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Abstract

Methylcellulose is a thermoresponsive polymer that undergoes a morphological transition at

elevated temperature, forming uniform diameter fibrils. However, the gelation mechanism is still

unclear, in particular at higher polymer concentrations. We use Langevin dynamics simulations to

investigate a coarse-grained model for methylcellulose that produces collapsed ring-like structures

in dilute solution with a radius close to the fibrils observed in experiments. We show that the

competition between the dihedral potential and self-attraction causes these collapsed states to

undergo a rapid conformational change, which helps the chain to avoid kinetic traps by permitting

a transition between collapsed states. If the dihedral potential is removed, the chains do not escape

from their collapsed configuration, whereas at high dihedral potentials, the chains cannot stabilize

the collapsed state. We provide systematic data on the effect of the dihedral potential in a model of

methylcellulose, and discuss the implication of these previously overlooked, rapid conformational

fluctuations on the spontaneous formation of high-aspect-ratio fibrils.
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I. INTRODUCTION

Methylcellulose (MC) is a class of biopolymers investigated extensively to develop ma-

terials with innovative physico-chemical properties. MC is categorized as safe by the U.S.

Food and Drug Administration [1] and used in a wide variety of commercial products for

example as a thickener in pharmaceuticals, cosmetics and food products [2, 3]. Depending

on the degree of substitution, MC in water can form a hydrogel upon heating. Recent ex-

perimental studies [4, 5] on the gel structure reveal a fibrillar morphology with a uniform

diameter. Fibril formation cannot be explained solely by established equilibrium concepts

such as Flory-Huggins solution theory [6, 7], thus requiring a new model. From a computa-

tional standpoint, this is not an easy problem since the fibrils have a relatively large axial

extent (∼ µm), but the chemical details of the polysaccharide units must be included in

order to capture the intramolecular interactions leading to fibril formation. Huang et al. [8]

recently proposed a coarse-grained model of MC, parameterized from atomistic simulations,

in which an isolated MC chain spontaneously adopts a ring structure with an outer diame-

ter consistent with the experimental results. However, demonstrating that a single polymer

tends to collapse into a ring does not explain why MC forms a fibril with high-aspect ratio

instead of being trapped in other “misfolded” shapes, like bundles or hairpins. We show

here that this coarse-grained MC model exhibits rapid conformational rearrangements that

have been overlooked in previous reports. We propose that such fluctuations are essential

to fibril formation, and elucidate why the underlying coarse-grained model produces rapid

rearrangement phenomenon.

MC is a cellulose-based polymer with hydroxyl groups (-OH) partially replaced by

methoxy moieties (-CH3) at the C-2, C-3 and/or C-6 positions. Since there is an irregular

distribution of substituents along the cellulosic backbone, MC always appears as a hetero-

geneous polymer and the degree of substitution (DS) defines the average number of methyl

groups per anhydroglucose unit. The DS ranges from zero for unsubstituted cellulose to 3 for

the fully substituted polymer. The DS also determines the solubility of MC. For example,

a DS of 1.64 to 1.92 yields maximum water solubility, a lower DS leads to MCs that are

only soluble in caustic solution due to intramolecular hydrogen bonding, and a higher DS

produces MCs that are soluble only in organic solvents because of the hydrophobic methyl

groups [9].
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The gelation mechanism of MC has been studied both experimentally and theoretically.

Typically, water-soluble MC exhibits lower critical solution temperature (LCST) phase be-

havior in aqueous systems [10–18]; MC is soluble in water at low temperature, while ther-

moreversible gelation occurs at elevated temperature accompanied by an increase in optical

turbidity [4, 5, 19]. Although a body of literature [4, 5, 10–17, 20–25] on MC gelation exists,

there is no consensus on the relationship between the LCST phase behavior and the gelation

process. Many have attributed this behavior to viscoelastic liquid-liquid phase separation

[4, 5, 10–17, 20–23], where the polymer-rich and polymer-deficient phases are kinetically

trapped. In an effort to address this phase-separation hypothesis, some studies have at-

tempted to build a temperature-composition phase diagram [10, 12, 25]. Unfortunately,

there is no conclusive evidence to clearly show the coexistence and stability curves for the

phase diagram, which are crucial for the liquid-liquid phase separation behavior.

Recently, several experimental studies on the structure and physical properties of aqueous

MC solutions provided compelling evidence for a heterogeneous fibrillar morphology [4, 5,

10, 14, 19, 26, 27], a structural motif common to semiflexible polymers found in living

organisms [28–30]. This fibrillar morphology and the associated viscoelastic response of

these solutions are fundamentally different from what would be expected from a morphology

based solely on liquid-liquid phase separation. Understanding the structure of the fibrils

as well as their mechanical properties could guide efforts in the design of new and useful

materials. Lott et al. [4, 5] quantified the fibrillar structure of aqueous MC gels with a

combination of (real space) cryogenic transmission electron microscopy (cryo-TEM) and

(reciprocal space) small-angle neutron scattering (SANS) techniques. Fibrillar dimensions

of 14±1 nm were obtained by fitting the SANS data with a model based on the form factor

for flexible cylinders with a polydisperse radius. Surprisingly, this diameter is independent

of mass fraction and molecular weight Mw within the range of 0.01% to 3.79% and 49 to

530 kg/mol, respectively. McAllister et al. [26] further investigated the thermodynamics of

aqueous MC solutions. They found that the growth of the fibrils cannot be explained solely

using classical Flory-Huggins solution theory [6, 7], and they proposed that MC fibrils reflect

a kinetically trapped state that balances thermodynamic equilibrium and local orientational

order. While the gelation mechanism is still an open question, these experimental studies

provided an unambiguous picture of the fibrillar morphology.

In order to study the gelation mechanism, several computational studies have been con-
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ducted to explore how MC chains [8, 31–33], or, more generically, self-attractive semiflexible

polymer chains [34–36], collapse in various solution conditions. In a particularly relevant

work, Kong et al. [31] systematically studied the collapse transition of a generic semiflexible

polymer model with variable backbone stiffness and self-attraction strength. They con-

structed a phase diagram of the resulting collapsed states including toruses, globules and

bundles. In a subsequent study, Huang et al. [8] developed a coarse-grained (CG) model

specifically targeting MC chemistry. They first conducted atomistic simulations for 10-mer

MC oligomers [32] and then used the resulting data to parameterize the force fields ap-

pearing in their coarse-grained MC model. With respect to understanding the connection

between fibril formation and gelation, it is important to have a chemically realistic model

since the sol-gel transition is closely related to the strength of MC self-attractive interac-

tions. With isolated chain simulations, Huang et al. [8] found that at 50 ○C, MC chains

with 600 monomers or more can adopt a ring-like structure in a dilute aqueous system.

Importantly, while this ring structure is not a high-aspect ratio fibril, it is plausible that

they are precursors to forming MC fibrils. Based on this coarse-grained model [8], Ginzburg

et al. [33] developed a statistical mechanical model for the behavior of multiple MC chains

and proposed that the fibril is a one-dimensional stack formed by MC rings.

Although these computational studies [8, 33] provide a plausible model for fibril forma-

tion in dilute solution, they leave open two important questions that we address here. First,

other collapsed states, such as hairpins and folded bundles, could appear as long-lived in-

termediate states, or even final (metastable) states [8]. How these “misfolded” collapsed

states are removed and how to prevent these misfolded states from propagating through

fibril formation are unanswered questions. Second, although atomistic simulations suggest

[8, 32] that the hydrophobic interaction, i.e., the non-bonded self-attraction, is the major

driving force for MC gelation, the coarse-grained MC model was parameterized from atom-

istic simulations of 10-mer oligomers. The dihedral potential obtained from this mapping

involves four successive monomers, and it is not obvious that the potential obtained from

mapping 10-mers will translate to longer chains. Thus, it is important to investigate the

sensitivity of the dihedral potential before drawing conclusions regarding MC gelation, as it

competes with the non-bonded interactions that drive the formation of collapsed structure.

We show here that significant insights into the gelation mechanism can be obtained

through long-time simulations of single MC chains and a model problem of ring association,
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taking advantage of the model proposed by Huang et al. [8]. In particular, we identify a

previously overlooked, rapid conformational fluctuation produced by the dihedral potential

that we posit is important for both escaping misfolded states and guiding fibril formation

for multiple chain simulation. We also study the effects on the dihedral potential on the fre-

quency of this rapid conformational change and shape of the collapsed states, demonstrating

that the fluctuations in the collapsed state are governed by the balance between the dihedral

potential and non-bonded interactions. While this coarse-grained model appears to capture

many of the features of the collapse of a single methylcellulose chain, we show that several

important features for methylcellulose gelation remain unanswered and suggest directions

for further model improvements.

II. MODEL AND SIMULATION METHOD

A. Coarse-Grained Model of Methylcellulose

The model and the simulation method are described in detail by Huang et al. [8]. For

completeness, we outline the key details here and recapitulate the various model parameters

in the Supplemental Material [37]. In the simulations described throughout this work, MC is

modeled as a heterogenous polymer with all eight types of monomers, i.e., cellulose monomer,

2-MC, 3-MC, 6-MC, 2,3-MC, 2,6-MC, 3,6-MC and 2,3,6-MC. The order of the monomers

was generated randomly and the composition profile was chosen to match the mole fraction

of the commercial polymer METHOCEL A [9], as tabulated in the Supplemental Material

[37]. Each bead in the coarse-grained (CG) model represents one monomer. The bead-bead

interaction potential,

U = Ubond +Uangle +Udihedral +Unb (1)

contains four parts: harmonic bond, angle, dihedral interactions, and nonbonded potentials.

The first three potentials are of bonded types and expressed as

Ubond =
1

2
Kb(l − l0)

2
(2)

Uangle =
1

2
Kθ(θ − θ0)

2
(3)

and

Udihedral =Kd[1 + d cos(nφ)] (4)
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Here Kb, Kθ and Kd are the bond, angle and dihedral force constants, respectively, l0 is the

equilibrium bond length, and θ0 is the equilibrium bending angle. In Eq. 4, d and n are the

phase constants. Huang et al. [8] performed atomistic simulations of 10-mer homogenous MC

oligomers and determined the bonded parameters for the CG model by mapping the radial

distribution functions (RDF) from the atomistic model to their CG counterparts. Although

there are 8 different homopolymers, the intramolecular atomistic RDFs are similar among all

monomer types. We thus use the same set of the bonded parameters for all monomers, and

the parameters are summarized in the Supplemental Material [37]. In what follows, we will

be particularly interested in Kd, which controls the dihedral strength for four consecutive

beads on a chain.

The nonbonded interactions have the form of a truncated and shifted Lennard-Jones (LJ)

9-6 potential,

Unb = εij
⎡⎢⎢⎢⎢⎣
(σij

r
)9 − (σij

r
)6 − ( σij

rcij
)
9

+ ( σij

rcij
)
6⎤⎥⎥⎥⎥⎦

(5)

for r < rcij and Unb = 0 otherwise, where i and j denote two types of MC monomers.

The intermolecular nonbonded interaction parameters among the same type of monomers,

i.e., σii, rcii and εii, were obtained again by Huang et al. [8] by matching the atomistic

simulation of short homogenous oligomers to the CG models. The bead size and cut-off

radius, σ and rc, depend on the type of monomers and the ambient temperature, while ε is

also an explicit function of contour length. Note that the “effective temperature” is captured

by the nonbonded parameters rather than being an explicit function of temperature in the

CG simulation. We have tabulated the nonbonded parameters in the Supplemental Material

[37] for a representitive low temperature (25 ○C) and a representitive high temperature (50

○C). At 25 ○C, MC is soluble in water, while gelation can occur at 50 ○C [38]. For the

nonbonded interactions between different types of monomers, we used a geometric mixing

rule to calculate the σij , εij and rcij in the heterogenous MC chains. The mixing rules are

also included for completeness in the Supplemental Material [37].

B. Simulation Method

Following prior work [8], we simulated this coarse-grained model using Langevin dynamics

with the velocity-Verlet intergrator in the LAMMPS package [39] (ver. Jun 2014) in the
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NVE ensemble. Simulations were set up using LJ units with three fundamental scales: m

for unit mass, σ for unit distance, and ε for unit energy. We chose the unit mass to be

the average molecular weight of all 8 different types of MC monomers, 188 Da. Although

different types of monomers have different mass depending on how many hydroxy groups

are substituted, the additional complications introduced by accounting for small changes in

mass are not consequential within a coarse-grained, Langevin dynamics simulation. We set

the unit length to be 0.515 nm, which is the simulated averaged center-of-mass separation of

monomers from previous atomistic simulations [8]. The unit energy, ε is set to be kBT with

kB being the Boltzmann factor and T = 298 K. We ran our simulations using a Langevin

thermostat at the unit temperature, and the “effective temperature” is captured by the

self-attraction force field between MC monomers as described above. A summary of all the

dimensionless parameters and their corresponding dimensional parameters are tabulated in

the Supplemental Material [37].

In addition to these three fundamental quantities, the damping parameter in the Langevin

dynamics algorithm plays an important role in determining the relationship between sim-

ulation time scale and real time scale. Although the unit time is not a fundamental unit

and can be expressed as τ = (mσ2/ε)1/2, its dimensional counterpart can not be calculated

directly from the dimensional value of m, σ and ε because they contain no information

about the solvent. Thus, the damping parameter is specified in time units and is regarded

as inversely related to solvent viscosity. We set the damping parameter to be 10τ , leading

to the estimate τ = 0.028 ns. This value was reported by Huang et al. [8] and we confirmed

it by measuring diffusion coefficients in our simulations at T = 25 ○C.

Unless otherwise specified, we initiated our simulations with random sequences for het-

erogeneous MC. We simulated 1000-mer MC chains with periodic boundary conditions and

a box size length of 600σ. The simulation results reported for each value of Kd include at

least three independent trajectories. To study the collapse of the chain above the gelation

temperature, the MC chain is first equilibrated at low temperature (25 ○C) for 107 steps at

a time step of 5×10−4τ , and an instantaneous temperature jump is introduced by switching

the nonbonded parameters from 25 ○C to 50 ○C. Then the simulation proceeds for at least

5 × 107 steps with time step of 5 × 10−4τ .
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C. Data Analysis

We study the rapid conformational fluctuations by monitoring the shape of the MC chain,

and we will call this rapid change a “flipping event,” which we discuss later in more detail.

Specifically, three quantities are used for structural characterization: the eigenvalues of the

gyration tensor λ, the radius of gyration Rg, and the relative shape anisotropy κ2.

The gyration tensor quantifies the second moments of monomer positions on a polymer

chain,

Smn ≡
1

N

N

∑
i=1

r
(i)
m r

(i)
n (6)

where r
(i)
m is themth Cartesian coordinate of the position of the ith monomer. The coordinate

system has been chosen so that the center of mass lies at the origin. Since the gyration tensor

is a symmetric 3×3 matrix, diagonalization produces the principal moments of the gyration

tensor, i.e., the squared eigenvalues. The eigenvalues are ordered such that λx
2 ≤ λy

2 ≤ λz
2.

The eigenvalues of the gyration tensor measure the extensions in the principle axis system,

thus give the dimensions of an object.

The principal moments can be combined to give two scalar quantities that describe the

shape of the polymer conformation, thereby enabling us to locate the flipping events without

the need to consider the detailed configurations of the chain. The squared radius of gyration

is the sum of the principle moments of the gyration tensor,

Rg
2 = λx

2 + λy
2 + λz

2. (7)

We found that ∆Rg/Rg, i.e., the relative difference of radius of gyration between two time

frames, is a useful proxy for capturing the conformational change. We chose the time

difference for computing ∆Rg to be 105 steps, or 50τ . A peak of ∆Rg/Rg signals a sudden

conformational change in the polymer size, and thus a potential flipping event. We set the

threshold of a flipping event to be ∆Rg/Rg ≥ 0.1 to screen out typical changes in Rg due to

thermal fluctuations, and we also cluster peaks within 50τ to be a single flipping event in

order to avoid overcounting large conformational changes immediately following a flipping

event that result from the instability of the relatively open chain configuration.

Finally, the relative shape anisotropy [40, 41] is defined as

κ2 = 1 − 3
λ2
xλ

2
y + λ2

xλ
2
z + λ2

yλ
2
z

(λx
2 + λy

2 + λz
2)2 . (8)
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This shape descriptor reflects both the symmetry and dimensionality of a polymer confor-

mation; the minimal value κ2 = 0 indicates a highly symmetric conformation while the

maximal value κ2 = 1 indicates all beads lying on a line. For a planar symmetric structure,

for example a ring conformation, κ2 is around 1/4 [42].

III. SINGLE CHAIN RESULTS

A. Flipping Events in an Isolated MC Chain

We first simulated an isolated MC chain with N = 1000 at 50 ○C, where the self-

interactions between MC monomers are strong enough to form collapsed structures in the

model of Huang et al. [8]. It has been shown by simulation [8, 33] that, at elevated tem-

peratures, a single MC chain with 600 monomers or more can form a ring structure. We

confirmed this result in our simulations.

Interestingly, we observed that after the chain forms a collapsed structure, large confor-

mation changes can happen within a short period of time that do not correspond to the

expected breathing modes of a ring. Figure 1 shows a typical flipping event in a single

1000-mer MC chain. The total simulation time is 3.4 × 104τ , which corresponds to 952 ns.

We started the high temperature simulation with an initial configuration generated from a

room temperature simulation, as described in the Methods. Because at low temperature the

self-attraction is insufficient to collapse the chain, the MC chain is initially a random coil.

At t = 0, we elevated the temperature and found that the conformation of the MC chain first

becomes a collapsed structure at t = 280 ns, consistent with previous work [8, 33], and un-

dergoes the small shape fluctuations one would expect for a collapsed ring. However, at t =

592 ns, as shown in the first snapshot of Fig. 1, the chain adopts a bifocal structure. Within

the next 7 ns, the chain goes through a huge conformational change with the whole collapsed

structured disturbed. Owing to the self-attraction forces, this loose structure is not stable.

After another 7 ns, the chain collapsed back into another relatively tight structure, thus

converting from one collapsed conformation to another. We have included the movie of the

whole trajectory, along with the rotating views of the three representative snapshots, in the

Supplemental Material [37]. The dynamics in this particular example are not a special case;

flipping happens quite often throughout the course of simulation. We posit that flipping
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FIG. 1. Snapshots of a flipping event of a 1000-mer MC chain at 50 ○C. The time lag between each

snapshot is 7 ns, corresponding to 250 τ .

FIG. 2. Radius of gyration and the relative difference of Rg for a 1000-mer MC chain as a function

of simulation time. (a) Rg versus time for three independent trajectories with 1000 monomers.

The three trajectories are of total duration 3.16 × 104τ , 3.475 × 104τ and 5× 104τ . Before t = 0 the

chain was equilibrated at room temperature. At t = 0 the temperature was elevated to 50 ○C. (b)

∆Rg/Rg versus time for the same three trajectories. An offset of 0.5 on y-axis for each trajectory

has been made for clarity. A total of 14, 18 and 25 flipping events are identified for top to bottom

trajectories, respectively.

events are of great importance because they impart an ability to alter rapidly the collapsed

structures, which are regarded as local energy minima and represent metastable states.

If we assume that a sudden change of the conformation indicates a flipping event, we

can identify the flipping events by monitoring the changes of radius of gyration. Figure 2
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FIG. 3. Histogram of the time between two flipping events for 1000-mer MC chain at 50 ○C. The

data correspond to a total 65 flipping events obtained from 5 independent trajectories.

shows how Rg and ∆Rg/Rg evolve with respect to simulation time for three independent

trajectories with N = 1000 at 50 ○C. Although different trajectories differ in their details,

as expected from a stochastic simulation, the overall trends indicate that the chain size

and flipping frequencies are robust to the initial conditions and the thermal noise. At

the start of the simulation, Rg is relatively high because the MC chain begins in a coiled

state. As simulation proceeds, Rg decreases due to the collapse of the MC chain, and

reaches a plateau at t ∼ 1 × 104τ . The average value of the plateau for Rg is around 6

nm. After this time, Rg stays in a small range with typical thermal fluctuations. At a

few time points, Rg goes through a sudden change, indicating the flipping events. These

fluctuations are challenging to identify from Rg alone, so the lower plot of Fig. 2 shows

∆Rg/Rg with respect to time. This plot clearly shows the location of sudden change of

the chain conformation, readily distinguishing the flipping events from more subtle thermal

fluctuations. To automate the identification of flipping events, we set the threshold of a

flipping event to be above ∆Rg/Rg = 0.1.

Of particular interest are the kinetics of the flipping events. We calculated the time

interval between two flipping events by subtracting the time of a flipping event from its

successor,
∆tn = tn+1 − tn. (9)

Figure 3 shows a histogram of the resulting time interval distribution. Along with the three

trajectories in Fig. 2, we added two more trajectories to improve the sampling. The median
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FIG. 4. (a) Shape anisotropy κ
2 and (b) the individual eigenvalues of the gyration tensor λi versus

time for a 1000-mer MC chain. The temperature jumps from 25 ○C to 50 ○C at the time t = 0 (not

indicated on the figure). The (red) dots indicate flipping events. (c) Snapshots at (i) 731 ns, (ii)

889 ns and (iii) 1054 ns, which correspond to 2.61× 104τ , 3.18× 104τ and 3.77× 104τ , respectively.

The corresponding time points in panels (a) and (b) are indicated by the dashed vertical lines.

of the time interval distribution is 950τ . Compared to a typical flipping time duration of

250τ , as shown in Fig. 1, the flipping event happens quite often and thus is able to alter the

chain conformation within a short period of time.

We found that the eigenvalues of the gyration tensor (λx, λy, λz) and the relative shape
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anisotropy (κ2) are particularly insightful for characterizing the chain configurations before

and after flipping events. In Fig. 4(a), we plot part of one trajectory with N = 1000 for

an isolated MC chain at 50 ○C. Similar plots for other trajectories are included in the

Supplemental Material [37]. We also show three representative conformation snapshots

in Fig. 4(b). During much of the simulation, the shape anisotropy is around 0.25, which

indicates a planar symmetric structure. However, we see fluctuations throughout much of the

range of κ2, ranging from 0.1 and 0.85, indicating other shapes. In the three representative

conformations in Fig. 4(b), the first is of a misfolded bifocal structure with some loose

“arms.” Because this structure is not stable, and in the process of re-orientating itself,

the corresponding value of κ2 is part of a large fluctuation at the time indicated by (i) in

Fig. 4(a). After several flipping events, the chain conformation adopts a highly anisotropic

bundled structure with a relatively high value of κ2 ≈ 0.8. The last structure shows a return

to a ring shape with κ2 close to 0.25, indicating a planar symmetric structure. Thus κ2 is

very helpful in discriminating shapes between bundled and planar configurations, the two

most common collapsed structures observed in our simulations.

However, κ2 does not discriminate between cases (i) and (iii) in Fig. 4, i.e., between

planar symmetric structures with different shapes. Thus, it is useful to consider also the

eigenvalues of the associated gyration tensor, which measure the extension in the principle

axis system. Some small fluctuations, as well as large jumps, are also observed Fig. 4(a)

for the individual eigenvalues. We observed that for the third structure, corresponding to

the desired ring structure, λy and λz are almost identical. These two eigenvalues indicate

the outer diameter of the axisymmetric ring conformation, while the smaller eigenvalue λx

indicates the thickness of the ring. The eigenvalues around (i) are fluctuating substantially,

consistent with our discussion of the shape anisotropy. The eigenvalues for (i) are also very

different from those for (iii), and this difference allows us to identify the two structures. For

(ii), we just have one large eigenvalue (λz) and two smaller eigenvalues (λx and λy), indicating

a bundled structure. Thus, κ2 and eigenvalues of the gyration tensor are complementary

indicators that together describe the highly structured conformations of the MC chain.

To further explore the effects of the flipping event on the shape of the collapsed states

for an isolated MC chain, Fig. 5 presents a ternary plot for the eigenvalues of the gyration

tensor using the five trajectories from Fig. 3. The idea is to learn how the dimensions of the

conformation are distributed throughout the course of a simulation, as well as to evaluate
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FIG. 5. Ternary plot of the rescaled eigenvalues (λ/Rg)
2 for 1000-mer MC chains at 50 ○C. The

eigenvalues are ordered as λx ≤ λy ≤ λz and satisfy λ
2
x+λ

2
y+λ

2
z = R

2
g. Data points are sampled every

50τ . The data correspond to the second half of 5 independent trajectories to remove the effects

of the initial configuration and make sure the MC chain has already reached or visited a collapsed

state. The 2006 data points are binned with bin size of ∆(λx/Rg)
2 = 0.01 and ∆(λy/Rg)

2 = 0.01.

The colormap shows the probability of observing the combination of eigenvalues in a given bin. A

representative MC conformation within the highest probability bin is included.

the likelihood of different collapsed shapes. We plot three rescaled eigenvalues (λ/Rg)2 in

the order of λx
2 ≤ λy

2 ≤ λz
2. A striking feature is that the most probable conformation

corresponds to λx < λy ≈ λz; this indicates that most of the simulation time is spent in a ring

configuration. Also, the eigenvalues are distributed due to the combined effects of regular

thermal fluctuations, flipping events, and the unstable conformation following the flipping

events. Overall, Fig. 5 provides a detailed picture of how different shapes are distributed in

the course of simulation for isolated 1000-mer MC chains at elevated temperature.

Our discussion is predicated on the assumption that the ring structure is the free energy

minimum for an isolated MC chain. This assumption is supported by the probability of

observing a ring structure in Fig. 5 and previous work using this MC model [8, 33]. However,

as our simulated trajectories are relatively short, it is possible that data such as those in
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FIG. 6. Box plot of the time between two flipping events with respect to the strength of the

dihedral potential, Kd, at 50
○C. The box represents the interquartile range, which contains 50% of

the values. The whiskers extend to cover 99.3% of the values. The line across the box is the median

value. Each circle shows one data point, with the ones above the whiskers denoting outliers.

Fig. 5 do not completely sample the phase space, especially if there are large barriers between

different metastable configurations. Ideally, we could show that the ring state is stable by

mapping the present model [8] to a generic model for the collapse of semiflexible chains

[31, 43]. Unfortunately, such mapping is frustrated by the number of nonbonded interaction

parameters in the model and the use of a 9-6 Lennard-Jones potential [8]. Definitively

demonstrating that the ring conformation is the stable state could be achieved by computing

the free energy as a function of radius of gyration and shape anisotropy, which is a promising

direction for future work on the single-chain MC model.

B. Effect of Dihedral Potential

The results discussed thus far were obtained using the coarse-grained MC model param-

eters proposed by Huang et al. [8]. We also investigated how these results change as a

function of the parameters, and identified the dihedral potential as the most important con-

tributor to the flipping events. Thus, it is illuminating to understand, in a systematic way,

the role of the dihedral potential. While arbitrary choices of the dihedral potential will no

longer correspond to a coarse-grained MC chain, they allow us to understand the sensitivity

of the results to the particular value of Kd appearing in the model by Huang et al. [8].
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FIG. 7. Box plots showing the eigenvalues of the gyration tensor (λx ≤ λy ≤ λz) as a function of

the dihedral potential Kd. The description of the box plots are similar to Fig. 6, except here the

outliers are plotted with the (red) cross symbols. (a) λx, (b) λy, (c) λz.

We first quantify the frequency of the flipping events as a function of the strength of the

dihedral potential, Kd. We chose Kd to be in the range of 0 to 3.0, with a spacing of 0.5.

We also attempted to increase Kd further, but found that the calculations were infeasible

due to the very small simulation time step required to prevent the simulation from crashing.

For each Kd, we obtained at least three independent trajectories for at least 2.5 × 104τ .

Figure 6 shows a box plot of the distribution of the time interval between flipping events as

a function ofKd. Separate histograms (similar to Fig. 3) for the time interval distribution for

each Kd are included in the Supplemental Material [37]. Note that Kd = 0 is not included

here because no flipping events were detected. Figure 6 shows that the median of the

time between flipping decreases as Kd increases. Furthermore, beyond Kd = 2.0, the time

between flipping events reaches a plateau of around 1.0×103τ . Overall, Fig. 6 clearly shows

the likelihood of flipping events strongly depends on Kd. Since flipping helps the MC chain

explore different free energy minima and different collapsed states, we can conclude that Kd

is a key factor in any MC model.

To more deeply understand the effects ofKd and the flipping on the shape of the collapsed

states, we created box plots for the eigenvalues for differentKd in Fig. 7. Separate histograms

for the eigenvalues for each Kd are available in the Supplemental Material [37]. The first
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thing to notice is that, similar to Fig. 5, the median values of the eigenvalues follow the

pattern λx < λy ≈ λz for all Kd. Thus, the polymers are dominantly in a ring conformation,

independent of Kd. There also seems to be two distinct regimes for λx. For Kd ≤ 1.0, the

median of λx decreases to slightly below 1 nm. We suspect this is because i) the polymer

stays mainly in a ring structure in this regime with few flipping events, and ii) the outer

diameter of the ring increases withKd in this regime, which can be observed from the increase

in λy and λz. Thus the thickness of the ring, embodied in λx, decreases. Furthermore, in

this regime, the number of outliers increases as Kd increases due to the increase of the

frequency of flipping events. In contrast, for Kd > 1.0, the aforementioned increase in the

frequency of flipping events leads to both the median and the box size of λx increasing,

corresponding to an increase in the probability of observing unstable loose conformations.

Because the flipping events happen more often, λx values that indicate loose conformations

and appear as outliers in box plots for Kd ≤ 1.0, start to blend into the middle quartiles of

the distribution for larger values of Kd. As a result, we observe a concomitant decrease of

the number of outliers for λx in the range of Kd > 1.0 in Fig. 7. For λy and λz, both the

median and the number of outliers increase as Kd goes up, which is also the result of the

increase in the flipping frequency.

IV. IMPLICATIONS FOR FIBRIL ASSEMBLY

Thus far, we have looked into isolated MC chains and shown how flipping events alter

the conformation of a single MC chain. However, MC forms high aspect ratio fibrils in

experiments, which involve multiple polymers. Although it is challenging to simulate such

a large system, we can launch smaller simulations and still gain insights into the fibril

formation mechanism. Given the limited number of simulations we can perform for multi-

chain systems, our insights should be considered anecdotal, similar to previous work using

similar simulations [33].

We thus want to examine, in a simple system, how a flipping event can aid the assembly

of a series of smaller rings into a larger tubular structure, even if the initial condition is

unlikely to be observed in practice. We return again to the model of Huang et al. [8] where

Kd = 2.0. We first generate the initial ring conformation by simulating a single 1000-mer

MC chain at Kd = 2.0. Afterwards, we make four replicas and place the resulting five rings
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face-to-face in series [33] with the center-to-center distance along the axis being 5.4 nm, as

seen in the first snapshot of Fig. 8. We then launch the simulation for 3 × 107 steps with a

time step of 1 × 10−4τ under the same elevated temperature, 50 ○C.

As the simulation proceeds, the three rings on the top form one tube, while the two rings

on the bottom form a second tube. The blue chain, which is on the top of the first tube, then

undergoes a flipping event, which allows this chain to stick out several “arms”. Then one

of the arms extended out to pass through the hollow space inside the first tube and reached

the top face of the second tube. Because the loose conformation of the blue chain is not

stable due to the self-attraction, it collapses back into the ring structure. In the meantime it

drags the second tube to attach to its tube. After this, the unified proto-fibril relaxes into a

more symmetric structure, and then the blue ring goes through another flipping event. The

final structure is a single fibril-like structure that has grown in the longitude direction. A

movie for this 5-ring simulation is available in the Supplemental Material [37].

The dynamics in Fig. 8 imply that the flipping events induced by the dihedral potential

can facilitate the assembly of distinct rings, which then aid in the formation of the longer

fibril structure, in particular to facilitate alignment of the proto-fibrils. We also noticed in

Fig. 8 that there are two flipping events in the course of the simulation, and the time interval

between these two flipping events is 1430τ . This lies within the time interval distribution in

Fig. 3 for Kd = 2.0, albeit larger than the median. Furthermore, the two flipping events in

Fig. 8 both occur for the blue chain, which has one face not attached to other chains. We

thus suspect that the energy barrier imposed by neighboring chains plays an important role

in the frequency of flipping. If a chain is trapped in the middle of the proto-fibril, it has a

lower mobility that prevents escape from its neighbors and flipping into a loose structure.

As such, the interior of the tube is stabilized by excluded volume and attractive interactions,

while the faces of the tube can flip. The net result is a preference towards axial growth of

the fibrils.

While Fig. 8 makes a promising connection between flipping of an individual chain and the

dynamics of fibril assembly, there are some limitations of the model and simulation method

that attenuate our enthusiasm. First, in the course of simulation, we initiate the simulation

by equilibrating the MC chain at 25 ○C, and then make an instantaneous temperature jump

to 50 ○C to form the ring structure. This method ignores the time required for heat transfer,

which is a potential but not critical problem. Heat transfer limitations certainly make the
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FIG. 8. Snapshots of initial, intermediate, and final structures in the five-chain simulation at 50

○C. The ring is formed from a single chain simulation with N = 1000. The initial configuration was

constructed by placing five replicas of a ring with the spacing of 5.4 nm. Each color represents one

MC chain.

estimation of the time for chain to collapse inaccurate, but the flipping events occur at the

higher temperature. Inasmuch as fibril formation takes longer than the time to heat the

sample, flipping events could still play a role in the sol-gel transition.

Another important point to consider is the effect of MC concentration. Our single-chain

simulations are always in the dilute limit based on the simulation box size. We observed that

as we increase the polymer concentration in our simulation and start from a relaxed solution

at 25 ○C, making a sudden temperature jump to 50 ○C leads to the MC chains becoming

entangled and trapped in a network, instead of forming rings [33]. Moreover, the branches

of these networks do not necessarily have a uniform diameter, contrary to what has been

observed in experiments. The issue with polymer density is consistent with what we see in

Fig. 8: the frequency of the flipping is reduced due to the more “crowded” environment, thus
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making it less likely to cross an energy barrier into another collapsed state. It is definitely of

great interest to study a larger system with multiple MC chains at a higher concentration.

Unfortunately, the system size and simulation time required to directly simulate gelation are

well beyond the computational limits, and suggest the need for a simpler (or softer) model

to study gelation.

A way to circumvent this situation and still get an estimate of fibril formation within the

present model is to use biased initial configurations. Instead of a completely relaxed-coil

structure, the initial configuration can be set as a partially relaxed and a partially ring-like

structure. In reality, this initial configuration could correspond to a fast nucleation where

part of an MC chain collapses while the rest remains as relaxed intermediate segments or

dangling ends. In this way, it might be possible to study the interaction of MC chains at

a higher concentration while also preventing the entangled structure. This biased initial

configuration could also help to explain the “bridge” or “ghost” structure that connects two

successive fibrils along the axial direction, as observed in experiments [4, 5, 19]. In these

experiments, MC fibrils consist of collapsed rings that are interlinked by either stacking or

wrapping onto the end of an existing fibril or another ring. It is further proposed that the

MC gelation is a two-step process [19] beginning with a single or proto-tube nucleus as a

precursor, and a secondary nucleation and growth process. This biased partial-coil/partial-

relaxed initial configuration could act as an intermediate state in this two-step process to

promote our understanding of the secondary nucleation while saving computational effort

in the primary nucleation process. Alongside the flipping events, as we described above,

this biased initial configuration could also contribute MC free ends that connect between

different groups of proto-tubes. These free ends could also rationalize the “bridge” or “ghost”

structure, as observed in experiments.

Finally, there is a potential problem using an implicit solvent. Although the gelation

in the coarse-grained model is driven by the self-attractive interactions of the MC chain at

elevated temperature, in reality, the hydrogen bonding between hydroxy groups on MC and

solvent molecules may play an important role in the gelation mechanism. The nature of the

interactions between water and MC in the fibril state remains an open question. Moreover,

the detailed structure of water in the vicinity of the polymer chains also may be important.

While small angle neutron scattering data [5] indicate that the fibrils contain approximately

60% water, neither the latter experiments nor cryo-TEM measurements [4, 5, 19] provide
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definitive evidence that the water is located within the core of a fibril. It is possible that

the water and the hydrophilic groups of MC are coordinated, rather than being locally

segregated as predicted by the present model [8]. Addressing the details of water-MC co-

ordination in the gel state by simulation is exceedingly difficult, requiring sufficient contour

length to form a fibril while maintaining atomistic resolution. The requisite simulation is

at least an order of magnitude larger than the atomistic simulations [32] used to determine

the coarse-grained parameters used here [8], and likely infeasible. As a result, it is possible

that while the coarse-grained, non-bonded interaction potentials could provide an accurate

representation of that between a pair of very short MC chains, they may not capture the

nature of the interactions in the relatively polymer-dense environment of the fibrils. Elu-

cidating the detailed interactions between water and MC within a fibril may unlock a key

step towards understanding fibril formation.

V. CONCLUSION

Recent experimental studies [4, 5] on the structure of methylcellulose gels revealed a

fibrillar morphology, overturning the prevailing model of physical gelation for these materials.

While the experimental evidence for fibril formation is clear, the detailed gelation mechanism

remains poorly understood. In the present contribution, building on the simulation method

in Huang et al. [8], we showed that the previously overlooked flipping events, characterized

by a sudden chain conformational change, can help a methycellylose chain to re-orient itself

from one collapsed state to another, as well as facilitating assembly of multiple rings into

stacks. We further studied the methylcellulose chain with a range of dihedral potential

strengths, and found that relatively small changes in the strength of dihedral potential

could have strong effects on the flipping statistics.

We expect that in simulations flipping events will prove particularly important for semi-

flexible self-attractive polymer models, as they help the chain to escape from local energy

traps due to the intramolecular interactions. We also anticipate that this rapid conforma-

tional change will provide insights into the discrepancy between the high polymer concen-

trations, where fibrils form in experiments, and the low polymer concentration required in

simulations in order to get ring-like structures. However, due to computational limits, we

are unable to directly simulate gelation at a higher concentration. Further progress may
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require another level of coarse-graining into the interactions between rings. Computing a

potential of mean force between pairs of rings would allow us to incorporate the effect of

flipping events and go beyond the existing ring-based model [33], which relies on analogies

with the helix-coil transition. Questions also remain regarding the dynamics of gelation as

a function of heating rate, since we had an unrealistic sudden temperature jump through-

out the simulation. Elucidating the connections between heat transfer, concentration and

gelation is an interesting avenue for future studies and will provide new insights into the

methylcellulose gelation mechanism.
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