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Recent advances in active soft structures envision the large deformations resulting from mechanical
instabilities as routes for functional shape-morphing. Numerous such examples exist for filamentary
and plate systems. However, examples with double-curved shells are rarer, with progress hampered
by challenges in fabrication and the complexities involved in analyzing their underlying geometrical
nonlinearities. We show that on-demand patterning of hemispherical shells can be achieved through
constrained buckling. Their post-buckling response is stabilized by an inner rigid mandrel. Through
a combination of experiments, simulations and scaling analyses, our investigation focuses on the
nucleation and evolution of the buckling patterns into a reticulated network of sharp ridges. The
geometry of the system, namely the shell radius and the gap between the shell and the mandrel,
is found to be the primary ingredient to set the surface morphology. This prominence of geometry
suggests a robust, scalable, and tunable mechanism for reversible shape-morphing of elastic shells.

PACS numbers: 46.70.De, 62.20.mq, 68.35.Gy

Active soft structures are burgeoning in engineering for
their promise of compliant, dynamic and programmable
mechanisms. Examples include soft-robotics [1, 2], de-
ployable structures [3–5], surface patterning [6, 7], and
4D-printing [8]. Mechanical instabilities have been cen-
tral to harnessing these new modes of shape-morphing
that derive from the ensuing large elastic deforma-
tions [9]. As such, shape-morphing has been widely stud-
ied in slender filamentary structures [10] and plates [6,
11]. By contrast, instances of surface patterning of
curved shells are yet to be fully exploited in technology,
even if examples do exist in nature (e.g. pollen grains [12]
and drying green peas [7]), and synthetic analogue sys-
tems have been developed at the colloidal scale [13].
This discrepancy is surprising given the ubiquitousness
of shells for enclosure, protection and load bearing; from
capsids [14] and colloidosomes [15] to metallic shells [16]
and architectural domes [17].

Here, we study the post-buckling patterns obtained
by pneumatic actuation of a thin elastic shell that is
constrained from within by a rigid mandrel (Fig. 1a).
The patterns comprise a periodic lattice of dimples that
tile the originally spherical shell as they are sequentially
triggered through buckling. Once fully developed, the
resulting pattern morphs into a reticulated network of
sharp ridges that separate adjacent facets of the tiling
(Fig. 1a4). Combining experiments, scaling analyses and
computer simulations, we rationalize the mechanics of
this system. Starting with the dimple as an individual
building block, we characterize how its size depends on
the radius of the shell and the gap between the shell and
the mandrel. A geometric construction is introduced to
describe the nucleation process. Once the pattern is fully
developed, in the regime of sharp ridges, we reduce the
local deformation of the shell to a two-dimensional prob-
lem and describe the evolution of the ridge profile for

increased loading. Our minimal theoretical framework
allows us to customize and control the surface pattern-
ing towards programmable topography. This versatility
in tuning the morphology of the patterns is in sharp
contrast with classic pattern formation of bilayer sys-
tems [18–21], where patterns are primarily mediated by
elasticity and set by the material parameters that cannot
be readily changed.

In our experiments, we used elastomeric hemispheri-
cal shells produced via rapid fabrication techniques [22],
with radii in the range 25 ≤ R [mm] ≤ 77.5. A rigid
hemispherical foundation of radius Rm < R was placed
concentrically inside the shell, such that the gap between
the shell centerline and the surface of the outer mandrel
was G = R −Rm (Fig. 1b). The ensemble was mounted
onto a base plate, and sealed, to pneumatically control
the volume within the gap, while monitoring the pres-
sure. In Fig. 1a and Movie S1 [23], we present a series of
representative photographs of the obtained buckling pat-
terns for a shell (R = 38.5 mm, h = 200µm, G = 2 mm,
VPS-32) as its volume is progressively decreased (a1-
a4 ∆V = {0, 8, 15, 30}mL respectively). These pat-
terns comprise a periodic tiling of dimples, which are in-
wardly inverted localized caps of the hemispherical shell.
When the volume enclosed under the shell is decreased,
these dimples appear progressively and are stabilized by
the contact with the mandrel. The regions in between
neighboring dimples then become increasingly sharper
(Fig. 1a3) and morph into a network of sharp ridges
(Fig. 1a4). The pattern topography is quantified by dig-
itizing the surface using a 3D laser scanner, to determine
the centroids of each dimple.

The dimple size, L, is defined as the distance between
two neighboring centroids, averaged over the entire pat-
tern. Each dimple grows until it comes into contact
with the mandrel. Following the geometrical argument



2

a1 a2 b c d

a3 a4

0
0 0.5 1

0.5

1

1.5

2

0
0 5 10 15

5

10

15

10

10

100

100

FIG. 1: (a) Photographs of a shell as its volume is progressively decreased. (b) The dimple size L scales linearly with the

characteristic length `g = 2
√
RG. Solid black (resp. green dashed) line represents the geometric prediction (resp. the best fit

of the data). (c) Ratio of the numbers of dimples N2/N1 vs. the gap ratio G2/G1. The solid line is the prediction from Eq. (1).
(d) Number of dimples N versus the pressure P in the inner inflatable mandrel. Scalebars indicate 20 mm.

of Pogorelov [24, 25], by assuming that an inverted cap
of radius R grazes the mandrel, yields the characteristic
length,

`g = 2
√
RG, (1)

which we use to model the diameter of each dimple when
it first contacts the mandrel. In Fig. 1b, we plot L as a
function of the characteristic length `g, for shells with
different stiffnesses E = {1.25, 1.96}MPa, thicknesses
140 ≤ h [µm] ≤ 520, radii R = {25, 38.5, 63.5}mm,
and gaps 0.4 ≤ G [mm]≤ 4.2. The data collapse onto a
linear master curve. We find that the best fit of the
data (dashed line in Fig. 1b) is obtained for L/`g =
1.22 ± 0.05, so that L is independent of the material
properties and thickness of the shell over the experimen-
tal conditions explored. These results contrast with the
characteristic buckling length near threshold predicted
by the classic theory for pressurized shells [16, 26, 27],

`b = 2π
√
Rh/[12(1 − ν2)]1/4, for a spherical shell with

radius R, thickness h, and Poisson’s ratio ν. Note that
the classical bifurcation mode is only valid for a small
range of deflection, of the order of the shell thickness,
whereupon the buckling mode localizes at the pole as an
inward dimple [28]. In our constrained case, the selec-
tion of the dimple size occurs well into the post-buckling
regime and the geometry of the gap dictates the sequence
of buckling events. For gaps smaller than the shell thick-
ness, the shell can fully conform to the mandrel, with no
dimples, as the deformation is smoothly accommodated
through stretching. At the opposite end, in the limit of
large gaps, the first dimple may display localized features
(s-cones) [29, 30], prior to triggering a second dimple. To
further illustrate the key role of geometry in this problem
we proceed to vary the gap G in two ways: spatially and
dynamically.

In Fig. 1c, we present snapshots for the case where G
is a step function; the radius of the mandrel decreases
sharply along one of its great circles, from G1 (left re-
gion) to G2 (right region), with G1 > G2. We find that
there are two possible outcomes: (i) two populations with

different dimple sizes coexist on the shell, separated by a
common ridge at the locus of the step; and (ii) for small
enough values of G2, only one half of the shell (with G1)
is dimpled, whereas the shell conforms uniformly to the
mandrel on the other half. These two regimes are evident
from Fig. 1c, where we plot the ratio between the num-
ber of dimples N1 and N2 in the regions with G1 and G2,
respectively, as a function of G1/G2 for a VPS-32 shell
(R = 63.5 mm, h = 320 µm, 0.4 < G [mm] < 4.2). From
Eq. (1), we expect N1/N2 = G2/G1 (Fig. 1c, solid curve),
which is in agreement with the experimental data, except
for case (ii) with N2 = 0, when G2 becomes of the or-
der of the shell thickness and the shell conforms to the
mandrel. Therefore, modulation of the gap between the
shell and the mandrel can be an effective route to pro-
duce Janus-like particles [31, 32], with regions of distinct
surface topography.

We now demonstrate that the pattern size may also
be tuned dynamically when actively controlling the gap
between the shell and the mandrel. We used an inflat-
able elastic mandrel (Young’s modulus Em=1.25 MPa,
thickness hm = 2.2 mm), whose size can be modulated
by actuating its internal pressure, P . This inner pres-
sure is set independently from the pressure inside the
gap. Reverting to an unbuckled configuration each time
P is changed, we find that N varies in discrete steps
(Fig. 1d). To rationalize our observations we return to
the rigid mandrel case and proceed to investigate the
pattern formation. First, we focus on the nucleation of
the dimples at moderate pressures of the order of the
critical buckling pressure. Second, we describe how the
fully-developed periodic pattern morphs into a network
of sharp ridges for larger values of depressurization.

In Fig. 2(a1-a6), we present a sequence of photographs
of a VPS shell (R = 38.5 mm, h = 430 µm, G =
3.05 mm) that is progressively depressurized, from the
onset of the first dimple up to full coverage of the surface
(∆V = {1.05, 2.26, 3.03, 4.17, 5.22, and 15}mL, respec-
tively). A single dimple first appears at d1, the locus
of the largest imperfection [26] set uncontrollably by the
fabrication process (Fig. 2a1). This dimple then itself



3

FIG. 2: (a1-a6) Progression of the dimple front as the vol-
ume is decreased. The dimple centered at d2 may form any-
where on the circle C1 of center d1 and radius L. C1 and
C2 (centered on d2 with radius L) determines the locus of
the next dimple, thereby extending the pattern, which even-
tually forms a regular hexagonal tilling on the sphere (with
some distributed defects). (b) Bifurcation diagram. The
buckled area S̄ = S/2πR2 is shown as a function of the nor-
malized pressure p̄ = ∆p/pct. Experimental data for the un-
constrained (circles) and constrained shell (diamonds/squares
for increasing/decreasing ∆V ). FEM results shown uncon-
strained (solid line) and constrained (dashed lines) cases; re-
gions where the corresponding experimental configuration is
non-axisymmetric are indicated by the dotted line (axisym-
metry is assumed in the numerics). (Inset) Surface topogra-
phy z/G of the shell for the constrained case (1)-(4) and the
unconstrained case (5)-(6).

acts as a seed for the second buckling event nucleated at
d2, at a distance L from d1 (permissible at any point of
the circle of center d1 and radius L plotted on Fig. 2a2).
Both dimples now act as a combined seed and the third
dimple forms where the perturbation is strongest; the in-
tersection of the two circles of radius L centered at d1

and d2, respectively (Fig. 2a3). The subsequent dim-
ples are induced following an identical inductive scheme
(Fig. 2a4-5) until the entire surface of the hemisphere
is populated. By design, this geometrical construction
leads to a hexagonal tiling and the corresponding Voronoi
mesh of the centers of the dimples overlaps with ridges of
the pattern (Fig. 2a6). However, since a curved surface
is not compatible with a perfect hexagonal lattice [33–
35], the patterns contain pentagonal topological defects
of the lattice (Fig. 2a6). For a given shell, the buckling
process is highly reproducible, even if the order in which
the dimples appear and their positions can be tailored
and controlled by seeding defects at specific locations on

the surface of the specimen [23].

The resulting post-buckling periodic pattern is now
contrasted to the unconstrained case (no mandrel) for
the same shell. Specifically, we compare the dimen-
sionless cumulative surface area covered by the dimples
S̄ = S/2πR2 in both cases (i.e., the area S of the re-
gions that are inverted normalized by the total area of
the hemisphere of radius R). The digitized surface profile
of the sample (Fig. 2b, inset) is used to evaluate S̄. To
quantify the extent of loading, we define p̄ = ∆p/pct,
where ∆p is the pressure differential between the in-
side of the shell and the outer ambient pressure, and pct
is the classic critical buckling pressure prediction [26],

pct = 2E/
√

3(1− ν2)(h/R)2.

In Fig. 2b, we plot S̄ versus p̄, for both the un-
constrained and the constrained cases (R = 38.5 mm,
h = 240µm, G = 2.2 mm). The onset of the first dim-
ple (in both cases) occurs at p̄ = 0.67, since intrinsic
imperfections of the shells reduce the buckling pressure
to a fraction of the critical pressure required for a per-
fect shell to buckle, pct [26, 36–38]. After a dimple ap-
pears in the unconstrained case [circles in Fig. 2b and
insets (5)-(6)], its size increases throughout the process,
p̄ decreases monotonically [39] and no other dimples are
observed. Conversely, in the constrained case (Fig. 2b,
diamonds for increasing p̄ and squares for decreasing p̄),
a single large buckled region cannot occur since the shell
eventually contacts the inner rigid mandrel at the pres-
sure p̄m. As a result of this geometrical frustration, an
increase in S̄ comes at the expense of an increase in p̄.
Increasing p̄ along the branch B1, we find that a second
dimple eventually appears for p̄ ' 0.5 and the system
jumps to a new branch B2. A similar sequence of events
yields subsequent dimples until the pattern is fully devel-
oped. The associated jumps onto new branches (B3 de-
notes the third dimple and B4 for the fourth) are reported
in Fig. 2b. The threshold pressure from one branch to
the next occurs at an approximately constant value of
p̄ ' 0.5 for all dimples. The reverse path, decreasing p̄
from the fully developed pattern down to the unbuck-
led configuration, is presented in Fig. 2b (squares). Each
branch is followed down until a dimple snaps back and
the system jumps to a lower branch, with strong hystere-
sis. The various jumps from one branch to another (as
dimples disappear sequentially) occur at a similar value
of pressure, p̄ ' 0.2.

To further explore the role of the mandrel in our sys-
tem, we performed numerical simulations using a finite
element method (FEM) accounting for contact between
the shell and mandrel [23]. The FEM results (dashed
and solid lines in Fig. 2b for the constrained and un-
constrained cases, respectively) are superposed onto the
experimental data with favorable agreement. For the val-
ues of p̄ beyond which the experimental configuration
is nonaxisymmetric (not considered in the simulations),
the FEM data are plotted as dotted lines. We recover
the fact that p̄ increases (resp. decreases) with S̄ in the
constrained (resp. unconstrained) case. These results
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FIG. 3: (a) Evolution of the computed ridge profile predicted
by integration of the Elastica, for increasing values of ∆p.
The dotted line corresponds to an experimental profile for a
PDMS shell (R = 38.5 mm, h = 450 µm, G = 2.2 mm, ∆p =
510 Pa). (Inset) Schematic of the ridge profile. (b) Width, λ
(green circles), and amplitude, δ (blue squares), of the ridge
for the same shell as in (a), as a function of the pressure load,
∆p. The solid lines corresponds to the integration of the
Elastica for the amplitude (resp. width) accounting for the
shell thickness [23]. (c) Linear dependence of λ with respect

of the elasto-pneumatic length `ep = (B/∆p)1/3 for PDMS
shell (R = 38.5 mm, 195 < h[µm] < 450, G = 2.2 mm). The
solid line is corresponds to our model when accounting for the
effect of the shell thickness on λ.

suggest that the modified energetics induced by the con-
straining mandrel [23] are at the basis of the periodic
buckling patterns.

Thus far, we have identified the role of geometry in the
selection of the dimples size and number, as well as their
sequential apparition at the surface of the shell. Next, we
turn to examining the patterns obtained in the limit of
large depressurization, i.e. beyond the point of full cov-
erage (Fig. 1a2-4). As p̄ is increased, the ridges between
neighboring dimples become increasingly sharper, and
eventually localize into a reticulated network (Fig. 1a4).
We have cycled the pressure ∼1000 times in the range
0 ≤ p̄ ≤ 30 and found that the process is fully reversible,
with no structural damage, ought to the elastomeric na-
ture of the shells.

We now quantify the morphology of the ridges and
measure their width, λ, and amplitude, δ, using a laser
sheet (Fig. 3a, inset). In Fig. 3a, we show an example
of the height profile of a single ridge for a shell (R =
38.5 mm, h = 450 m, G = 2.2 mm) at ∆p = 510 Pa (black
dotted line). The corresponding dependencies of λ and
δ on ∆p are plotted in Fig. 3b. As ∆p increases, both λ
and δ decrease, such that the aspect ratio δ/λ increases
and the ridges become sharper.

The evolution of the shape of the ridges with ∆p is
rationalized by further reducing the problem to a two-
dimensional construct that considers a slice of the shell
perpendicular to the ridge, and modeling it as an Elas-
tica with bending stiffness B = Eh3/12(1 − ν2) [23]. In
Fig. 3a, we present a family of solutions for loadings in

the range 0 ≤ ∆p [kPa] ≤ 101, for the shell considered
above. For relatively low values of ∆p, the solution has
a sinusoidal profile (Fig. 3a, blue curves), similarly to
a ruck on a rug [40], whereas at high ∆p (Fig. 3a, red
curves), the ridges collapse onto the surface of the man-
drel and become sharper. In Fig. 3a, we superpose the
computed shape, for the specific case of ∆p = 510 Pa,
on top of the experimental profile (dotted line). Favor-
able quantitative agreement is found with no adjustable
parameters.

Likewise, the evolution of the amplitude, δ, and width,
λ, of the ridge, as a function of ∆p is well captured by
our reduced Elastica description while accounting for fi-
nite shell thickness into account [23] (Fig. 3b). Note that,
in this regime, the shell is almost entirely in contact with
the mandrel. Surprisingly, even if our reduced model
neglects the initial stretching in the ridges, it does suc-
cessfully capture the evolution of both the profile and di-
mensions of the ridges, as a function of ∆p. However, our
description is limited to the central part of the ridges and
fails to describe the interconnection of the network, where
stretching is likely localized. In Fig. 3c, we plot λ versus

`ep = (B/∆p)
1/3

, the elastopneumatic length set by the
balance of elasticity of the shell and the pressure load-
ing, for three shells of thickness h = {195, 240, 450}µm,
R = 38.5 mm and G = 2.2 mm. All the data collapse
onto a master curve with λ ∼ `ep. Integration of the
model yields the solid lines in Fig. 3c when accounting
the finite shell thickness [23]. At high values of ∆p, the
theory suggests that there is a lower bound at `ep ≈ 1,
below which self-contact in the ridge occurs and the de-
scription is no longer valid. This is consistent with our
observation that the experimental data in Fig. 3c de-
parts from the λ ∼ `ep regime when `ep ' 1. In physi-

cal units, we find that λ ∼ ∆p−1/3 such that producing
sharp ridges requires relatively high pressures (consider-
ably larger than the atmospheric pressure). In turn, we
observe that the variation of δ with ∆p is weaker than
that of λ (see Fig. 3b). Consequently, the sharpness (as-
pect ratio) of the ridge, δ/λ, can be readily varied and
controlled through ∆p, a single scalar parameter.

The ability to control dimpled patterns on demand
could find applications for the fabrication of microlens
arrays [41, 42], nanoscale surface patterning [6] or tun-
able aerodynamic drag reduction [18]. Our study may
also extent avenues for geometry-dominated responses in
the buckling of shells that have been recently developed
at the microscale, such as colloids that self-assemble [13],
Janus-like particles with regions of distinct surface to-
pography [32] or deformation of colloidosomes [15].
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