
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Lattice softening in body-centered-cubic lithium-
magnesium alloys

I. S. Winter, T. Tsuru, and D. C. Chrzan
Phys. Rev. Materials 1, 033606 — Published 11 August 2017

DOI: 10.1103/PhysRevMaterials.1.033606

http://dx.doi.org/10.1103/PhysRevMaterials.1.033606


Lattice softening in body-centered-cubic lithium-magnesium

alloys

I. S. Winter,1, 2, ∗ T. Tsuru,3 and D. C. Chrzan1, 4, †

1Department of Materials Science and Engineering,

University of California, Berkeley, California 94720, USA

2Energy Technologies Area Division,

Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA

3Nuclear Science and Engineering Center, Japan Atomic Energy Agency,

2-4 Shirakata, Tokai-mura, Ibaraki, Japan

4Materials Sciences Division, Lawrence Berkeley

National Laboratory, Berkeley, California, 94720, USA

Abstract

A first-principles investigation of the influence of lattice softening on lithium-magnesium alloys

near the body-centered-cubic (BCC)/hexagonal close-packed (HCP) transition composition is pre-

sented. Results show that lithium-magnesium alloys display a softening of the shear modulus,

C11 − C12, and an acoustic phonon branch between the Γ and N high symmetry points, as the

composition approaches the stability limit for the BCC phase. This softening is accompanied by

an increase in the size of the dislocation core region. Ideal tensile strength calculations predict that

ordered phases of lithium-magnesium alloys are intrinsically brittle. Methods to make the alloys

more ductile are discussed, and the propensity for these alloys to display Gum-Metal-like behavior

is assessed.
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I. INTRODUCTION

The discovery of Gum Metal,1 a body-centered-cubic (BCC) Ti-Nb based super-elastic,

high-strength alloy has produced a great deal of interest within the metallurgical community.

These alloys display numerous anomalous and attractive features, but it is their yield near

their predicted ideal shear strength (ISS) that has generated the most controversy. In

the original paper on this alloy the observation of giant faults as well as a yield stress of

approximately 1.1 GPa (on the order of ISS) led to speculation that Gum Metal was a bulk

material with deformation determined by its ISS. It was suggested that metals having an

average valence electron number of 4.24 electrons/atom, a bond order of approximately 2.87

as well as a d-electron orbital energy level of 2.45 eV should form GumMetal after undergoing

severe plastic deformation. Further studies have not been able to reach a consensus regarding

the primary deformation mechanisms of Gum Metal. Evidence for dislocation mediated

plasticity has been observed in several cases,2,3 while other studies have proposed the novel

deformation behavior to be due to a martensitic transformation between the BCC phase, β,

and a face centered orthorhombic (FCO) phase, α′′, of Gum Metal.4–6

A theory has been developed that explains the observed deformation at near ISS as the

result of the shear modulus C ′ = (C11 − C12)/2 approaching zero as the composition is

driven to the BCC / hexagonal close-packed (HCP) transition.7 A particular form of elastic

anisotropy increases as this transition composition is neared. This has three major implica-

tions related to the deformation behavior of the material. First, the shear modulus along the

〈111〉 direction, G〈111〉, (typically the softest direction of shear in a BCC material) is propor-

tional to C ′. Since ISS is proportional to this shear modulus, the predicted ISS decreases as

the transition composition is approached. Second, the particular elastic anisotropy is linked

to how easily a dislocation can be pinned. As the BCC/HCP transition is neared the density

of pinning points needed to pin the dislocation at applied stresses equal to ISS decreases

markedly. This pinning of dislocations at ISS is a necessary condition for a bulk material to

deform at ISS. Third, the particular elastic anisotropy has been linked to the spreading of

dislocation cores.8 The spreading of dislocation cores generally reduces the mobility of the

dislocations, and can have a marked influence on plasticity.

Investigations of the phonon dispersion give further insight into a bulk material’s tendency

to deform via a shear instability. For BCC metals, the reduction in C ′ and thus the decrease
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in ISS is associated with a softening of the acoustic phonons along Γ → N .9 The softening of

these phonons is also associated with the Burgers path10 between the BCC and HCP phase.

It has been argued that the softening of these phonons can result in shear faults similar to

those seen in experiment.1,9

It is posited here that a material, that (1) displays a high value of the proper elastic

anisotropy parameter, K/G〈111〉 (K being the modulus governing dislocation line tension),

(2) exhibits the softening of phonons along Γ → N , and (3) is intrinsically ductile,7 is a

candidate for the formation of Gum-Metal-like behavior. If this is true, one should be able

to screen for new Gum Metal alloys by computing the elastic constants and ideal strength

of candidates.11

Here, Li-Mg alloys are suggested as an interesting candidate for Gum-Metal-like behavior.

The BCC phase is elastically unstable at ambient temperature and pressure in pure Mg.12

In addition, the binary phase diagram shows no intermetallics and a large region of BCC

stability.13 Previous studies have demonstrated that after severe plastic deformation, either

by equal-channel angular pressing14,15 or high pressure torsion,16 on a two phase (BCC

and HCP) 8 wt. % Li alloy super-plasticity is achieved at a relatively low temperature.

high pressure torsion was shown to induced super-plasticity at 323 K (0.37Tm), with the

strain rate sensitivity estimated to be 0.3, lower than 0.5, the value typically associated

with plastic deformation via grain boundary sliding. This suggests that other mechanisms

for plastic deformation could be operative. Interestingly, the application of high pressure

torsion on a Fe-Ni-Co-Ti alloy existing near a BCC to face-centered cubic (FCC) instability

results in Gum-Metal-like properties, such as an elastic limit of approximately 2% and a

yield strength of 2.3 GPa.17

First-principles investigations of a range of Li-Mg alloys have shown these alloys to have

an especially low value of C ′.18,19 Using the ratio of the bulk modulus to the isotropic shear

modulus (B/G, also known as the Pugh ratio) as a measure of ductility20 ordered compounds

of composition between 40 and 80 at. % Mg were assessed to be brittle despite their low

value for C ′. However, Mn, Fe, Co, Ni, Cl and Cu were shown to increase the assessed

ductility of the ordered 50 at. % B2 structure21 according to the Pugh ratio. This effect is

important, as it is unlikely that a brittle material will deform at ISS.7

In this paper Li-Mg alloys are evaluated as Gum Metal candidates via three criteria: in-

trinsic ductility, high elastic anisotropy, and softening of the acoustic phonons along Γ → N .
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In addition, an approach is described to model dislocation cores of random solid solutions

from first principles, and applied to a Li-Mg alloy near the BCC/HCP transition to bet-

ter assess the possible connection between this system and Gum Metal. Here, we show

through dislocation core radius and elastic anisotropy calculations that Li-Mg alloys display

remarkable similarities to Gum Metal, including the apparent formation of nanodisturbances

(nanoscale regions of local shear22) due to the interaction of widely spread cores of 〈111〉

type screw dislocations. However, investigation of the ideal tensile strength (ITS) of or-

dered structures of LiMg3 finds the ordered alloys to be intrinsically brittle. It is noted that

alloying with certain elements may help to increase the intrinsic ductility.

II. COMPUTATIONAL APPROACH

The elastic constants, dislocation core structure relaxation, and phonon frequency were

computed using VASP.23,24 Electron ion interactions were modeled using the projector aug-

mented wave method. The Perdew, Becke, and Ernzerhof Generalized Gradient Approxi-

mation exchange-correlation functional was employed.25 The Li valence states were chosen

to be 1s2s2p while for Mg the 2p and 3s states were considered to be the valence states.

Unless otherwise noted a plane-wave cutoff of 400 eV was used with a first order Methfessel-

Paxton scheme employing a smearing parameter of 0.1 eV. Ionic relaxations were performed

until the magnitudes of all residual forces were less than 5 meV/Å. The total energy was

converged to within 10−6 eV/atom for all calculations except the elastic constants, in which

case a convergence criterion of 10−8 ev/atom was used.

A. Dislocations

The dislocation core radius has no precise definition, but in effect describes the region

near a dislocation in which continuum anisotropic linear elasticity theory (henceforth “linear

elasticity theory”) is not valid. As no material can sustain a stress greater than its ISS, the

regions for which linear elasticity theory predicts a stress state greater than the ISS are

regions where linear elasticity theory is certainly incorrect. Accordingly, the dislocation

core radius can be defined as the furthest distance from the center of a dislocation at which

linear elasticity theory predicts the ISS.8 The dislocation core radius can then be estimated
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with an approximation of the ISS in terms of the elastic constants and the Burgers vector of a

dislocation using the Stroh formalism for a straight dislocation in an anisotropic medium.26

In general, the core radius of a straight dislocation oriented in the 〈uvw〉 direction will

change depending on the chosen shear plane, but in the case of the core radius for a 〈111〉

type screw dislocation in BCC the shear modulus oriented in this direction is isotropic with

respect to shear plane allowing for the core radius to be written as

rcore =
bK

2πfG〈111〉

, (1)

where b is the magnitude of the Burgers vector, K, the elastic modulus governing the

dislocation line tension, G〈111〉, the shear modulus along the 〈111〉 direction (shear is isotropic

along this direction in BCC), and f is a crystal structure dependent constant equal to

approximately 0.11 in the case of BCC.27,28 K and G〈111〉 can be expressed as

K =
√

(C11 − C12)C44

√

2C2
11 + 2C11C12 − 4C2

12 + 13C11C44 − 7C12C44 + 2C2
44

3(C11 − C12 + 4C44)(C11 + C12 + 2C44)
, (2)

G〈111〉 =
3C44(C11 − C12)

C11 − C12 + 4C44

. (3)

The ratio of K
G〈111〉

is a measure of elastic ansiotropy. It should be noted that this differs

from the Zener anisotropy, which is defined as A = 2C44

C11−C12
, though both of these parameters

show an increase in anisotropy with softening of C ′.

The screw dislocation core radius is thus inversely proportional to the square root of

the two shear moduli, C44 and C ′. The softening of either shear modulus will result in the

expansion of the dislocation core. Consequently, as a lattice instability is approached the

dislocation core radius will expand. This makes binary Li-Mg especially interesting as its

phase diagram shows only two stable phases (BCC and HCP) separated by a miscibility

gap.13 In addition, the BCC phase is elastically unstable at ambient pressures suggesting

that a lattice instability might be found as the concentration of magnesium is increased

within a solid solution alloy.

The dislocation core near the BCC/HCP transition was analyzed at the atomic scale

using a periodic supercell containing a 〈111〉 oriented screw dislocation dipole following the

approach of Daw.29 In this approach, elasticity theory is used to define the initial positions for
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an atomic scale study of the dislocation cores. The distortion tensor of the periodic supercell

is found by minimizing the elastic energy subject to the topological constraints imposed by

the dislocations. The δ-function singularity in the dislocation density is approximated as

a Gaussian distribution with a smearing of b/5. The distortion in the cell vectors due to

the introduction of the dislocation quadrupole is determined as done by Lehto and Öberg.30

The initial atomic displacements are then found by integrating the distortion tensor. These

initial configurations are then relaxed using DFT in order to compute the dislocation core

structures.

FIG. 1. Illustration of periodic dislocation quadrupole setup for a random alloy. The colors in the

plot represent the two types of atoms at each site. The top layer is visible, the bottom layer is

hidden by the first layer. Mg-Mg atomic columns are blue, Li-Li are purple, Li-Mg (top-bottom) are

orange, and Mg-Li columns are black. The green dots correspond to the position of the singularity

of the screw dislocations with a Burgers vector going into the page and the red dots represent the

singularity positions of the screw dislocations with a Burgers vector coming out of the page.

For dislocation core structure calculations an initial cell consisting of 135 atoms was

generated from elasticity theory. A 270 atom unit cell was then created by translating the

unit cell by one lattice vector along [111]. The initial 270 atoms were then shuffled in order

to create a disordered alloy at the desired composition (see FIG. 1). The cell was doubled

along the line direction in order to better represent a random alloy. Ideally, the cell should

be made thicker, but then the calculation becomes prohibitive. Atomic positions, but not

the lattice vectors, were then relaxed using a 2 × 1 × 4 Γ-centered grid. Analysis of the

dislocation core structure was carried out using differential displacement maps as developed

by Vitek et al.31 Compositional effects on the differential displacement map were minimized

by relaxing two cells of identical arrangement of atom types, one cell with the dislocation

quadrupole and the other with no dislocations. Displacements in the random alloy were

subtracted from displacements in the quadrupole configuration to yield displacements due

to the dislocations.
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B. Elastic Constants

The elastic constants were calculated using a 16 atom special quasirandom structure

(SQS) generated using the alloy theoretic automated toolkit.32 Both pairs and triplet clus-

ters were considered within a range of 3a0, with a0 being the lattice parameter of the crystal.

Convergence tests were completed with respect to the number of k-points and varied de-

pending on composition. However values were within the range of 1400 - 2000 points per

reciprocal atom. The elastic constants were calculated by performing 4 deformations of

varying magnitude for the six independent strains and after obtaining the stresses from

VASP via the Hellmann-Feynmann theorem performing a linear fit.33. As the SQS cell is

not necessarily cubic the elastic tensor was symmetrized following the method of Tasnádi et

al.34

C. Phonons

As noted, the reduction in the value of C ′ is associated with the softening of acoustic

phonon modes. However, the computational cost of an accurate calculation of the phonon

dispersion of a binary solid solution such as Li-Mg using density functional theory (DFT)

is prohibitive. This is due in part to the size of the unit cell needed to obtain a statistically

representative distribution of atoms and the lack of any point symmetry in a random so-

lution. However, an approximate phonon dispersion can be calculated using the Born-von

Kármán constants.35,36 In this case only nearest- and next-nearest-neighbor contributions to

the dynamical matrix are included, resulting in four parameters (α1, α2, β2, and γ1) that

can be determined from the elastic constants as well as the direct calculation of one phonon

mode (in this case the H-phonon). The relation between the Born-von Kármán constants,

elastic constants and H-phonon frequency can be written as37

2(α1 + α2) = a0C11, (4a)

2(α1 + β2) = a0C44, (4b)

4γ1 = a0(C12 + C44), (4c)

16α1 = Mω2
H , (4d)
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where a0 is the lattice parameter, M is the atomic mass, and ωH is the H-phonon frequency.

For the relation between the dynamical matrix and the Born-von Kármán constants see the

appendix (VII). The H-phonon frequency was calculated following the approach outlined

by Ho et al.38 The frequency was computed by determining the curvature of the energy

according to equation 5 where Uq is the amplitude of the wave, ∆Eq the change in energy

per atom as a result of the phonon, and M is the average atomic mass of the system

∆Eq =
1

2
Mω2

q
U2
q
. (5)

From the phonon dispersion not only can the dynamical stability of the material be

determined, but the behavior of the Γ → N phonons can be considered. In BCC the

N point corresponds to the 〈1
2

1

2
0〉 direction in reciprocal space.39 The softening of these

phonons9 is associated with the transformation from BCC to HCP via the Burgers path10

and is an indication of proximity to the BCC/HCP transition.

The H-phonon frequency was calculated by generating four random, symmetrically in-

equivalent configurations of a 16 atom unit cell at the desired composition. The H-phonon

displacements were then applied to each cell with the amplitude of displacement ranging

from -1% to 1% of the lattice parameter. As these cells break cubic symmetry the phonon

frequency along the [100], [010], and [001] directions was calculated and then averaged to

obtain the H-phonon frequency. At each composition the averaged frequencies of all four

configurations were within 2% of one another. Calculations were done using a 10× 10× 10

Γ-centered K-point grid with a plane-wave cutoff energy of 500 eV.

D. Ideal Tensile Strength

For a material to be considered a viable candidate to plastically deform in bulk near

its ideal strength it should be intrinsically ductile. Intrinsic ductility can be assessed by

simulating a tensile load in a given direction and determining whether the crystal eventually

reaches a shear instability or fails via cleavage. In the case of BCC materials it has been

shown that the the 〈100〉 directions are the weakest with respect to tensile loading.40,41

For an anisotropic material in a stressed state the elastic stability can be found using the

condition
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λijklδǫijδǫkl ≥ 0, (6)

with λijkl being the symmetric part of the Wallace tensor.42,43 Taking into account that

λijkl must be positive definite for elastic stability, in the case of tensile strain along [001]

the following stability conditions must be maintained for a body centered tetragonal (BCT)

structure.

(C33 + σ)(C11 + C22) > (C13 −
σ

2
)2, (7a)

C11 − C12 > 0, (7b)

C66 > 0, (7c)

C44 +
σ

2
> 0. (7d)

Condition 7a corresponds to failure by cleavage while equations 7b-7d correspond to shear in-

stabilities. Equation 7c is particularly important for the intrinsically ductile BCC transition

metals (Ta, V, and Nb) as it represents the shear instability that initiates the orthorhom-

bic path.44 Using the FCT reference frame this corresponds to the shear stability condition

C11 − C12 introduced by Hill and Milstein.45

ITS calculations were performed by applying a strain along [001] and relaxing the other

lattice vectors such that all stresses, using the Hellman-Feynmann theorem, apart from σ33

were below 0.05 GPa. The elastic constants at each strain were then determined using a

21× 21× 21 and 16× 16× 22 Monkhorst-Pack grid in the case of the D03 and L60 ordered

structures respectively.

III. RESULTS

In what follows, results for the three criteria for Gum-Metal-like behavior are described.

The section begins with a presentation on the relationship between lattice softening and

composition and its effects on the dislocation core and elastic anisotropy. This is followed

by an analysis of the effect of composition on the softening of the acoustic phonon modes

associated with the Burgers transformation path, and ends with an assessment of LiMg

ordered structures’ intrinsic ductility.
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A. Elasticity Theory

FIG. 2 shows several noticeable trends in ISS, elastic moduli, as well as core radius of an

〈111〉 type screw dislocation. Li-Mg alloys appear to show a high ratio of the Young’s mod-

ulus to shear modulus along 〈111〉, which is consistent with how Ti-V is found to behave.7

As FIG. 2c illustrates, this behavior can be tied to the anisotropy parameter K/G〈111〉. The

anisotropy parameter is also directly proportional to the dimensionless pinning length, l∗c .
7

This parameter determines the average obstacle spacing necessary for a dislocation to be

pinned.

The ISS estimated from the elastic constants (0.11G〈111〉) appears to decrease with an

increase in anisotropy. The ISS can be estimated as approximately 0.8 - 1.0 GPa at the

experimental BCC/HCP transition (approximately 71 at. % Mg).13 The resulting core

radius predicted from elasticity theory is abnormally large. For reference the core radius

of tungsten is approximately 1.45b while that of a known Gum Metal, Ti36Nb2Ta3Zr0.3O

(wt.%), is 1.51b.46 It is important to note that although the core radius of a 〈111〉 screw

dislocation in Gum Metal does not appear to be that different than that of tungsten, because

of the fact that Gum Metal exists near an elastic instability, composition fluctuations can

lead to large dislocation core regions. This is illustrated in FIG. 2c, where the elastic

anisotropy as well as the core radius increase rapidly near the elastic instability.

B. Dislocation Core Structure

The dislocation core structure as calculated from DFT at 68.75 at. % Mg of a quadrupole

configuration for 〈111〉 type screw dislocations as shown in FIG. 3 displays a large degree

of core spreading on the (111) plane in agreement with the results from elasticity theory.

This particular composition was chosen as it is near to the experimental BCC/HCP phase

transition at room temperature. Of particular interest are the large lateral displacements

of atomic columns shown in FIG. 3b. The displacements become so large in areas that

localized shearing of the crystal appears to have occurred. The structure is reminiscent of

the nanodisturbances detected in Gum Metal.22 The localized shearing occurs in the region

between dislocation cores highlighted in FIG. 3a. This same behavior has been identified in

other investigations of Ti-V8 and BCC Mg at high pressure.47 It appears to suggest that the
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FIG. 2. The ISS is estimated from the elastic constants of Li-Mg at various compositions (2a).

A reduction in the ISS corresponds to a high degree of anisotropy between the Young’s modulus

and shear modulus along different axes (2b). A measure for the anisotropy of the crystal K/G〈111〉

is shown to have a significant affect on the core radius (2c). The core radius at all compositions

studied is higher than that predicted for Gum Metal.

formation of these nanodisturbance-like structures is a result of dislocation core interaction,

possibly due to the overlap of spread dislocation cores.
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a)

b)

FIG. 3. The dislocation core (3a) shows a large degree of spreading. Along the vertical axis the

region between dislocations appears to show large displacements (orange oval). The projection of

atomic columns in a quadrupolar dislocation configuration onto the (111) plane is shown in 3b.

All displacements due to compositional effects have been removed from the projections, meaning

displacements shown are a result of dislocation interactions. Large lateral displacements are seen

in the projection. For reference two straight black lines are drawn. Lateral shifts are especially

large in the area within the yellow oval.

C. Lattice Dynamics

As the HCP phase is approached (Mg content is increased) FIG. 4 shows the softening of

the Γ → N branch. Specifically it can be shown that the lattice shuffling resulting from the

N-phonon coupled with a near 〈11̄2〉{111} (approximately 13◦ from 〈11̄2〉 on a {111} plane)

shear transforms the BCC phase to HCP.9 The orientation of the shear associated with this
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a)

b)

c)

d)

FIG. 4. The phonon dispersion is plotted for increasing compositions of Mg from 68.75 at. % (4a)

75 at. % (4b) 87.5 at. % (4c) and 93.75 at. % (4d). The formation of soft phonons along Γ → N

can clearly be seen with increasing magnesium content.

transformation is approximately the same as the large shear faults that have been reported

in Gum Metal.1 In addition, the N-phonon appears lower than the phonon associated with

the transformation of BCC to the hexagonal ω phase,37 which corresponds to the lowest

frequency between the P and H points in the dispersion (qω ≈ (1
3
, 1

3
, 2

3
)). It seems then

unlikely from these observations that a transformation path other than the Burgers path

would be preferred.
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D. Ideal Tensile Behavior

For a material to be a possible candidate for Gum Metal it should be intrinsically ductile.7

ITS calculations were carried out on two BCC-type ordered structures near the BCC/HCP

transition (D03 and L60) to approximate the behavior of a Li-Mg alloy at 75 at. % Mg.

These two structures were used to approximate a random alloy at this composition. The D03

structure can be defined in terms of a primitive unit cell of the face-centered cubic lattice

with four atoms of the form

a =
a0
2
(e2 + e3), (8a)

b =
a0
2
(e1 + e3), (8b)

c =
a0
2
(e1 + e2), (8c)

τ
Li
1 = 0, (8d)

τ
Mg
2 =

1

4
a+

1

4
b+

1

4
c, (8e)

τ
Mg
3 =

1

2
a+

1

2
b+

1

2
c, (8f)

τ
Mg
4 =

3

4
a+

3

4
b+

3

4
c. (8g)

L60 is related to the L12 structure as BCC is related to FCC along the Bain path. According

to FIG. 5 both the D03 and L60 structures are intrinsically brittle, with the two structures

displaying cleavage failure at approximately 9% and 8% strain respectively.

In addition, the energy- and stress-strain curves for the two ordered structures are dis-

played in FIGs. 6 and 7. In the case of L60 failure in cleavage is in keeping with the behavior

of the energy and stress curves for the tetragonal path, which show the stabilization of FCC

at approximately 25− 30% strain (see FIG. 7). The material is preferentially following the

Bain transformation path. Since FCC is shown from the energy curve to be metastable, a

maximum stress must exist between the FCC and BCC phases, meaning that the material

fails via cleavage; it is intrinsically brittle. This is in agreement with the estimate of the

Pugh ratio.18

Viewing FIGs. 6b and 7b it should be noted that the stress-strain curves obtained

directly from VASP using the Hellmann-Feynman theorem are not smooth. The scattering

of the stress values is likely a result of the low strength of the two ordered Li-Mg structures
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considered in this work, meaning cutoff stresses used in the minimization routine for the

ideal strength lower than 0.05 GPa would likely be needed to smoothen the curve further.

In order to gain a better understanding of the error in the stress calculations, stress was

also estimated directly from the energy-strain curves shown in FIGs. 6a and 7a. The

stress was estimated by fitting the energy-strain curves to a third degree spline function and

then taking the derivative of energy per unit volume with respect to strain. The difference

in stress between the two approaches was calculated to be 0.1 GPa on average for both

structures considered with maximum differences in stress being approximately 0.2 GPa for

both structures. While this difference is sizable compared to the ITS of the D03 and L60

structures, both approaches show the local maximum and minimum stresses appearing at

approximately the same strains.
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FIG. 5. The elastic stability criteria plotted as a function of strain for the D03 and L60 structures

at a composition of 75 at. % Mg (FIGs. 5a and 5b respectively). The plot shows that a failure via

cleavage occurs at a strain of approximately 9% for the D03 structure and a strain of 8% for L60.
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FIG. 6. The stress-strain and energy-strain relation for the D03 structure under a 〈100〉 type tensile

load. Only the tetragonal path is explored in this simulation. In FIG. 6b “Hellmann-Feynman”

refers to the stresses obtained directly from VASP using the Hellman-Feynman theorem and “Fitted

from Energy” refers to the stresses obtained by taking the derivative of energy per unit volume

with respect to strain.
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FIG. 7. The stress-strain and energy-strain relation for the L60 structure under a 〈100〉 type tensile

load. Only the tetragonal path is explored in this simulation. The formation of the FCC phase

can be seen at a strain of approximately 25− 30%. This corresponds to the ordered L12 structure.

In FIG. 7b “Hellmann-Feynman” refers to the stresses obtained directly from VASP using the

Hellman-Feynman theorem and “Fitted from Energy” refers to the stresses obtained by taking the

derivative of energy per unit volume with respect to strain.

IV. DISCUSSION

From the first-principles ITS calculations it is not clear if the compositions of Li-Mg

studied so far will behave as Gum Metal. This is due to the intrinsically brittle behavior

seen for the ordered phases. Interestingly, Li et al. found this to be the case for TiV

alloys using the virtual crystal approximation7 even at the special number of 4.24 valence

electrons per atom. An initial guess at the origin of the brittle behavior comes from viewing

the elastic constants. Due to symmetry, BCC crystals’ ideal shear and tensile strengths can

be approximated from their elastic constants (σISS ≈ 0.11G〈111〉 and σITS ≈ 0.08Y〈100〉),
27,28
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assuming that no shear instability takes place along the deformation path. By viewing

intrinsic ductility as a competition between these two strengths, one should then be able to

estimate the intrinsic ductility of a crystal by examining the ratio
G〈111〉

Y〈100〉
. With this in mind,

Table I shows
G〈111〉

Y〈100〉
to be near 0.5 for all considered compositions of Li-Mg. This is not only

higher than the intrinsically ductile Nb and V whose values are approximately 0.15-0.25,

but other intrinsically brittle BCC metals such as Mo and W with ratios of roughly 0.35 -

0.40.44 However, this analysis appears to only work for BCC materials that see an elastic

instability as a result of C66 → 0 for a 〈100〉 tensile load. For instance, a Ti3Nb Gum Metal

approximant is calculated to have
G〈111〉

Y〈100〉
= 0.42 and the crystal is predicted to be intrinsically

ductile as a result of C ′ → 0.48 Looking at the ratio of moduli in terms of the cubic elastic

constants, which is written as

TABLE I. Elastic constants of Li-Mg alloys as a function of composition. The elastic constants are

written in units of GPa.

Composition [at. % Mg] C11 C12 C44
G〈111〉

Y〈100〉

0 17.9 13.2 11.7 0.478

50 39.9 18.8 28.6 0.479

68.75 39.8 25.7 34.3 0.488

75 38.7 27.3 37.8 0.493

87.5 36.5 31.1 29.8 0.491

93.75 35.0 32.8 29.9 0.496

100 34.0 36.1 28.4 0.504

G〈111〉

Y〈100〉

=
3(C11 + C12)C44

(C11 + 2C12)(C11 − C12 + 4C44)
, (9)

shows that for C11 = C12 the ratio becomes exactly 1

2
. While C ′ is soft, as FIG. 5 shows,

with the application of a uniaxial stress C ′ actually increases until failure occurs. This

suggests the importance of higher-order elastic constants in determining the failure mode of

the material.49,50

For the orthorhombic path to be activated in Li-Mg alloys (for intrinsic ductility to be

obtained), the shear instability that initiates the orthorhombic path must be designed to
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occur before cleavage can occur. Within the FCO reference frame the condition C11−C12 < 0

must occur sooner in the tensile load. The tensile loading of a BCC crystal can result in two

possible sequences of stress-free states. The BCC→FCC→BCT ordering is consistent with

the tensile path while the BCC→BCT→FCC corresponds to an orthorhombic path.44,51 It

follows that if the FCC phase could be made elastically unstable then the orthorhombic path

would be preferred, and intrinsic ductility could be achieved. This approach, however, is not

perfect, as illustrated by ITS calculations of the D03 structure (FIG. 6), in which case the

FCC phase is not associated with a local energy minimum yet the BCC phase is still found

to be intrinsically brittle. Another possible approach involves alloying Li-Mg alloys with

the elements that were previously found to increase the Pugh ratio for an ordered Li-Mg

compound: Mn, Fe, Co, Ni, Cl, and Cu.21 It is also possible that Li-Mg alloys undergo a

brittle-ductile transition at some point below room temperature, which would negate the

need to perform any alloying in order to achieve intrinsic ductility.

If Li-Mg alloys can be tuned to be intrinsically ductile, then they become an intriguing

structural alloy. Assuming that yield stresses near 40 − 50% of the ISS could be reached,

at a composition of 68.75 at. % Mg a specific strength of roughly 290-440 MPa cm3 g−1

would be possible. In comparison, the specific strength of Gum Metal is approximately 194

MPa cm3 g−1,1 while high-specific-strength steels (HSSS52) have been able to achieve specific

strengths of approximately 190 MPa cm3 g−1.

V. CONCLUSION

A first-principles investigation of the mechanical properties of a range of Li-Mg alloys

is presented. Analysis of the elastic constants of solid solutions using special quasirandom

structures shows many similarities in the behavior of the elastic constants of Li-Mg with

those of Gum Metal as the BCC/HCP transition composition is approached. A large elastic

anisotropy due to the softening of the modulus C ′ results in a large nondimensional disloca-

tion pinning length as well as large dislocation core radii. Associated with this behavior is

the emergence of large shear faults in the dislocation cores. As the material is found to be

intrinsically brittle at all compositions studied more work is needed to make the structure

intrinsically ductile.
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VII. APPENDIX

For a given reciprocal vector, q = 2π
a0
(p1, p2, p3), the dynamical matrix can be defined as

follows

Φ11(q) = 8α1[1− cos(πp1) cos(πp2) cos(πp3)] + 2α2[1− cos(2πp1)] + 2β2[2− cos(2πp2)− cos(2πp3)],

(10a)

Φ22(q) = 8α1[1− cos(πp2) cos(πp3) cos(πp1)] + 2α2[1− cos(2πp2)] + 2β2[2− cos(2πp3)− cos(2πp1)],

(10b)

Φ33(q) = 8α1[1− cos(πp3) cos(πp1) cos(πp2)] + 2α2[1− cos(2πp3)] + 2β2[2− cos(2πp1)− cos(2πp2)],

(10c)

Φ12(q) = 8γ1 sin(πp1) sin(πp2) sin(πp3), (10d)

Φ23(q) = 8γ1 sin(πp2) sin(πp3) sin(πp1), (10e)

Φ13(q) = 8γ1 sin(πp3) sin(πp1) sin(πp2). (10f)
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