calculated band structures. We
also provide HSE06-calculated band structures calcu-
lated by FHI-aims, as well as the associated PBE band
structures, citable by Ref.75

For materials containing heavier atoms, divergences
between the methods using purely SR valence bands

(NAO n.s.c. and APW s.c. SOC) and APW+p1/2

n.s.c. SOC are observed. For the heaviest elements
(6p valence shell) spin-orbit splittings calculated by
APW s.c. SOC deviate from the APW+p1/2 refer-
ence by as much as 0.69 eV. For the NAO n.s.c. SOC
the discrepancy to APW+p1/2 in the 6p shell is much
smaller. We thus find qualitative agreement in PBE-
calculated band structures predicted by the APW+p1/2

s.c. SOC and NAO n.s.c. SOC treatments for all materi-
als investigated here. For large-scale calculations where
self-consistent SOC becomes computationally expensive,
non-self-consistent SOC offers a convenient and qualita-
tively accurate method for approximating the necessary
effects of spin-orbit coupling.

We also compared spin-orbit splittings and fundamen-
tal gap changes due to SOC calculated using the semi-
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19

local PBE and hybrid HSE06 functional. Close agree-
ment in these quantities was observed between exchange-
correlation functionals even for the heaviest materials.
However, this agreement requires qualitative agreement
in the underlying SR band structures, as energy levels
not properly gapped can intermix once SOC is applied.
The notion that different functionals yield similar SOC-
calculated quantities thus comes with a caveat: qual-
itatively accurate SR band structures are necessary to
ensure that physically meaningful results emerge from
second-variational SOC.

VII. ACKNOWLEDGEMENTS

W.P.H. would like to thank Matthias Scheffler and the
Fritz-Haber Institut Berlin for funding the early stages
of this work via a “fellowship to promote scientific coop-
eration with foreign countries.” This work was partially
supported by the LDRD Program of ORNL managed by
UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge
Leadership Computing Facility, which is a DOE Office
of Science User Facility supported under Contract DE-
AC05-00OR22725.

1 G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 95,
568 (1954).

2 G. Dresselhaus, Phys. Rev. 100, 580 (1955).
3 M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group

Theory: Application to the Physics of Condensed Matter
(Springer-Verlag Berlin Heidelberg, 2008).

4 D. Bercioux and P. Lucignano, Rep. Prog. Phys. 78,
106001 (2015).

5 M. Kepenekian, R. Robles, C. Katan, D. Sapori,
L. Pedesseau, and J. Even, ACS Nano 9, 11557 (2015).

6 G. Bihlmayer, O. Rader, and R. Winkler, New J. Phys.
17, 050202 (2015).

7 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802
(2005).

8 D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82,
1959 (2010).

9 W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).
10 A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
11 A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy,

Phys. Rev. B 53, 3764 (1996).
12 I. Opahle and P. M. Oppeneer, Phys. Rev. Lett. 90, 157001

(2003).
13 H. Eschrig, M. Richter, and I. Opahle, in Relativistic Elec-

tronic Structure Theory Part 2. Applications, edited by
P. Schwerdtfeger (2004) pp. 723–776.

14 DIRAC, a relativistic ab initio electronic struc-
ture program, Release DIRAC16 (2016), written by
H. J. Aa. Jensen, R. Bast, T. Saue, and L. Viss-
cher, with contributions from V. Bakken, K. G. Dyall,
S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen,
E. Faßhauer, T. Fleig, O. Fossgaard, A. S. P. Gomes,
T. Helgaker, J. Henriksson, M. Iliaš, Ch. R. Jacob,
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