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This paper reports a generalized theory of the smallest diameter of metallic nanorods from 
physical vapor deposition. The generalization incorporates the effects of nanorod separation 
and those of van der Waals interactions on geometrical shadowing. The generalized theory 
relies on approximations to be in closed form. Numerical solutions of governing equations with 
no approximations verify the accuracy of the closed-form theory. Further, experiments of 
physical vapor deposition validate the theory in terms of the diameter as a function of the 
separation of nanorods. In contrast, the previous theory for idealized geometrical shadowing 
[Phys. Rev. Lett. 110, 136102 (2013)] excludes any dependence on nanorod separation and 
predicts the diameter to be about 1/2 to 1/3 of what the generalized theory does. 
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I. INTRODUCTION 

The diameter of metallic nanorods from physical 
vapor deposition (PVD) is a critical quantity that 
defines their functionalities, such as mechanical 
strength [1-3] and sensitivity in surface enhanced 
Raman spectroscopy [4-6]. Conventional PVD 
processes typically lead to the growth of thin films [7, 
8]. Under glancing angle deposition (GLAD), PVD 
processes result in the growth of nanorods [9, 10]. As 
atoms arrive on a substrate with a glancing angle that 
is close to 90o, they land at peaks and avoid valleys 
due to geometrical shadowing effects. As an effect of 
positive feedback, the peaks grow into nanorods due 
to geometrical shadowing. In the processes of nanorod 
growth, multiple-layer surface steps form and impose 
three-dimensional (3D) Ehrlich-Schwoebel (ES) 
barriers [11, 12] that are larger than the conventional 
ES barriers from monolayer surface steps [13, 14].  

The diameter of nanorods is the smallest when 
the 3D ES barriers dominate or equivalently when 
multiple-layer surface steps bound the top of nanorods 
[15] under a given geometrical shadowing condition. 
The geometrical shadowing goes to complete, or ideal, 
as the incidence angle approaches 90o. Under this 
idealized condition, all atoms will be deposited on the 
top surface of nanorods with none reaching their side 
surfaces, independent of nanorod separation. For such 
idealized geometrical shadowing, we recently reported 
a closed-form theory of the smallest diameter [15].  

Going beyond the idealized shadowing condition, 
we here report a generalized theory, in closed-form, 
with non-ideal shadowing conditions and with the 
effects of van der Waals (vdW) interactions. Figure 1 
schematically illustrates the generalization of a 
nanorod growth process. The direct deposition on the 
top results in a diameter of the core (orange in the 
figure), which is governed by our previous theory [15]. 
The deposition on the sides gives the thickness of the 
shell (tan in Fig. 1), and it depends on the separation 
of nanorods. Further, due to vdW interactions, the 
atomic flux on the top is greater than on the side of 
nanorods, as indicated by the denser flux lines in Fig. 
1.  

 
FIG. 1. Schematic of nanorod growth, showing atomic 
flux (green lines) in a vertical cross-section that cuts 
through the center of three nanorods in the front.  
 

Conceptually, the top surface of a nanorod 
advances at a rate that is higher than the deposition 
rate because of the denser flux lines; the amount of 
diffusion off the top surface and down the sides is 
small as shown previously [15]. Further, under 
quasi-steady state growth, the diameter of the 
nanorods is dictated by (1) its vertical growth rate, 
which is the rate that its top surface advances; and (2) 
the total amount of atoms it receives, which depends 
on the nanorod separation.   

In the following, we first derive the closed-form 
theory of the flux on the top of nanorods to account 
for the vdW interactions, then use this theory to derive 
a generalized theory of nanorod diameter that is also 
in closed-form. Following the formulation of the 
generalized theory, we carry out numerical 
calculations to verify the theory and PVD experiments 
to validate the theory.  

II. THEORY AND VERIFICATION 

As the first step of formulating the expression of 
effective deposition flux to account for the vdW 
interactions, we consider a system consisting of an 
incoming atom and a large flat substrate. As shown in 
Fig. 2, an incoming atom on the ݖ-ݔ plane has a 
velocity of magnitude ଴ܸ and a direction that forms 
angle ߠ  with ݖ . Due to vdW interactions, its 
trajectory deviates from the straight broken line to the 
curved solid line. Although the vdW interaction 
between two atoms decays with the 6th power of 
distance, the interaction between an atom and a large 
flat surface (or semi-infinite solid) decays with the 3rd 
power of distance. For the system in Fig. 2, the 
interaction energy ܧሺݖሻ  is െݖ/ܥଷ  [16-18]. For 
copper-copper interactions, as the prototype in this 
paper, a typical value of ܥ is 2.1 ൈ 10ିଷ eV · nmଷ 
[19]. In PVD processes, the distance between substrate 
and source is on the order of a fraction of a meter. The 
interaction energy at such a large distance is 
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practically zero. As the atom approaches the surface, 
energy conservation leads to the following equation of 
motion:  

ௗ௭ௗ௫ ൌ െ ට మ಴೘೥యା௏బమ ୡ୭ୱమ ఏ௏బ ୱ୧୬ ఏ          (1) 

where ݉ and ଴ܸ are the mass and the initial speed 
of the atom, respectively.  

 
FIG. 2. Schematic of trajectory deviation of an 
incoming atom toward a flat substrate by ∆, due to 
vdW interactions. 
 

In order to achieve a closed-form theory, we 
consider two segments of the trajectory using 
approximations. In one segment, the initial kinetic 
energy is relatively larger in magnitude than the vdW 
interaction energy. As an approximation, the equation 
becomes: ௗ௫ௗ௭ ൌ െ tan ߠ ቀ1 െ ஼௠௭య௏బమ ୡ୭ୱమ ఏቁ    (2) 

In absence of the vdW interactions, the equation of 
motion is: ௗ௫ௗ௭ ൌ െ tan  (3)          ߠ

The lateral distance traveled by the atom according to 
Eq. (2) is smaller than that according to Eq. (3) by 
amount ∆1, which is also shown in Fig. 2. From Eqs. 
(2) and (3), we have: ௗ∆ௗ௭ ൌ ஼ ୱ୧୬ ఏ௠௭య௏బమ ୡ୭ୱయ ఏ              (4) 

As the atom arrives at a vertical distance ݖ௖,  ∆ଵൌ ஼ ୱ୧୬ ఏଶ௠௭೎మ௏బమ ୡ୭ୱయ ఏ             (5) 

In the other segment of the trajectory, the vdW 
interaction energy is larger than the initial kinetic 
energy in magnitude. As an approximation, Eq. (1) 
becomes: ௗ௭ௗ௫ ൌ െ ଵ௏బ ୱ୧୬ ఏ ට ଶ஼௠௭య      (6) 

As the atom travels from vertical position ݖ௖  to ݖ ൌ 0, the lateral distance it travels according to Eq. 
(6) is smaller than that according to Eq. (3) by amount ∆ଶ, as shown in Fig. 2. ∆ଶൌ ௖ݖ tan ߠ െ ଶହ ଴ܸ sin ߠ  ௖ఱమට௠ଶ஼     (7)ݖ

We choose ݖ௖  to be the point when the vdW 
interaction energy and the initial kinetic energy due to 
vertical motion (that is, ݉ ଴ܸଶ cosଶ ߠ /2) are equal in 
magnitude. As a result of this choice,  ݖ௖ ൌ ቀ ଶ஼௠௏బమ ୡ୭ୱమ ఏቁభయ        (8) 

The sum of ∆ଵ and ∆ଶ approximately describes 
how much the trajectory of an atom is deflected: ∆ൌ ∆ଵ ൅ ∆ଶൌ ଵ଻ଶ଴ ௖ݖ tan  (9)       ߠ

 
FIG. 3. Comparison of closed-form theory of Eq. (9) 
with numerical solutions of Eq. (1), as a function of 
angle ߠ and initial kinetic energy of the incoming 
atom. 
 

To verify the approximate expression of Eq. (9), 
we also numerically solve Eq. (1). As shown in Fig. 3, 
the approximate expression is accurate for glancing 
angles beyond 80o and for typical kinetic energies 
around 0.2 eV [16, 20-22]; below 80o, the deflection 
becomes unimportantly small. It is important to note 
that the deflection can be as large as 100 nm, which is 
comparable to typical diameters and separations of 
nanorods and is therefore consequential for the growth 
of nanorods.  

Having established the closed-form theory of 
deflection on a flat substrate and verified its accuracy, 
we next extend the theory to more realistic cases of 
nanorods in three dimensions. To obtain a closed-form 
theory, we consider a tall and isolated nanorod, as 
shown in Fig. 4. For this system, the vdW interaction 
energy ܧ is primarily from the interaction between 
the incoming atom and the nanorod, as opposed to 
between the nanorod and the substrate, and is given by:
,ݔሺܧ   ,ݕ ሻݖ ൌ ױ ିఘ஼ల࢘ల ܹ݀        (10) 

where ݎ is the distance between the incoming atom 
and the volume element ܹ݀ of the nanorod, and ߩ 
is the density of the nanorod. The interaction constant ܥ଺  scales with ܥ , and for face-centered-cubic 
materials, ܥߩ଺ ൌ  .ߨ/ܥ6
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FIG. 4. Schematic of the trajectory deviation of an 
incoming atom toward a nanorod, due to vdW 
interactions, from two initial locations. 
 

Based on the principle of energy conservation, 
we have an equation of motion similar to Eq. (1). In 
order to achieve a closed-form theory, we note that the 
vdW interactions are the most effective only when the 
atom is in close proximity to the top surface of the 
nanorod, and further the strongest interactions come 
from the volume elements of the nanorod that are 
immediately below the atom. Therefore, instead of 
using the nanorod in Fig. 1, we use only the core of 
the nanorod as shown in Fig. 4. As an approximation 
in deriving the front deflection Δ௙ , the interaction 
energy between an atom and the nanorod is: ܧሺݔ, ,ݕ ሻݖ ൎ ,ሺ0,0ܧ  ሻ             (11)ݖ

Since the core diameter ݈௠ is typically much larger 
than a nanometer, ݈௠ ب  when the interactions are ݖ
strong. Therefore, Eq. (11) approximately becomes  ܧ௟೘ب௭ሺ0,0, ሻݖ ൌ െ ஼୸య ቀ1 െ ଺గ௭య௟೘య ቁ         (12) 

The critical height ݖ௖௡, at which the kinetic energy 
and the vdW interaction energy are equal in magnitude, 
is therefore: 

௖௡ݖ ൌ ൭ ଵభ೥೎యାలഏ೗೘య ൱భయ
             (13) 

Within the short distance of ݖ௖௡, the top surface of the 
nanorod affects the motion of the atom approximately 
in the same way as a large flat surface does. Therefore, 
we use Eq. (9) to correlate the deflection Δ௙ with ݖ௖௡, 

Δ௙ ൌ ଵ଻ଶ଴ ൭ ଵభ೥೎యାలഏ೗೘య ൱భయ tan  (14)        ߠ

In deriving the back deflection Δ௕, we note that 
the vertical force on the incoming atom dictates the 
deflection. As the atom is close but not directly above 
the top surface area in x-y space, the vertical force 

from one nanorod is the same as ½ of two nanorods 
symmetrically distributed around the atom, as shown 
in Fig. 5. As an approximation, the two nanorods of 
diameter ݈௠  are assumed to interact with the 
incoming atom in the same way as one nanorod with a 
cross sectional area of ݈ߨ௠ଶ /2 that is directly below 
the atom. The deflection of the atom comes primarily 
from the short range interactions, corresponding to Δ2 
of Fig. 2 when the vdW interactions dominate over the 
initial kinetic energy. Following the same steps in 
deriving Eq. (7) and Eq. (14), we have: 

Δ௕ ൌ ଷହ ൭ ଵమ೥೎యା యഏ√మ೗೘య ൱భయ tan  (15)       ߠ

 
FIG. 5. Approximate representation of the vdW 
interaction between an atom and nanorod when the 
atom approaches the nanorod surface. 

 
Given the front and back deflections in Eq. (14) 

and Eq. (15), the effective deflection when the 
incoming atom is on the x-z plane Δ ൌ Δ௙ െ Δ௕  is 
therefore: 

∆ൌ ቎ଵ଻ଶ଴ ൭ ଵభ೥೎యାలഏ೗೘య ൱భయ െ ଷହ ൭ ଵమ೥೎యା యഏ√మ೗೘య ൱భయ቏ tan  (16)    ߠ

Since ݈௠ ب ௖, we approximately have: ∆ൌݖ ቂଵ଻ଶ଴ ቀ1 െ ଶగ௭೎య௟೘య ቁ െ ଷହ ଵ√ଶయ ቀ1 െ గ௭೎యଶ√ଶ௟೘య ቁቃ tan ߠ  ௖  (17)ݖ

When the incoming atom is off the x-z plane, we 
assume that the deflection follows the same expression 
with ݈௠  replaced by the thickness along the 
x-direction. That is ∆ሺݕሻ ൌ ቂଵ଻ଶ଴ ቀ1 െ గ௭೎యସ௬యቁ െ ଷହ ଵ√ଶయ ቀ1 െ గ௭೎యଵ଺√ଶ௬యቁቃ tan ߠ         ௖ݖ

(18) 
For a given top surface in Fig. 4, it receives 

atomic flux from an effective area ܣ௘: ܣ௘ ൌ 2 ׬ ሺ∆ሺݕሻ ൅ ௫೎଴ݔሻ݀ݕ2           (19) 

where ݔ௖ is the upper limit that the thickness y along 
the x-direction is equal to ݖ௖; this is to ensure that 
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݈௠ ب  ௖ is valid at least approximately. Assuming theݖ
minimum thickness ݕ௖ is equal to ݖ௖, Eq. (19) can be 
integrated as ܣ௘ ൌ గ௟೘మସ ቀ1 ൅ 15 ቂቀ17 െ 12√23 ቁ ݈݉ߨܿݖ ൅ ቀ 3√645 െ 17ቁ 3݈ܿ3݉ݖ ቃ tan                                            ቁߠ

ൎ గ௟೘మସ ൬1 ൅ ൤0.48 ቀ݈݉ܿݖቁ െ 3.14 ቀ݈݉ܿݖቁ3൨ tan  ൰ (20)ߠ

That is, the effective area is larger than the nominal 
surface area by a factor ݂, which is also the ratio of 
the effective flux ܨ௘  on the top surface over the 
nominal flux ܨ: ݂ ൌ ி೐ி ൌ 1 ൅ ൤0.48 ቀ݈݉ܿݖቁ െ 3.14 ቀ݈݉ܿݖቁ3൨ tan  (21)  ߠ

As given in [15], the core diameter of nanorod ݈௠ is given by ݈௠ ൌ ቀଵ଴ఈమ ln ௡ଶ ௩యವ௙ி ቁభఱ          (22) 

where ߙ  is the geometrical factor and ߙ ൌ  4/ߨ
for circular cross-sections, ݒଷ஽  is the diffusion 
jump rate of adatoms over multiple-layer surface 
steps, and ݊ is the number of layers of the nanorod. 
Typically, ݊ ൌ 2000  and its variation does not 
strongly affect ݈௠  [15]. The two equations (21) 
and (22) allow the determination of ݈௠  and the 
factor ݂. We note that Eq. (22) is valid only when 
the critical size of nucleation is one, or equivalently 
when the product of dimer dissociation time and the 
number of times a surface site is visited by each 
adatom is much larger than the time interval 
between two deposition events on the surface [23]. 
For typical deposition conditions of Cu nanorod 
growth – deposition rate of 1.0 nm/s, substrate 
temperature of 300K, surface dimension ݈௠ of 15 
nm, and dimer binding energy of 0.45 eV [24] – the 
product is 6.7 ൈ 10ିଵ ݏ and the time interval is 1.7 ൈ 10ିସ ݏ. Since 6.7 ൈ 10ିଵ is much larger than 1.7 ൈ 10ିସ , equation (22) is valid under typical 
conditions of metallic nanorod growth.  

As a verification, we have numerically solved the 
equation of motion with the energy expression of Eq. 
(10). Based on the relative insensitivity to the kinetic 
energy as shown in Fig. 3, we choose one kinetic 
energy of 0.2 eV in the following to verify the 
closed-form theory of Eq. (21). As Fig. 6(a) shows, 
the closed-form theory is accurate for all incidence 
angles as long as the diameter is sufficiently large, 
larger than 15 nm. Even for the smaller diameter of 10 
nm, the closed-form theory is still accurate as long as 
the incidence angle is below 88o.  

 
FIG. 6. Comparison of closed-form theory of Eq. (21) 
with numerical solutions of the equation of motion (a) 
as a function of angle ߠ for various diameters of a 
cylindrical nanorod and (b) as a function of angle ߚ 
of a core-shell nanorod as shown in the inset, for 
various incidence angles; ݈௠=15 nm. 
 

Having verified the closed-form theory in Eq. (21) 
for the nanorod configuration in Fig. 4, we now extend 
the verification to a core-shell nanorod. Because the 
vdW interactions are most effective only at short 
distances, we expect the theory to be valid. To verify, 
we have numerically solved the equation of motion of 
an atom moving toward a core-shell nanorod at 
different shell angle β, as shown in Fig. 6(b). The 
numerical results show that this approximation is 
indeed valid provided that ߚ  is below 60o; this 
condition is satisfied according to our experimental 
characterizations [15]. So, the interaction with the 
shell of the nanorod is ignored in the following 
numerical calculations. 
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FIG. 7. Comparison of closed-form theory of Eq. (21) 
with numerical solutions of the equation of motion (a) 
as a function of separations of hexagonally arranged 
periodic nanorods for various incidence angles, with ݈௠ ൌ 15 ݊݉; and (b) as a function of the inclination 
angle ߛ of hexagonally arranged periodic nanorods 
for various incidence angles, with ܮ௦ ൌ 80 ݊݉ and ݈௠ ൌ 15 ݊݉. 

 
Next, we choose a diameter of 15 nm and verify 

the theory as a function of the separation of periodic 
nanorods in hexagonal packing, for various incidence 
angles. In the numerical solution, we include only the 
interactions with nanorods within a cutoff distance of 
15 nm, for the numerical value of factor ݂  is 
unchanged even if the cutoff distance is doubled to 30 
nm. As Fig. 7(a) shows, the theory is accurate once the 
separation is sufficiently large. Even for the case of 
89o, the difference between the closed-form theory and 
numerical solutions is within 10%. We note that in 
reality the separation will be at least as large as the 
diameter of nanorods, which is about three times that 
of the core diameter ݈௠  as the generalized theory 
shows later in this paper. This means that the 
separation of nanorods in reality does fall into the 
range where the theory is accurate. While nanorods 
can be vertical as shown in Fig. 1, they often are 

inclined with an angle ߛ  relative to the substrate 
normal as shown in Fig. 8. For inclined nanorods that 
are in hexagonal packing on a substrate, the numerical 
solutions verify that the closed-form theory is accurate 
also; Fig. 7(b).  

Having derived and verified the closed-form 
theory of factor ݂ , we next derive a generalized 
theory of nanorod diameter ܮ௠ which adds the shell 
element onto the nanorod core ݈௠. For periodically 
arranged nanorods, each nanorod effectively receives 
the atomic flux of a substrate area ܣ௦. This effective 
area depends on the separation ܮ௦ and how atomic 
flux arrives. For hexagonally patterned nanorods, 
which result from glancing angle incidence from the 
entire 2π range of the azimuthal angle, ܣ௦ and ܮ௦ 
are related according to [25]: ܣ௦ ൌ ൫√3/2൯ܮ௦ଶ           (23) 
The rate of deposition in this area, ܣܨ௦, has to match 
the growth rate at the top of nanorod ݂ܨ over the 
cross-section area of the nanorod ሺ4/ߨሻܮ௠ଶ  in order 
to maintain a quasi-steady state shape of the nanorod. 
That is,  ܨ ቀ√ଷଶ ቁ ௦ଶܮ ൌ ܨ݂ ቀగସቁ ௠ଶܮ  or 

௠ܮ ൌ ටଶ√ଷగ௙  ௦         (24)ܮ

 
FIG. 8. Schematic of inclined nanorods. 

 
For inclined nanorods (Fig. 8), which result from 

glancing angle incidence with a fixed azimuthal angle, 
the thermodynamically preferred top surface, such as 
{111} for face-centered-cubic metals, is parallel to the 
substrate [15]. When two nanorods are aligned along 
the direction of deposition flux, the right nanorod 
effectively shadows the left. When the two are 
misaligned, the shadowing is less effective. Our theory 
corresponds to the most effective shadowing and 
thereby the smallest diameter. Under the aligned 
condition, the left nanorod receives atomic flux from 
an effective area ܣ௦ ൌ  ௠. The rate of depositionܮ௦଴ܮ
in this area, ܰ ൌ  ௠, has to match the growthܮ௦଴ܮܨ
rate at the top of nanorod ݂ܨ  along the vertical 
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direction, or ݂ܨ/ cos  along the axial direction of ߛ
the nanorod. Since ܮ௦଴ ൌ /௦ܮ cos ௠ܮ௦଴ܮܨ  :we have ,ߛ ൌ ௙ிୡ୭ୱ ఊ గସ ௠ଶܮ  or 

௠ܮ ൌ ቀ ସగ௙ቁ  ௦         (25)ܮ

 
 According to Eqs. (24) and (25), ܮ௠  linearly 
scales with ܮ௦. The scaling factor is ඥ݂ when the 
incidence flux comes from all possible azimuthal 
angles, and it is ݂ when the incidence flux comes 
from one particular azimuthal angle. The numerical 
factor of order 1 is slightly larger than one, because 
nanorods of circular cross-section with ܮ௠ ൌ  ௦ܮ
cannot fill all the space. These results are applicable 
when a quasi-steady state is possible – that is, the 
nanorods will grow taller with the same diameter and 
shape. For sufficiently small van der Waals 
interactions, such a quasi-steady state is impossible 
and Eqs. (24) and (25) are no longer valid; our lattice 
Monte Carlo simulations have verified this 
impossibility. With the effects of van der Waals 
interaction, the quasi-steady condition is possible 
when the separation ܮ௦ is constant. Due to shadowing 
and fluctuations of deposition flux over space, some 
nanorods lose out, so ܮ௦ can change during growth. 
Consequently, the quasi-steady state ܮ௠  changes 
with ܮ௦ during growth.    

III. EXPERIMENTAL VALIDATION 

To validate the closed-form theory, we deposit 
Cu nanorods using physical vapor deposition. The 
substrates are Si {100} wafers (Nova Wafers, Flower 
Mound, TX) where the substrate normal is angled at 
87o, 88o, and 89o relative to the deposition flux. A 
nominal deposition amount for Cu (99.99% Kurt J. 
Lesker, Clairton, PA) of 500 nm is used at a rate of 1.0 
nm/s, which is determined by a quartz crystal 
microbalance. Before Cu is deposited, SiO2 (99.99% 
KJ Lesker) is deposited on the wafers to a nominal 
amount of 5 nm at 0.1 nm/s to act as heterogeneous 
nucleation sites. These depositions are performed in a 
custom e-beam physical vapor deposition system with 
a source to substrate distance of 35 cm. The 
depositions occur at a vacuum level of 2 ൈ 10ି଺ േ1 ൈ 10ି଺ torr, beginning at 295K with no substrate 
temperature control. The substrate temperature 
increases to 315K during deposition. Figure 9 shows 
scanning electron microscopy (SEM, Hitachi S-4800) 
images of well separated Cu nanorods deposited at 87o, 
88o, and 89o. 

 
FIG. 9. SEM images of Cu nanorods of 500 nm 
nominal deposition taken normal to the substrate. The 
angle of deposition is (a) 87°, (b) 88°, and (c) 89°. The 
scale bar is 250 nm. 
 

To measure the size and separation of nanorods, 
SEM images are taken of nanorods from a normal 
view and from a side view. For each measurement, a 
pair of nanorods are selected from normal view 
images by drawing lines along the deposition direction 
and spacing them to the diameter of a blocking 
nanorod in front. Two nanorods are close to perfectly 
aligned when the lines fall on or outside the edges of 
the second nanorod. Figure 10(a) shows SEM images 
of the measurements and compares them to the values 
used in the theory in (b). The nanorod closer to the 
deposition source (right) blocks much of the 
deposition from landing on the side of the second (left) 
with deposition landing primarily on the top.  

 

 
FIG. 10. SEM images of (a) nanorods taken normal to 
the substrate and (b) from the side, illustrating the 
measurements ܮ௦T, ܮ௠ and their relation to ܮ௦, ܮ௦଴, ߛ. The scale bar is 100 nm. 
 

The spacing between the nanorods is determined 
by measuring the distance from one nanorod tip to the 
second, parallel to the substrate ܮ௦T . This is 
conducted with the image processing tool ImageJ in 
post processing. From this length the nanorod spacing 
parallel to the nanorod axis ܮ௦  is determined by ܮ௦ ൌ ௦்ܮ cos  The tip is chosen as the measurement .ߛ
location as it better represents the growth conditions at 
the end of the deposition and is a clearly defined and 
visible point in images. Attempts to measure ܮ௦଴ 
directly results in greater error due to the center line of 
nanorods at the substrate being difficult to determine 
from SEM images. As the tip locations in normal 
images are assumed to be the same height off the 
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substrate, variations in this height can lead to a small 
difference between the measured ܮ௦T and the value 
of ܮ௦଴. The resulting error in ܮ௦ is determined to be 
±15 nm based on the standard deviation of the heights 
of nanorods. The diameter ܮ௠  is measured at 
approximately ¼ of the length from the tip of the 
nanorod with an error of ±4 nm. 

 
FIG. 11. Comparison of experimental data with 
closed-form theory for (a) nanorod diameter vs 
separation and for (b) factor ݂ for three deposition 
angles.  
  

Figure 11(a) shows experimental data of 
nanorod diameter vs separation under different 
deposition angles. Based on the theory developed in 
Ref. [15], the diameter of the nanorod core in Fig. 1 
can be determined by including the modification of 
effective flux given in Eq. (21), which is about 10.8 
nm for 87° deposition, 10.9 nm for 88° deposition, 
and 11.5 nm for 89° deposition. The factor ݂ has a 
value of about 2.1 for 87° deposition, 3.0 for 88° 
deposition, and 4.7 for 89° deposition. According to 
Eq. (25), the diameter of nanorods is related to the 
separation by 0.60ܮ௦  for 87° deposition, 0.42ܮ௦ 
for 88° deposition, and 0.27ܮ௦ for 89° deposition. 
As shown in Fig. 11(a), the experimental results 
validate the theory of Eq. (25) in terms of linear 

dependence and slope. Going one step further, we 
determine the average slope – and thereby the factor ݂ – using the experimental data in Fig. 11(a) and 
compare it with the theoretical prediction for various 
incidence angles. As shown in Fig. 11(b), the 
experimental result and the closed-form theory agree 
in terms of ݂. This agreement further confirms the 
validity of the closed-form theories of the factor ݂ 
and the diameter ܮ௠. 

IV. CONCLUSION 

In conclusion, we have reported a generalized 
theory of nanorod diameter. The generalized theory 
incorporates non-idealized geometrical shadowing 
below 90o and incorporates the effects of vdW 
interactions. To obtain an analytical or closed-form 
theory, we have made approximations to capture the 
most important mechanisms. Numerical solutions 
serve to verify the theory and confirm the 
reasonableness of the approximations. Further 
experimental validations serve to show that the 
closed-form theory can predict the diameter of 
nanorods in experiments. In contrast to the previous 
theory for idealized geometrical shadowing [15], the 
generalized theory predicts nanorod diameters that are 
a factor of 2 or larger. The theoretical formulations are 
generic for all metals, and the verification and 
validation are for copper as one prototype material.  
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