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Lattice constant and cohesive energy are the basic properties in the design of materials and
devices. However, due to neglect of long-range van der Waals (vdW) interactions, density functional
approximations (DFAs) often yield unusually large errors for ionic solids and heavy metals. Here, we
propose a model for the dynamically screened vdW correction, including the leading-order as well
as higher-order contributions. The striking feature of this model is that important screening effects
and higher-order contributions are properly considered, and that its contribution to the short-range
part is removed by a novel damping function for the avoidance of double counting. As a result, the
model dramatically reduces the error of the DFA-GGA in lattice constant and cohesive energy. We
also find that the three-body interactions are small, due to the screening effects. These observations
greatly improve our fundamental understanding of vdW interactions and enhance the applicability
of efficient semilocal DFAs.

PACS numbers: 71.15.Mb,34.20.Gj,31.15.E-

Ionic solids and heavy metals are important materi-
als representing two extremes in electric and mechanical
properties. The former are hard insulators with large
energy gaps but low fracture toughness, while the lat-
ter are soft conductors with zero energy gap and excel-
lent ductility. Due to their wide applications, they have
been extensively studied [1, 2]. Among the two different
classes of materials, one thing is common. Both contain
important van der Waals (vdW) interactions.

In the development of density functional approxima-
tions (DFAs) to the exchange-correlation energy [3–11],
Kohn-Sham density functional theory has reached a high
level of sophistication. In recent years, a large volume of
literature studying lattice constant and cohesive energy
with various DFAs has appeared. It was shown [12–15]
that the local spin-density approximation (LSDA) tends
to underestimate lattice constant and overestimate cohe-
sive energy, while the generalized gradient approximation
(GGA) tends to approach experimental values from the
opposite direction. The reason is that, for bonded sys-
tems, LSDA tends to overestimate the short-range part
arising from the electron density overlap [16], which often
over-compensates for the long-range van der Waals inter-
action absent in semilocal DFAs [17]. As a result, LSDA
yields too-short lattice constants [4], leading to too-large
cohesive energy. However, the error of LSDA in cohe-
sive energy is much less dramatic than that in molecular
atomization energies, because the equilibrium separation
between atoms in molecules is much smaller than that
between atoms or ions in solids.

GGA [3] corrects the overbinding tendency of LSDA
by raising the constant LSDA exchange enhancement
factor through the incorporation of density gradients.
The GGA exchange enhancement factor Fx is defined
by Ex[n] =

∫

d3r nǫunifx (n)Fx(n,∇n), where n(r) is the
electron density. This gradient correction largely reduces

the overbinding tendency of the LSDA [18]. Since there
is no compensation for the missing long-range part, GGA
tends to produce too-long lattice constants and too-small
cohesive energies. The GGA correction to the short-
range part of LSDA is successful in solids (although less
so in molecules). This suggests that GGA for solids needs
a full van der Waals correction [19–22].

Many van der Waals (vdW) corrections have been pro-
posed [23–27]. Some of them only consider the dipole-
dipole interaction. Since the equilibrium separation be-
tween molecules in the gas phase is larger than that in
the solid phase, higher-order interactions are less signifi-
cant in the gas phase, compared to the leading-order one.
However, they become important in solids, as demon-
strated by recent works [19, 28]. (For intramolecular in-
teractions, higher-order terms are also important.) Thus
there is great demand for the development of vdW cor-
rections that include higher-order contributions.

In this work, we propose a vdW correction to DFA for
solids, and combine it with the PBE GGA [3] to calcu-
late lattice constants and cohesive energies of ionic solids
and metals [1, 2]. In our formulation, the screening ef-
fect is accounted for via the modified Penn model [29] for
the frequency-dependent dielectric function. Our goal is
to provide a long-range vdW correction. This goal can
be achieved with a damping function, which is designed
to remove its contribution to the short-range part. Our
calculations show that, with this screened vdW correc-
tion, the mean absolute error of GGA drops by a factor
of three for lattice constant and a factor of two for cohe-
sive energy, substantially improving the performance of
GGA. We also find that the three-body contribution is
very small, due to the dielectric screening. The structural
phase transition from face-centered cubic (NaCl) to sim-
ple-cubic structure (CsCl) for Cs halides can be correctly
predicted by the LSDA and all vdW-corrected DFA.
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Formulation. The expression for the vdW correction
to the DFA lattice constant can be derived by generaliz-
ing the formula of Ref. [30] valid for bcc (body-center
cubic) structure of alkali metals to any cubic lattice.
For this purpose, let us begin with the equation of state
(EOS) of a solid ǫ(v) = ǫDFA(v)+ǫvdW(v), where v is the
volume/atom, the first term on the right is the total en-
ergy/atom from DFA calculation, and the second term is
the vdW contribution, which is absent in semilocal DFA.
Then we expand the EOS around the DFA equilibrium
volume v0. For any cubic lattice, we have

ǫDFA(v) = ǫDFA(v0) + (9p/2)B0a0(∆a)2, (1)

where ∆a = a − a0, with a0 being the DFA equi-
librium lattice constant, and p = 1 for simple cu-
bic, 1/2 for bcc (body-center cubic), 1/4 for fcc (face-
center cubic), and 1/8 for the rock salt (rs), dia-
mond, and zinc-blende structure. B0 is the bulk mod-
ulus defined by B0 = v0d

2ǫDFA(v)/dv2|v=v0 . In the
derivation of Eq. (1), we have used the fact that at
the equilibrium state, the first derivative of the en-
ergy vanishes. This leads to ǫvdW(v) = ǫvdW(v0) +
3pa2(dǫvdW(v)/dv)|v=v0∆a + (9p/2)∆Ba0(∆a)2, where
∆B = v0d

2ǫvdW(v)/dv2|v=v0 is the vdW correction to
the bulk modulus, and dǫvdW/dv = (1/3pa2)dǫvdW/da.
The vdW correction to the lattice constant of DFA

can be obtained by putting ǫDFA(v) and ǫvdW(v) to-
gether and minimizing the total energy. This im-
mediately leads to the vdW correction, ∆a = a −
a0 = −(1/9a0p)ǫ

′

vdW(a0)/(B0+∆B0), where ǫ
′

vdW(a0) =
dǫvdW/da|a0

. However, the PBE GGA tends to under-
estimate the bulk modulus, as seen from Table S4 of
the supplemental material (SM) [31] (see discussion be-
low). Adding the vdW correction (negative value) will
slightly worsen the PBE bulk modulus. This term will
be dropped. (If more accurate bulk moduli are used, the
error will become smaller, as shown below). This leads to

∆a = a− a0 = − 1

9a0pB0
ǫ′vdW(a0). (2)

The vdW correction to the cohesive energy is ∆ǫcoh =
ǫcoh − ǫDFA

coh = −ǫvdW(v). The quantities ǫvdW(v) and
dǫvdW/da can be calculated as follows. According to
second-order perturbation theory, the vdW interaction
between well-separated spherical objects is given by
ǫvdW = −C6/d

6 − C8/d
8 − C10/d

10, where d is the dis-
tance between two centers, and C6, C8 and C10 are the
vdW coefficients [32, 33], measuring the dipole-dipole
(C6), dipole-quadrupole (C8), as well as dipole-octupole
and quadrupole-quadrupole (C10) interactions.
In solids, the vdW interaction can be reduced by the

screening effect from valence electrons [34]. For solids
with the fcc or rs structure, the atoms or ions are so close
to each other that a proper damping function must be
applied to each term in the asymptotic formula ǫvdW and

its derivatives. However, a damping function is usually a
step-like function of the distance d between atoms or ions.
It rapidly goes to zero when d is smaller than the sum
of the vdW radii, and approaches unity quickly when
d is greater than the sum of the vdW radii. As such,
its derivatives are highly sensitive to the choice of the
vdW radius. To avoid this sensitivity problem but still
fulfill the requirement that both the vdW energy and its
derivatives must be finite everywhere, we calculate the
vdW energy and its derivatives with respect to a first,
and apply the damping function to each term in both the
asymptotic expansion and its derivatives second. (This
procedure will be explored in future work.) Thus the
vdW interaction and its derivative per ion are given by

ǫvdW =
−1

2

∑

i,j,k

Nok

(

Cij
6

d6ok
+

Cij
8

d8ok
+

Cij
10

d10ok

)

f ij
d (dok), (3)

ǫ′vdW =
∑

i,j,k

Nok

a

(

3Cij
6

d6ok
+

4Cij
8

d8ok
+

5Cij
10

d10ok

)

f ij
d (dok), (4)

Here i, j represent positive (A) and negative (B) ions
in ionic crystals and i = j (i.e., A = B) in metals. k
represents the k-th nearest neighbor shell of Nok atoms
or ions, and dok is the distance between the ion at o and
those in the k-th shell. f ij

d (dok)is the damping function.
Several damping functions have been proposed [35–

38]. A common feature of these damping functions is
that they allow some amount of the long-range part to
contribute to the binding energy when d = dijvdW. How-
ever, the Fermi-like damping function [37] was designed
to cut off the short-range part of −C6/d

6. Because
−C6/d

6−C8/d
8−C10/d

10 must diverge faster as d → 0, a
much stronger short-range cutoff is needed. To meet this
consideration, we propose the following damping function

fd(d/dvdW) = 1/(1 + e−x)6, x = c(d/dvdW − 1), (5)

where d is the distance between ions, and dvdW is the
sum of the effective or vdW radii (see discussion below).
Following the prescription of Wu and Yang [37], we de-
termine c by requiring fd(d) = 0.99 at d = 1.2dvdW.
This gives c = 32. Figure S1 shows the comparison of
our damping function with the Fermi-like one fFermi

d (d).
From Fig. S1 we see that, as d approaches dvdW or smaller
than dvdW, fd(d) vanishes much faster than fFermi

d (d). At
the short range d = dvdW ≈ deq, fd(d) = 1/64, which is
much smaller than fFermi

d (d) = 1/2.
Determination of vdW radius. It is important to

cut off the vdW series at short range to avoid double
counting, because the short-range part will be described
by DFA in the DFA+vdW method. This cutoff can be
performed with a proper vdW radius via our damping
function of Eq. (5). Here we seek for a well-defined vdW
radius. Given the static multipole polarizabilitiies of an
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atom or ion from high-level ab initio calculations, we can
define the ionic vdW radii rl = [αl(0)]

1/(2l+1), where l =
1, 2, 3. For a classical conducting sphere of sharp radius
R, we would find r1 = r2 = r3 = R. For real atoms or
ions with rapidly varying electron densities, we find that
the sum of r3 for a positive and a negative ion yields
a much better approximation to the sum of Shannon’s
vdW radii [39], than does the sum of r1 or r2 (Table S4).
This leads us to choose r3 to define a vdW radius RvdW,
to cut off the vdW series at short range, and therefore re-
duces the risk of overcorrecting GGA. Next, we observe
that, for two classical conducting spheres A and B of
radii RA and RB, the vdW series may be summed to all
orders [40], and the resummed series diverges when the
separation between the centers approaches RA + RB, so
the vdW radius for the short-range cutoff of a truncated
vdW series (C6,C8,C10) should be Ri

vdW = b ri3, leading

to the sum of the vdW radii dijvdW = bir
i
3 + bjr

j
3, where

b > 1 and is of order 1.
Screened vdW coefficients. The screened vdW

coefficients between ions in a solid can be evaluated
from [34, 41, 42]

Csc
2m =

1

2π

m−2
∑

l1=1

(2(m− 2)!

(2l1)!(2l2)!

∫

∞

0

du
αA
l1
(iu)

ǫA1 (iu)

αB
l2
(iu)

ǫB1 (iu)
. (6)

Here l2 = m − l1 − 1, and αl(iu) is the dynamic mul-
tipole polarizability, which can be modeled by [30, 43]

αl(iu) = [(2l + 1)/4πdl]
∫ Rl

0 dr 4πr2r2l−2d4l ω
2
l /(d

4
l ω

2
l + u2),

where l = 1 (dipole), 2 (quadrupole), 3 (octupole), and
ωl = ωp

√

l/(2l+ 1), with ωp =
√
4πn being the local

plasmon frequency of the extended electron gas. Since
αl(iu) is not sensitive to the details of the electron den-
sity, it is evaluated from the Hartree-Fock densities [44].
The two parameters Rl = [dlαl(0)]

1/(2l+1) and dl are
determined by the low- and high-frequency limits [43]

(see Table S5). Taking R3 = RvdW leads to b = d
1/7
3 .

The bulk dielectric function ǫ1(iu) can be calculated as
follows. For alkali metals, the dielectric function is given
by ǫ1(iu) = 1 + ω̄2

p/u
2, while for transition metals, it is

given by [45, 46] ǫ1(iu) = 1 + ω̄2
pf/u

2 + Ω2/(u2 + ω2
0).

The second term is due to the free-electron intraband
transition, while the third accounts for the bound-
electron interband transition. Here ω̄2

pf = (1/mopt)ω̄
2
p is

the corrected bulk plasmon frequency, with mopt being
the optical mass [47]. The parameters mopt, ω0 and Ω
can be found from Ref. [48] (see Table S3).
The dielectric function of semiconductors and insula-

tors can be simulated reasonably well with the modi-
fied Penn model [49]. (See SM [31] for detailed expres-
sion.) The inputs to the model are the average valence
electron density obtained from n̄ = N/a3, with N be-
ing the number of valence electrons in a conventional
unit cell, bulk plasmon frequency ωp =

√
4πn̄, and the

effective energy gap ωg. (Atomic units are used un-
less otherwise explicitly stated.) To make the model

TABLE I: Statistical errors (in Å) of LSDA and PBE in com-
parison with our vdW correction and Grimme’s D3 [26] to lat-
tice constants and cohesive energies of ionic solids and metals.
ME = mean error and MAE = mean absolute error.

Lattice constant
LSDA PBE PBE+vdW PBE+D3

ME -0.103 0.134 -0.008 -0.089
MAE 0.103 0.135 0.043 0.098

Cohesive energy
ME 0.40 -0.18 -0.03 -0.04
MAE 0.40 0.18 0.08 0.07

realistic, ωg is determined by reproducing the correct
static limit of the dielectric function ǫ1(iu). We sat-
isfy this condition with the Penn model [50], ǫPenn1 (0) =
1 + (ω̄2

p/ω
2
g)[(1 + ∆2)1/2 −∆], where ∆ = ωg/4ǫF , with

ǫF = (3π2n̄)2/3/2 being the Fermi energy.

Lattice constant. We first calculate the DFA lat-
tice constants for 36 solids. All our calculations were
performed with the all-electron, full-potential electronic
structure code FHI-AIMS [51, 52] within the PBE
exchange-correlation potential. For comparision, the
LSDA lattice constants were also calculated with the
same code. In our calculations, the so-called “tight” set-
tings were used for all the elements. Second tier was
used to ensure the convergence of the basis functions.
Hartree potential and integration grid were also prop-
erly converged for the total energies of the solids and
isolated atoms. The atomic zeroth-order regular approxi-
mation [51] was applied to treat relativistic effects. A uni-
formly distributed mesh of 24×24×24 k-points was used
to ensure converged Brillouin zone sampling for solids
(see SM [31] for details). The deviations from experi-
mental lattice constants at 0K, with zero-point energy
(ZPE) effect removed, are summarized in Table I.

Next, we calculate the vdW correction with Eq. (2).
The input bulk moduli B0 can be calculated from EOS.
Several models [53–55] for EOS have been proposed.
These models should yield the same B0. In this work,
we calculate this quantity using the Birch-Murnaghan
EOS [53]. We find that this model yields B0 that agrees
with the quadratic fitting within 1 ∼ 2%. So, we believe
that this is the true PBE bulk modulus (see Table S4 for
detail). The vdW energy derivative is calculated from
Eq. (4), and the screened coefficients are obtained from
Eq. (6). The input static multipole polarizabilities and
the static dielectric functions are taken from ab initio

values in the literature. All the inputs are given in Ta-
bles S1-S3. The statistical error of the vdW correction to
DFA lattice constant is displayed in Table I. For compar-
ison, we have also calculated the lattice constants with
the popular PBE+D3 (including the 3-body term) and
PBE+TS methods proposed by Grimme et al. [26] (see
Table I) and Tkatchenko and Scheffler (TS) [24] (Tables
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S7), respectively.

From Table I, we observe that, without vdW correc-
tion, the PBE lattice constant is systematically too long.
The error is even larger than that of LSDA. This suggests
that there are strong vdW interactions in ionic solids and
heavy metals. For solids that have strong vdW interac-
tion, we observe that the lattice constant of LSDA is of-
ten more accurate than that of PBE, because the former
tends to overestimate the short-range part, which can
effectively compensate for the missing long-range vdW
interaction, as pointed out above. However, with the
vdW correction, the MAE of PBE drops from 0.135 Å
to 0.043 Å, significantly improving the performance of
PBE. The maximum deviation of PBE occurs for CsI in
the rs structure, but this error drops from 0.225 Å to
−0.043 Å with our vdW correction. The error is even
smaller (MAE = 0.035 Å), if experimental bulk moduli
are used (Table S7), supporting our formulation. We also
observe from Table I that the dispersion D3 also improves
upon PBE, but with an error (MAE = 0.098 Å) twice as
large as our correction. The TS model significantly wors-
ens the PBE values, with a huge MAE of 0.396 Å(see Ta-
ble S7 for detail), which is even larger than that without
correction. Our evaluation agrees well with that (MAE =
0.41 Å) of Kim et al. [56]. These authors have attributed
the TS errors for ionic [56] and metallic [57] systems to
the limitation [58] of the standard Hirshfeld partition-
ing. Much better results [56] were found from iterative
Hirshfeld partitioning [58], but we could not access that
correction to TS in FHI-aims. We have also applied the
many-body dispersion (MBD) extension [59] of the TS
model to these solids. But we have obtained only a few
usefully converged results, as shown in Tables S7-S8. By
fixing the convergence problem of MBD, remarkable re-
sults can be obtained [60].

Cohesive energy. Cohesive energy per atom is de-
fined as the difference between the energy per unit for-
mula in a solid and the total energy of constituent neu-
tral atoms, divided by the number of ions or atoms in a
unit formula. The DFA cohesive energies of 33 solids in
the same set for lattice constant are calculated with the
same code and parameter set. Due to the instability of
CsCl, CsBr, and CsI with rock salt (rs) structure, their
experimental cohesive energies are not available in the
literature. Therefore, these three solids with rs struc-
ture have been excluded in our error analysis in cohe-
sive energy. The statistical errors of the LSDA and PBE
are given in Table I. The calculated individual cohesive
energy and reference value can be found in Table S8.
(The ZPE effect has been removed from experiments.)
The vdW correction to cohesive energy can be obtained
from Eq. (3), with the screened vdW coefficients calcu-
lated from Eq. (6). We have also calculated the cohe-
sive energies with the PBE+D3 and PBE+TS methods.
From Table I, we can see that the vdW correction is
also important, reducing the error of PBE by a factor

TABLE II: Cohesive energies (in eV/atom) of CsCl, CsBr, and
CsI with rock salt (NaCl) and simple cubic (CsCl) structures.
Experimental values are taken from Ref. [61].

Str LSDA PBE PBE+vdW PBE+D3 Expt

CsCl
rs 3.51 3.12 3.24 3.23
sc 3.54 3.07 3.25 3.24 3.25

CsBr
rs 3.28 2.91 3.03 3.03
sc 3.31 2.87 3.04 3.05 2.98

CsI
rs 3.01 2.66 2.79 2.74
sc 3.05 2.63 2.79 2.76 2.83

of two, a result similar to PBE+D3, but much better
than PBE+TS (Table S8). This significantly improves
the PBE description of energetics. The maximum devia-
tion of PBE occurs for transition metal Au, but the error
drops from −0.58 eV/atom to −0.27 eV/atom with our
vdW correction. Our evaluation also agrees reasonably
well with those of Kim et al. [56], in which they found
that the original TS yields an MAE of 0.78 eV/atom,
while the improved version TS-SCS produces an MAE of
0.38 eV/atom for 9 ionic solids.
Structural phase transition of CsCl, CsBr, and

CsI. Due to the increase of the volume of positive ion
as well as negative ion from Li+ to Cs+ and from F− to
I−, the most stable structure of CsCl, CsBr, and CsI is
not the rs structure, as other family members take, but
the less dense CsCl structure. To understand the details
of this phenomenon, we calculate the cohesive energies
of these halides in both rs and CsCl structures with the
LSDA and PBE functionals. The results are displayed
in Table II. From Table II, we observe that the LSDA
cohesive energies of the CsCl structure are always larger
than those of the rs structure for all three alkali halides,
suggesting that the CsCl structure is a more stable struc-
ture. This is in perfect agreement with experiments.
However, PBE incorrectly predicts that the rs struc-

ture is more stable. When we add the screened vdW
correction to PBE, the energy difference between the two
structures becomes qualitatively correct, like LSDA, with
the PBE+vdW cohesive energy in agreement with exper-
iments. Recently, Zhang et al. [62] also found that, with
a vdW correction to PBE, the right crystal structures
could be predicted.
Higher-order contribution and screening effect.

We have studied the higher-order contribution and dielec-
tric screening on the lattice constant and cohesive energy
of NaCl. For comparison, we first calculate the vdW co-
efficients with and without the screening. We show that
the screening effect on the vdW coefficients is very impor-
tant (Table S9). Then we calculate the lattice constant
and cohesive energy. The results are given in Table S10.
From Table S10 we see that, without higher-order contri-
butions, the vdW correction will be underestimated by
about 50%, while without the screening, the vdW effect
will be overestimated by roughly the same. This suggests
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that simpler and less sophisticated methods often work
well even for solids, due to error cancellation.

Screened three-body interactions. The three-
body vdW interaction [63, 64] makes an additional con-
tribution to the pair interaction of Eqs. (3)-(4). It can be
evaluated with our model, as explained in SM [31]. Here
we have evaluated the leading-order three-body contri-
butions for NaCl. The results are given by Tables S9 and
S11, respectively. From Tables S9 and S11, we observe
that, due to the important screening effects, this contri-
bution is very small and has been neglected in all our
calculations.

In summary, we have proposed an accurate vdW
correction to semilocal DFA for solids, and applied
DFA+vdW to calculate the lattice constants and cohesive
energies of ionic solids and metals. We find that, with
the vdW correction, the performance of PBE can be sig-
nificantly improved. This remarkable accuracy is largely
due to the correct physics built into our model, such as (i)
higher-order interactions involving C8 and C10, (ii) the
screening effect, and (iii) strict separation between the
short-range part and long-range part. To check our for-
mulation, we have replaced the PBE bulk moduli with
experimental values. We find that the results are even
slightly better (Table S7). We further include the three-
body interactions and find that this inclusion has a very
small effect on two-body interactions, due to the screen-
ing, suggesting the robustness of the present model. We
also evaluated the lattice constants and cohesive ener-
gies of these solids with the dispersion-corrected DFA
methods PBE+D3 and PBE+TS. We find that, while
PBE+D3 provides a fairly accurate description for these
two quantities, the PBE+TS method worsens the PBE
values [56, 57]. Our physics-motivated vdW correction
should be applicable to some other semilocal functionals
such as TPSS [4] as well, and thus sheds light on solid-
state electronic structure calculations by moving them
toward greater accuracy. Furthermore, our model has in-
cluded many physical effects such as dielectric screening,
higher-order interactions, and proper damping, without
fitting any parameter to the predicted equilibrium prop-
erties of solids. This makes the model easily transferable
from one system or lattice structure to another. We ex-
pect that our vdW correction should also improve the
performance of PBE for other lattice structures very well.
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