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Pyrite FeS2 has outstanding potential as an earth-abundant, low-cost, non-toxic photovoltaic, but 

underperforms dramatically in solar cells. While the full reasons for this are not clear, one certain 

factor is the inability to understand and control doping in FeS2. This is exemplified by the widely 

accepted but unexplained observation that unintentionally-doped FeS2 single crystals are 

predominantly n-type, whereas thin films are p-type. Here we provide a potential resolution to 

this “doping puzzle”, arrived at via Hall effect, thermopower, and resistivity measurements on a 

large set of FeS2 single crystals and films that span five orders of magnitude in mobility. The 

results reveal three main findings. First, in addition to crystals, the highest mobility thin films in 

this study are shown to be definitively n-type, from both Hall effect and thermopower. Second, 

as mobility decreases an apparent crossover to p-type occurs, first in thermopower, then in Hall 

measurements. This can be understood, however, in terms of the crossover from diffusive to 

hopping transport that is clearly reflected in resistivity. Third, universal behavior is found for 

both crystals and films, suggesting a common n-dopant, possibly sulfur vacancies. We thus argue 

that n-type doping is facile in FeS2 films, that apparent p-type behavior in low mobility samples 

can be an artifact of hopping, and that the prevailing notion of predominantly p-type films must 

be revised. These conclusions have deep implications, both for interpretation of prior work on 

FeS2 solar cells and for the design of future studies. 
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I. Introduction 

Pyrite structure FeS2 has long been acknowledged as a semiconductor with significant potential 

as a photovoltaic (PV). A substantial effort to develop pyrite PV began in the mid 1980’s, 

stimulated by pyrite’s useful energy gap (Eg ≈ 0.95 eV) and outstanding visible absorption 

coefficient (α > 105 cm-1 above 1.2-1.4 eV), which render a 100-nm-thick film capable of 

absorbing >90 % of the sun’s light.1 Electron mobilities over 300 cm2V-1s-1 and minority carrier 

diffusion lengths of 100-1000 nm were also demonstrated in pyrite crystals,1 but the FeS2 PV 

effort was nevertheless unsuccessful. Various forms of Schottky and photoelectrochemical solar 

cells were fabricated from both thin films and bulk crystals, and while the high internal quantum 

efficiencies and short circuit current densities were promising, open circuit voltages (Voc) 

remained below 0.2 V, less than 20 % of Eg.1 Power conversion efficiencies in FeS2-based solar 

cells thus never exceeded 3 %,1 an order of magnitude below the Shockley-Queisser limit. As 

other thin film PV materials such as CdTe and Cu(In,Ga)Se2 began to show promise in the mid 

1990’s,2 interest in pyrite PV waned. 

Recently, however, a second wave of interest in FeS2 for PV applications has emerged.3-23 This is 

in large part due to the identification of sulfides, particularly FeS2, as near-ideal choices for 

large-scale deployment of solar cells from the perspectives of earth abundance, toxicity, and 

cost.3 Sulfur is a waste product, while iron remains one of the cheaper metallic elements to 

recover from ore. A significant number of researchers are thus applying fresh approaches to the 

synthesis, characterization, and property measurement of FeS2-based materials and devices.3-23 

A notable feature of this second wave of effort with FeS2 is a focus on fundamental problems, as 

opposed to the device efforts that have proven unsuccessful.1-13 Three main issues have emerged: 
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The origin of the low Voc in pyrite-based solar cells;1,11,14,17,18,20,24,25 questions regarding phase 

purity, defects, and stoichiometry;1,6-12,17,18,20,21,24,25 and the understanding and control of 

doping.1,6,7,9-12,17,18,20-22,25 While much remains to be done to address these complex (and often 

inter-related) issues, significant progress has recently been made, particularly with the first two. 

Careful studies of n-type pyrite single crystals have clearly elucidated surface electronic 

properties that differ significantly from the bulk, including conductive surface layers,20 a high 

density of surface acceptors,18 and even surface inversion.20 Such phenomena offer hypotheses 

for the low Voc in pyrite, which will no doubt be explored. Similar progress has been made with 

phase purity and stoichiometry. Despite suggestions that secondary phases such as pyrrhotite Fe1-

δS or marcasite FeS2 could be deleterious and widespread,8 several studies have established 

phase-pure pyrite crystals,18,20,21 films,9,12,19,21 and nanostructures,11,15,17,22 also clarifying stability 

limits.21 In terms of stoichiometry, evidence for S vacancies (VS) as the origin of n-type behavior 

in unintentionally-doped crystals is also accumulating.18,20  

Progress with the third issue, however (i.e., control and understanding of doping in pyrite), has 

not been so forthcoming. We note first in this respect that recent high purity, unintentionally-

doped pyrite single crystals have been shown to be unambiguously n-type,18,20 with VS as the 

suspected dopants,18,20 consistent with the large majority of the literature. Specifically, 

unintentionally-doped pyrite crystals are overwhelmingly found from Hall effect measurements 

to be n-type. This is illustrated in Figure 1(a), which plots the magnitude of the room temperature 

Hall coefficient, RH, as a function of the carrier mobility, μ, from literature reports on both pyrite 

films and bulk crystals.18-20,22,23,26-30 On this plot blue symbols are for electron-like (i.e., 

apparently n-type (RH < 0)) behavior, whereas red symbols are used for hole-like (i.e., apparently 

p-type (RH > 0)) behavior. For bulk crystals, which typically have relatively high μ and thus 
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populate the top right corner of Figure 1(a), n-type majority carriers prevail. The small number 

of counter-examples often occur in naturally-occurring crystals, where impurities are a concern, 

or in cases where the Hall effect disagrees with the other premier means to determine the sign of 

majority carriers, i.e., thermopower, as returned to below.26,29  

The complexity arises when considering unintentionally-doped thin films of FeS2. The first point 

here is that the electronic quality of pyrite thin films, as judged from μ, is highly variable. Thin 

film mobilities up to 200-280 cm2V-1s-1 have been claimed via spray pyrolysis27 and chemical 

vapor deposition,31 with an additional handful of other values in the 2 – 80 cm2V-1s-1 

range.5,19,28,29,30 In the great majority of cases, however, pyrite films have μ sufficiently low that 

they cannot be determined straightforwardly from Hall measurements.9,12,22,23,28,29,32,33 Some 

ubiquitous uncontrolled impurity, generating high doping and low μ in pyrite films, is thus often 

hypothesized, although a high VS density also seems plausible.7,22,32-34 This situation explains the 

modest number of thin film data points in Figure 1(a), exacerbated by the fact that raw data (i.e., 

Hall coefficient, voltage, or resistance) are often not reported. Notably, and in contrast to bulk 

crystals, what data are available suggest p-type behavior in films. Specifically, as shown in 

Figure 1(a), while the Hall effect has been reported to indicate either n-29 or p-type19,22,23,27,28,30 

majority carriers in FeS2 films, p-type behavior apparently dominates. 

Similar conclusions can be reached from thermopower or Seebeck coefficient (S) measurements, 

often employed when the Hall effect is difficult to measure due to low μ.29 As shown in Figure 

1(b), such measurements confirm n-type behavior (i.e., S < 0, blue points) in bulk single 

crystals,26 but appear to support p-type conduction (i.e., S > 0, red points) in films.28,29 The 

number of data points in Figure 1(b) is not impressive, however, due to the large fraction of 
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cases in the pyrite film literature where “qualitative thermopower” or “hot point probe” 

measurements are performed.9,12,23,30,34-37 In those measurements, only the sign of S is recorded, 

and thus no data points can be plotted in Figure 1(b). As shown in Table I these “qualitative 

thermopower” or “hot point probe” measurements (where a carrier type from thermopower is 

listed but with no value for S) are in almost universal support of p-type conduction in low 

mobility FeS2 thin films. On aggregate, the observations summarized in Figure 1 and Table I 

have led to the now widely accepted notion1,7-9,12,18,20,29,30,33 that unintentionally-doped bulk 

single crystals of pyrite are n-type, whereas unintentionally-doped thin films are p-type. While 

some ubiquitous unintentionally-introduced thin film defect or impurity is often cited, the 

fundamental explanation remains unknown. It is additionally worthwhile to highlight that there 

are a number of cases, specifically in low μ samples, where RH and S disagree on the sign of the 

majority carriers,26,29 as shown in Figure 1(b) and Table I (highlighted in orange), another 

unresolved issue in pyrite.        

Herein we provide a potential resolution to the “doping puzzle” in pyrite FeS2, i.e., the apparent 

inversion in sign of the majority carriers from single crystals to films. We do this by comparing 

300 K measurements of RH and S on a large set (∼100 samples) of unintentionally-doped pyrite 

single crystals and polycrystalline films, spanning five orders-of-magnitude in apparent μ. 

Consistent with prior work, the single crystals are found to be unambiguously n-type, from both 

RH and S. In stark contrast to the prevailing view, however, the highest mobility thin films in this 

study are also shown to be unambiguously n-type, confirmed by RH and S. As the μ of the thin 

films decreases an apparent transition from electron-like to hole-like majority carriers takes 

place, first in S and then in RH. While this could be naively interpreted in terms of an n → p 

crossover, we find that the crossover points in RH and S are well correlated with a crossover from 
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diffusive to hopping transport. This crossover, which is known to be capable of inverting the sign 

of RH and S in disordered semiconductors, is tracked in detail via temperature-dependent 

resistivity measurements. We thus conclude that apparent p-type behavior in low mobility FeS2 

thin films, whether indicated by RH or S, can easily be an artifact of hopping. We contend that 

such films are actually n-type, much like higher μ films, challenging the belief that pyrite thin 

films are predominantly p-type and providing a potential resolution to the pyrite “doping puzzle”.                  

II. Experimental Details 

II.A Materials synthesis and characterization. Pyrite FeS2 thin films were synthesized by ex 

situ sulfidation of Fe, as described in greater detail in prior work.16,21 Briefly, Fe thin films (33 

nm thick) were first deposited on chemically-cleaned substrates by either high vacuum DC 

magnetron sputtering or ultra-high vacuum electron-beam evaporation. Sputtering was done at 

∼1 Å/s from targets of nominal purity 99.9 or 99.99 %, in 2.3 mTorr of Ar, in a system with a 

base pressure in the 10-8 Torr range. The deposition temperatures were either ambient or 300 °C. 

Electron beam evaporation was done at 0.5 Å/s from source material of nominal purity 99.99 %, 

at ambient substrate temperature, in a system with a base pressure in the 10-10 Torr range. A wide 

variety of substrates were explored, including Al2O3(0001), soda lime glass, pyrex glass, 

crystalline quartz (SiO2), fused quartz (SiO2), Si(001)/a-Si-N, and MgF2(001). As described 

earlier,16,21 sulfidation was achieved in sealed and evacuated (1×10-6
 Torr) quartz tubes 

containing 1 mg of 99.999 % pure S, at temperatures of 200 to 600 °C. The majority of the films 

were sulfidized at 600 °C; some were annealed at temperatures < 400 °C.   

Pyrite FeS2 single crystals were grown via the chemical vapor transport (CVT) method, as also 

described earlier.21 This employed a sealed and evacuated (1×10-6 Torr) quartz vessel in a two-
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zone tube furnace, loaded with 2.2 g of FeS2 powder (99.9 %), 100 mg of FeBr2 (99.999 %) 

transport agent, and 580 mg of S powder (99.999 %). After an initial 3 day period with an 

inverted temperature gradient to “clean” the growth zone, hot and cold zone temperatures were 

set to 670 and 590 °C, respectively, for around 20 days. This resulted in crystals up to 360 mg, 

with approximately 5 mm (111) facets.    

Films and crystals were characterized structurally and chemically via wide-angle X-ray 

diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive 

spectroscopy (EDS), depth-profiled Auger electron spectroscopy (AES), superconducting 

quantum interference device (SQUID) magnetometry, and optical absorption spectroscopy. XRD 

on crystals was performed on a Bruker-AXS D5005 system (powdered crystals) and a 

Panalytical X-Pert Pro high resolution diffractometer (bulk crystals), using Cu Kα radiation.16,21 

Films were measured using Bruker-AXS PLATFORM and Bruker D8 Discover systems using 

area detectors, again with Cu Kα. Raman spectroscopy employed a WiTec alpha300R confocal 

microscope equipped with a UHTS 300 spectrometer and a DV401 CCD detector, SEM and 

EDS a JEOL field-emission microscope (operated at 15 kV) with a Thermo-Noran Vantage X-

ray detector, and AES a Physical Electronics Model 545 with a differentially-pumped Ar sputter 

source.16,21 SQUID magnetometry was done at 200 K in a Quantum Design MPMS XL7, and 

optical absorption was done in a Cary 5000UV-Vis-NIR spectrophotometer in dual beam 

mode.16,21 As discussed in more detail below (Section III), a summary of characterization results 

on films and crystals is provided in Supplemental Material (Figures S1, S2).40    

II.B Electronic and thermal transport measurements. Temperature-dependent resistivity 

measurements were made in a Janis cryostat and/or a Quantum Design PPMS, between 2 and 
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300 K. Indium contacts were employed in a van der Pauw configuration, using both AC (13.7 Hz) 

and DC excitation depending on the absolute resistance. Extensive checks of contact resistance, 

current-voltage curves, and AC resistance-current curves were made to ensure Ohmic response 

and the absence of self-heating. Hall effect measurements were made at 300 K, in applied 

magnetic fields to ± 90 kOe, using phase-sensitive AC excitation and optimized temperature 

stability of ± 10 mK. Seebeck coefficient (thermopower) measurements were performed in a 

vacuum of 10 mTorr in a home-built system at 315 K. FeS2 samples with coplanar 4-mm-gap 

electrodes were placed across two thermally isolated Cu blocks, also separated by 4 mm. The 

temperature of each block was controlled independently (to ± 50 mK) with a dual-channel 

temperature controller, using thermocouples anchored on each block. As different block 

temperatures were regulated, the induced thermoelectric voltage was measured via Cu leads 

attached to the blocks. The Seebeck coefficient was then obtained from the slope of 

thermoelectric voltage vs. temperature gradient curves, which extended to 16 K temperature 

differences. As discussed in more detail below (Section III.A), different substrates were 

employed (see Supplemental Material Figure S340) to rule out substrate effects as the origin of 

Seebeck coefficient sign inversion. Any contribution to S from the contacts and leads was also 

investigated, by measuring the thermopower of the electrode metal deposited on a substrate with 

no pyrite film. The observed S was n-type and on the order of 0.1-1 μV/K, in contrast to the over 

10 times higher n- or p-type S of the polycrystalline FeS2 films. 

III. Results and Analysis 

Extensive structural and chemical characterization of our unintentionally-doped pyrite bulk 

single crystals and polycrystalline thin films has been provided in prior publications.16,21 In 

Supplemental Material Figures S1 and S240 we provide a brief summary of these characterization 
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results. In Figure S1, for single crystals, optical imaging, XRD, Raman spectroscopy, and EDS 

data are shown, confirming the single crystal, single phase, stoichiometric nature of the samples. 

In Figure S2, for polycrystalline thin films, XRD, Raman spectroscopy, EDS, depth-profiled 

AES, SQUID magnetometry, optical absorption, and SEM data are shown. These data confirm 

single-phase, close to stoichiometric, large grain polycrystalline films with the expected optical 

absorption properties.      

III.A Room temperature Hall effect and thermopower measurements. We first focus on 300 

K RH and S measurements performed on bulk single crystals and thin films with a wide range of 

μ. To this end, Figure 2(a,b) plots RH and S as a function of the apparent Hall mobility, μH, 

following identical conventions to Figure 1, i.e., blue points for electron-like signs, red points for 

hole-like signs, and solid triangles and open diamonds for films and crystals, respectively. We 

explicitly refer to μH as an apparent mobility because, as we shall see, some of these μH values 

are sufficiently low that diffusive transport cannot be assumed, and naïve interpretation of RH is 

thus hazardous; this will form a key point of our work. The first points to note about Figure 2 are 

the wide range of μH probed (five orders of magnitude) and the substantial reduction in scatter 

compared to Figure 1. Crystals and films appear to exhibit universal behavior, in fact. 

Considering first the single crystals, the results are simple, and as expected. These crystals have 

relatively high μH (40-250 cm2V-1s-1) with clearly electron-like RH and S. Representative raw 

data to support this are provided in Figure 3(a,b), where the Hall resistivity (ρxy) is plotted vs. 

applied magnetic field (H) (yielding RH = dρxy/dμ0H), and the negative thermovoltage (-ΔV) is 

plotted vs. temperature difference (ΔT) (yielding S = -ΔV/ΔT). (-ΔV is plotted to facilitate 

comparison between Hall and thermopower data). For the representative crystal shown, the slope 
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of both curves is large and negative, indicating n-type majority carriers. The Hall response is also 

linear at all H probed, with no evidence of a second carrier type.  

The results for polycrystalline thin films are more interesting. As shown in Figure 2, the films 

studied in this work span a range in μH from almost 10 cm2V-1s-1 down to ∼10-3 cm2V-1s-1. There 

are two important points to emphasize about this. First, while RH and S are relatively 

straightforward to measure in high μH samples, this is not so at the low μH end of this range. In 

this regime care must be taken to accurately determine very low RH, including AC detection, a 

wide H range (-90 to + 90 kOe in this case), high T stability (± 10 mK at 300 K in this case), and 

minimization of noise, drift, and contact resistance. Interpretation of low RH is also challenging, 

as diffusive transport can no longer be assumed. For thermopower measurements, contributions 

from the leads, and from substrate effects, must be considered as S decreases, as discussed above 

(Section II.B) and in Supplemental Material Figure S3.40 Interpretation of low S values is also 

challenging, again due to the possibility of non-diffusive transport. Second, it must be 

emphasized that complete control over the μH of polycrystalline thin films by tuning ex situ 

sulfidation was not achieved in this work. The wide range in μH in Figure 2 was rather obtained 

by synthesizing a large quantity of polycrystalline films, which had variable carrier density, and 

thus μH. As detailed above (Section II.A), the films shown in Figure 2 were in fact synthesized 

on seven different substrates, using two Fe deposition methods, and variable sulfidation 

temperatures. While control over carrier density was not obtained, as shown in Supplemental 

Material Figure S440 these films nevertheless exhibit a consistent μH-carrier density relation 

relationship, μH scaling as n-1, where n is the Hall electron density.  
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The films exhibit clear and systematic trends in Figure 2, evidencing three distinct regimes. In 

Regime I, at μH > 1 cm2V-1s-1, we find, in stark contrast to claims of predominantly p-type 

conduction in pyrite films, clear electron-like behavior in both RH (Figure 2(a)) and S (Figure 

2(b)). Raw data to support this are provided in Figure 3(a,b), where Hall and Seebeck data on a 

representative film with μH = 2.2 cm2V-1s-1 are shown. While RH and S are smaller than in single 

crystals, both RH and S agree on n-type transport in these higher μH films. ρxy is again linear in H. 

In terms of the origin of this behavior, note that higher mobility (  1 cm2V-1s-1) n-type films 

were obtained on a variety of substrates (Si/Si-N, MgF2, soda lime glass, quartz, and Al2O3), 

meaning that interdiffusion of some donor impurity is an unlikely explanation. Moreover, as 

shown in Supplemental Material Figure S5,40 while Co, Ni, and Cu impurities were detected in 

these films by Secondary Ion Mass Spectrometry (SIMS), many films have n up to 100 times the 

concentrations of these elements, implicating an intrinsic rather than extrinsic defect as the 

dominant n-dopant. As in single crystals,18,20 VS appears a likely culprit. Regardless of the 

precise origin, however, what is most important is that the higher μH films in this study are 

definitively n-type, in contrast to the prevailing notion.  

At lower μH Regime II is entered (10-2 cm2V-1s-1 < μH < 1 cm2V-1s-1), where RH decreases and 

maintains an electron-like sign, but both positive and negative signs of S occur (Figure 2(b)), in 

an apparently chaotic fashion. This is illustrated in Figure 3(c,d) using two representative films, 

with μH of 0.10 and 0.13 cm2V-1s-1. Despite their nearly identical μH, the former exhibits 

electron-like RH and S, while the latter shows electron-like RH and hole-like S. As already noted, 

opposing signs of RH and S have been sporadically observed before in FeS2, one proposed 

explanation relying on two-band transport.29 Below, we will provide an alternative explanation, 

acknowledging the significance of low μ. As μH decreases further, a final regime of behavior is 
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found in Figure 2, Regime III, where μH < 10-2 cm2V-1s-1. Here, RH also inverts sign, both RH and 

S suggesting hole-like behavior. This is further illustrated in Figure 3(e,f) where raw RH and S 

data are shown for a representative film with a low μH of 10-3 cm2V-1s-1. Again, ρxy is linear in H. 

It should be emphasized that the basic structural and chemical characterization data on these 

films reveal no significant differences over the entire span of μH in Figure 2 (see Supplemental 

Material Figure S640).                  

III.B Temperature-dependent electronic transport measurements. As already noted, a 

critical issue for the interpretation of Figure 2 is the low RH, S, and μH found in the lower left 

region. While RH and S in higher μH samples, in which transport is clearly diffusive, are simple 

to interpret, this is not so at low μH where diffusive band transport can no longer be assumed. In 

particular, the crossover from diffusive to hopping transport that would be expected in any 

material as μ decreases (typically below ∼1 cm2V-1s-1,41 notably close to the Regime I / II 

boundary) is known to suppress RH and can even invert its sign. Similar complications arise for 

the interpretation of S. It is thus essential to consider Figure 2 alongside data that elucidate the 

transport mechanism, making temperature-dependent resistivity (ρ) measurements indispensable.  

Figure 4 shows such data, plotting in the top panels (a-c) ρ (log scale) vs. T for representative 

samples in each of the regimes shown in Figure 2. This includes a bulk crystal and a high μH (2.2 

cm2V-1s-1) film in Regime I (Figure 4(a)), three intermediate μH (0.03 – 0.13 cm2V-1s-1) films in 

Regime II (Figure 4(b)), and a low μH (10-3 cm2V-1s-1) film in Regime III (Figure 4(c)). 

Additional insight is provided in Figure 3(d-f) which shows the same data on Zabrodskii plots.42 

These are plots of lnW vs. lnT, where W, the reduced activation energy, is defined as W = -

dlnρ/dlnT.42 This linearizes the ρ = ρ0exp(T0/T)m form typically expected at low T in 
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semiconductors, where ρ0 is the T → ∞ limit of ρ, T0 is a characteristic temperature, and m 

reveals the conduction mechanism. Briefly, m = 1 indicates activated, diffusive transport,43 while 

m = ½ and ¼ indicate Efros-Shklovskii44 and 3D Mott variable-range hopping (VRH),45 

respectively. VRH is common in doped semiconductors, Mott VRH applying when the density-

of-states (DOS) around the Fermi energy (EF) is approximately constant, Efros-Shklovskii VRH 

when electron-electron interactions induce a soft-gap in the DOS around EF.44,45 As discussed 

further below, intergranular hopping transport also results in m = ½.  

With a mobility of 141 cm2V-1s-1, conduction in the single crystal shown in Figure 4(a,d) would 

certainly be expected to be diffusive. This is complicated, however, by the anomalous T 

dependence in Figure 4(a) (note the inflection around 90 K, also evident in Figure 4(d)), which 

occurs due to the surface conduction documented by Limpinsel et al.20 In essence the insulating 

FeS2 interior “freezes out” around this T, the more conductive surface shunting the current at low 

T. We have made a thorough investigation of this, the results of which will appear elsewhere.46 

Moving on to the relatively high μH film in Figure 4(a,d), ρ can be seen to be weakly T-

dependent. Considering Figure 4(d), a straight line with negative slope (the black dashed line 

indicates m = ½) is observed at low T (below ∼30 K), indicating Efros-Shklovskii VRH. At 

higher T, however, lnW becomes negative, and increases with T. This indicates conduction close 

to the insulator-metal transition,42 certainly not in the hopping regime at 300 K, where the data in 

Figure 2 were obtained. Both the crystals and films in Regime I are thus clearly in the diffusive 

transport regime, confirming that RH and S can be simply interpreted in terms of n-type 

conduction.      
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Skipping to Regime III, as illustrated in Figure 4(c,f), the situation is different. In this very low 

apparent μH regime, Figure 4(f) shows adherence to the Efros-Shklovskii form over the entire 

range (more than an order of magnitude in T and four orders in ρ), indicating that such films are 

deep in the VRH regime even at 300 K. Regime III in Figure 2, where both RH and S have hole-

like signs, must thus be interpreted with this in mind, as returned to below. The situation at 

intermediate μH, in Regime II, represents a crossover between Regimes I and III. In this region a 

spectrum of behaviors is found, evolving non-monotonically with μH. Three films are thus shown 

in Figure 4(b,e), representing three distinct behaviors. The behavior of the film with μH = 0.13 

cm2V-1s-1 is similar to that seen in Regime III. Efros-Shklovskii VRH is evidenced over the 

entire T range, indicating that this film is in the hopping regime at 300 K. Vitally, this film (see 

Figure 3(c,d)) is one in which RH remains electron-like, while S inverts. On the other hand, the 

film with μH = 0.10 cm2V-1s-1 has behavior similar to Regime I; Efros-Shklovskii VRH occurs at 

low T, but gives way to diffusive transport by 300 K. In this case (see Figure 3(c,d)), both RH and 

S remain electron-like. A final example is provided by the 0.03 cm2V-1s-1 film in Figure 4(b,e), 

which, despite the slightly lower μH, exhibits simple activation at low T (i.e., m = 1) and is 

clearly not in the Efros-Shklovskii regime at 300 K. This sample also exhibits electron-like RH. 

The apparently complicated behavior in Regime II is thus quite straightforward. While some 

sample-to-sample variation occurs, films exhibiting diffusive transport at 300 K based on ρ(T) 

invariably display electron-like RH and S. When hopping is active at 300 K, however, a sign 

reversal occurs, first in S. As μH decreases further, into Regime III, both RH and S invert, 

generating the behavior shown in Figures 3(e,f) and 4(c,f). This correlation is reinforced for a 

large number of films in Supplemental Material Figure S7.40 The occurrence of hopping 
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conduction is thus essential to understand the signs of RH and S, a factor not taken into account in 

prior explanations based on two-band conduction.29  

IV. Discussion 

We now provide a consistent interpretation of Figures 2-4. Beginning with Regime I, specifically 

with single crystals, the fact that μH >> 1 cm2V-1s-1, that the Hall effect is linear, and that ρ(T) 

provides no evidence of hopping at 300 K, clearly indicate that RH and S can be simply 

interpreted. We thus apply RH = -1/ne (where e is the magnitude of the electronic charge (a 

positive number)), based on diffusive transport with a dominant majority carrier type. 

Correspondingly, we interpret S via the usual non-degenerate semiconductor approach, S = -

(kB/e)[(EC - EF)/kBT + ac], where kB is Boltzmann’s constant, EC is the conduction band onset 

energy, and ac is a small constant.45 Both RH and S are thus negative, reflecting electrons as 

majority carriers. This is as expected based on prior work,18,20,26 the n-type doping likely being 

due to VS;18,20 future work to definitively establish this would clearly be worthwhile. 

Moving on to the films in Regime I, we find μH ≈ 1-10 cm2V-1s-1, with n ∼ 1019 cm-3 

(Supplemental Material Figure S440). These electron densities are 2-3 orders-of-magnitude 

higher than in crystals, μH being 1-2 orders of magnitude lower. Even in Regime I our films thus 

have substantially heavier doping and higher disorder than single crystals. S is also reduced, from 

the 100-200 μVK-1 typical of crystals (Table I, Figures 1 and 2) to ∼20 μVK-1. The latter is in the 

range typically seen in pyrite films (10-80 μVK-1, Table I, Figure 1). Critically, however, ρ(T) 

again provides no evidence of hopping at 300 K, indicating that RH and S can be interpreted 

much as for single crystals. Based on Figure 4(a), degenerate semiconductor transport is a 

possibility, however, meaning that S = (-π2/3)(kB
2T/e)(dlnD(E)/dE)Ef may be more appropriate, 
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where D(E) is the available DOS.45 In any event, negative RH and S indicates electrons as 

majority carriers, the major issue being the origin of this n-doping. Given that numerous films in 

this study have n greatly in excess of the concentration of metal impurities (Supplemental 

Material Figure S540), and that Figure 2 suggests universal behavior (i.e., a single RH-n or μH –n 

relationship) for both films and crystals, VS is again a strong possibility. The VS density may be 

difficult to control in FeS2 films, certainly when synthesized by the methods employed here.  

In Regime II, μH < 1 cm2V-1s-1 is encountered for the first time, hopping transport becoming a 

possibility. Although not widely discussed in the pyrite literature, the influence of hopping on RH 

and S has a long history. Consider first the Hall effect in hopping transport, which was studied in 

the context of amorphous (a) Si and Ge in the 1970’s. A first surprise was provided by 

Friedman47 in 1971 who showed that even when conduction proceeds by extended states, when 

these are near the mobility edge, Eμ, RH can be suppressed by an order of magnitude and, most 

significantly, RH is always electron-like, even in p-type materials. Experiments by Le Comber et 

al.48 further revealed a double sign reversal, where a-Si films in the hopping regime doped n-type 

(with P) had RH > 0, while films doped p-type (with B) had RH < 0. Numerous theoretical works 

have been devoted to this topic, but it is fraught with complications. The three-site “triads” of 

Gal’perin et al. are understood to be the elementary sources of the hopping Hall voltage,49 but 

both the magnitude and sign of RH are difficult to calculate, although the double sign reversal can 

be qualitatively reproduced.49,50 The relevance to low μH pyrite films was pointed out in our 

earlier work,16 where an apparent sign reversal in RH on entry into a regime of a specific type of 

intergranular hopping, due to nanoscale unreacted Fe clusters, was discovered. In the current 

work this is seen to be more generally important.                



 

17 
 

Thermopower in the hopping regime is similarly rich. An important fact, which has again not 

been widely discussed in the pyrite literature, is that hopping impacts both the magnitude and 

sign of S. In VRH this is because carriers with both positive and negative energies with respect to 

EF contribute to thermopower.51-53 S thus vanishes for a DOS symmetric around EF, DOS 

asymmetry being the essential factor, making sign reversal easily possible. This was handled by 

Zvyagin and Overhof in the 70’s by writing:51,52 

  (1) 

where E is the energy with respect to EF, and W is the energy interval around which hopping 

proceeds at temperature T. For a locally linear D(E) this yields 

 (2), 

where C is a constant. The sign of S is thus dictated by dlnD(E)/dE at EF, a situation thought to 

play an important role in the double sign reversal of RH and S in a-Si and Ge.48-53  

The discussion above directly informs the interpretation of Regime II in Figures 2-4. First, the 

sign reversal of the 300 K S in films exhibiting hopping at 300 K is not at all unexpected, without 

precedent, or without theoretical basis. The same can be said of the scatter in S in Regime II 

(Figure 2(a)), as the magnitude and sign of S become highly sensitive to the details of D(E) near 

EF. This is illustrated in the schematic DOS of a disordered semiconductor shown in Figure 5, 

where a donor band overlaps the conduction band. Here, EF located at E1, deep in the conduction 

band, would result in diffusive transport, RH and S being easily interpreted. EF in or around the 

donor band, however, is expected for hopping transport. As an illustration, we note that placing 

EF at positions E2, E3, E4, or E5 would result, based on equation (2), in positive, negligible, 
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negative, and negligible S, respectively. Similar uncertainty in the sign of S persists in the Efros-

Shklovskii VRH regime of interest in light of Figure 4. As shown in the inset to Figure 5, and 

also discussed in prior work, the sign of S in that case, where D(E) is coulomb-gapped, again 

arises only from DOS asymmetry (see equation (1)), and is thus variable.51-53       

In light of the above, the surprising feature in the data of Figure 2 is not that S can reverse sign, 

but rather that RH remains apparently unaffected by hopping in Regime II, only inverting deep 

into the hopping regime at ∼0.01 cm2V-1s-1. One important observation here is that RH is a 

transport quantity, whereas thermopower is a thermodynamic one, measured under open circuit 

conditions. There are numerous scenarios where thermodynamic averages and transport results 

can be substantially different, and future theoretical work in this area specific to pyrite films 

would clearly be worthwhile. Two-band/channel conduction analysis explicitly including 

hopping could also be a fruitful avenue. In any case, the most important conclusion from Figures 

2-4 is that, unlike the approach taken in much of the pyrite literature, S is clearly not a reliable 

indicator of the majority carrier type in low μ pyrite films where RH is difficult to measure. Quite 

the opposite is evidenced in Regime II of Figure 2. In Regime III, where hopping transport 

dominates, eventually both RH and S become inverted and small, the magnitudes reaching ∼10-3 

cm3C-1 and ∼ 10 μVK-1. Based on the above, these small positive values, deep in the Efros-

Shklovskii VRH regime, should clearly not be interpreted as p-type conduction. 

Although it does not impact the general arguments made here, one additional important point is 

the exact nature of the hopping conduction observed in Regimes II and III. As briefly alluded to 

above, and discussed in detail in our prior work,16,21 the ρ = ρ0exp(T0/T)1/2 form is consistent not 

only with conventional Efros-Shklovskii VRH in a homogeneous doped semiconductor, but also 
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intergranular hopping between nanoscopic conductive clusters in an insulating matrix. The latter 

mechanism was deduced in our earlier work on FeS2 films in two distinct contexts,16,21 

highlighting the issue of local conductance variations in pyrite arising due to compositional 

fluctuations. A fuller discussion of the relation between the conventional Efros-Shklovskii 

mechanism and intergranular transport in pyrite was provided in Ref. 21. We note here simply 

that: (a) Regardless of the exact nature of the hopping conduction the general arguments above 

regarding the sign inversion and magnitude of RH and S remain valid; and (b) Intergranular-type 

hopping may well play a role in at least some instances in the current work, potentially causing 

the quite large T0 values and thus the existence of hopping transport up to 300 K.         

While the above interpretation of the origin of the doping puzzle substantially elucidates a 

number of issues in unintentionally-doped FeS2 films, we note that some outstanding questions 

nevertheless remain. First, it should be recalled that there are a handful of p-type thin film pyrite 

publications that have reported μ in the 2-80 cm2V-1s-1 range,5,19,28,30 one at 200 cm2V-1s-1
 (see 

Figure 1 and Table I).27 Raw Hall data are often not provided in these cases, however (or are not 

measured to large H), making it difficult to assess the evidence for positive RH. ρ(T) data are also 

often not provided, making it difficult to assess the conduction mechanism. Nevertheless, 

hopping transport does not appear capable of explaining p-type behavior in cases with such high 

μ. Further work to reproduce and verify these conclusions, and elucidate the possibility of a true 

p-type dopant, is imperative. Second, given the recent work that has demonstrated surface 

conduction, and even surface inversion in n-type FeS2 crystals,20 it is important to consider 

surface conduction as a possible origin of the behavior seen here. None of the key indicators of 

surface conduction are present in the films studied here, however. Prior work on bulk n-type 

crystals has demonstrated certain features in the temperature and thickness dependence of 
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transport to be particularly useful for detecting surface conduction,20,46 but no such features arise 

in our films. Moreover, consistent with our own bulk single crystal data,46 and the arguments of 

Limpinsel et al.20 and Caban-Acevedo et al.,18 surface inversion is increasingly unlikely as n-

doping becomes heavier, and surface band-bending is restricted. The apparent n values in the 

films in this work range from 5×1018 to ∼1021 cm-3, much higher than in single crystals, 

rendering surface inversion an unlikely explanation for the apparent inversion in RH and S in 

Figure 2. This remains true even for grain surface conduction, another issue that must be 

considered here.                 

V. Summary 

In conclusion, we have presented a comprehensive data set that encompasses Hall effect, 

thermopower, and resistivity measurements on a large set of bulk single crystal and 

polycrystalline pyrite FeS2 films, aiming to clarify the puzzling observation that unintentionally-

doped crystals are predominantly n-type, whereas thin films are apparently p-type. The results 

not only indicate unambiguously n-type behavior in higher mobility films, but also show that the 

apparent p-type behavior in lower mobility films can easily arise as an artifact of hopping 

conduction. This challenges the widespread belief in predominant p-type conduction in pyrite 

films, underscoring the need to combine Hall effect and thermopower measurements of majority 

carrier type with temperature-dependent transport measurements to establish conduction 

mechanisms. These results are important both for interpretation of prior work, and for the design 

of future pyrite photovoltaic devices.   
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Tables and Captions 

 

FeS2 Synthesis method
 ρ(300K) 

(Ωcm)
S(300 K) 
(µVK-1)

Thermopower Hall effect
µH(300K) 

(cm2V-1s-1)
Reference

Thin film Sulfidation of Fe Not 
measured

0-80 h+-like
Beneath 

detection
Beneath 

detection Ares et al. 33

Thin film Sulfidation of Fe 0.1 70 h+-like e--like 6.7 Ares et al. 29

Thin film Sulfidation of Fe Not 
measured

70-80 h+-like
Not 

measured
Not 

measured Ares et al. 38

Thin film Sulfidation of Fe 0.50-0.58 Not 
measured h+-like

Not 
measured

Not 
measured Soukup et al. 36

Thin film Plasma-assisted 
sulfidation of Fe

1 Not 
measured h+-like

Not 
measured

Not 
measured Bausch et al. 35

Thin film
Sulfidation of 
Fe2O3/Fe3O4

Not 
measured

Not 
measured h+-like

Not 
measured

Not 
measured Smestad et al. 34

Thin film
Annealing of 
Fe(acac)3 ink

1.35 Not 
measured h+-like

Beneath 
detection

Beneath 
detection Seefeld et al. 12

Thin film Pyrite nanocrystal
coating/hydrazine tr.

5.9/1.7 Not 
measured h+-like h+-like 0.3/0.2 Kinner et al. 23

Thin film Pyrite nanocrystal 
coating

Not 
reported

Not 
measured

Not measured h+-like 80 Bi et al. 5

Thin film Pyrite nanocrystal 
coating

11.2 Not 
measured

Not measured h+-like 0.1 Shukla et al. 22

Thin film Spray pyrolysis 0.59 Not 
measured

Not measured h+-like 2.12 Shukla et al. 19

Thin film Spray pyrolysis 0.425 Not 
measured

Not measured h+-like 210
Yamamoto et 

al.  27

Thin film Reactive sputtering   
(Fe target)

0.3 90 h+-like
Beneath 

detection
Beneath 

detection
Lichtenberger et 

al. 28

Thin film Reactive sputtering   
(Fe target)

0.003 10 h+-like h+-like 25
Lichtenberger et 

al. 28

Thin film
Reactive sputtering 

(FeS2 target)
0.25 Not 

measured h+-like h+-like 5 Willeke et al. 30

Thin film CVD 1 50 h+-like
Not 

measured
Not 

measured Thomas et al. 39

Thin film CVD 0.97 Not 
measured

Not measured Not reported 280
Takahashi et 

al. 31

Thin film CVD 1.5 ± 0.5 Not 
measured h+-like

Beneath 
detection

Beneath 
detection Berry et al. 9

Thin film CVD 0.4 55 h+-like
Beneath 

detection
Beneath 

detection Oertel et al. 32

Thin film CVD 0.001-1 Not 
measured h+-like

Not 
measured

Not 
measured

Chatzitheodorou 
et al. 37

Syn. 
crystal

CVT 142 11 e--like h+-like 5.3 Willeke et al. 26

Syn. 
crystal

CVT 2.1 320 e--like e--like 172 Willeke et al. 26

Syn. 
crystal

CVT 2.8 230 e--like e--like 113 Willeke et al. 26

Syn. 
crystal

Flux 5.1 Not 
measured

Not measured e--like 245
Limpinsel et 

al. 20

Syn. 
crystal

CVT 114 Not 
measured

Not measured e--like 50
Cabán-Acevedo 

et al. 18



 

27 
 

Table I: Literature review of carrier types in unintentionally-doped FeS2 from Hall effect 

and thermopower. The 300 K resistivity (ρ), 300 K Seebeck coefficient (S), carrier type from 

thermopower and Hall effect, and 300 K apparent Hall mobility (μH) are shown for both films 

(yellow) and synthetic crystals (green).5,9,12,18,19,20,22,23,26-39 The synthesis method and relevant 

citation are shown; CVD is chemical vapor deposition and CVT is chemical vapor transport. 

When a thermopower carrier type is listed, but with no corresponding S, this resulted from 

“qualitative thermopower”, or “hot point probe” measurements, where only the sign of S is 

determined. The cases where carrier types are available from both thermopower (quantitative or 

qualitative) and Hall, are highlighted in color; purple indicates consistency between the two, 

orange inconsistency.  
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Figure Captions 

Figure 1. Summary of the literature on carrier type in unintentionally-doped pyrite FeS2 

from Hall effect and thermopower. The room-temperature (∼300 K) Hall coefficient (RH) 

(a)18,19,20,22,23,26-30 and Seebeck coefficient (S) (b)26,28,29 are plotted vs. the reported Hall carrier 

mobility (µ) for FeS2 in various forms. The red/blue symbols indicate the apparent majority 

carrier type (hole/electron-like) based on the sign of RH and S. Explicitly, “hole-like” is 

associated with RH > 0, S > 0, while “electron-like” is associated with RH < 0, S < 0. Data are 

distinguished for thin films, synthetic single crystals and natural single crystals. 

 

Figure 2. Hall effect, thermopower, and apparent carrier types in the unintentionally-

doped FeS2 films and crystals from this study. The room-temperature (∼300 K) Hall 

coefficient (RH) (a) and Seebeck coefficient (S) (b) are plotted vs. the apparent Hall carrier 

mobility (µH) for the polycrystalline films and synthetic single crystals in the current study. 

Again, the red/blue symbols indicate the apparent carrier type (hole/electron-like) based on the 

sign of RH and S. Explicitly, “hole-like” is associated with RH > 0, S > 0, while “electron-like” is 

associated with RH < 0, S < 0. The arrows in panel (a) indicate upper bounds on µH and RH,, i.e. 

points at the limit of detection. The vertical dashed lines and markings “I”, “II” and “III” indicate 

the three regimes discussed in the text.  

 

Figure 3. Representative raw data from Hall effect and thermopower measurements. The 

left panels show the magnetic field (H) dependence of the zero-field-background-subtracted Hall 

resistivity (ρxy) in regimes I (a), II (c) and III (e). The right panels show the temperature gradient 

(ΔT) dependence of the negative thermoelectric voltage (-ΔV) in regimes I (b), II (d) and III (f). 
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Note that -ΔV is plotted, to facilitate comparison to the Hall data. Dashed lines in all cases are 

straight line fits. Two samples are plotted in Region I (one crystal, one film), and two films are 

plotted in Region II (one where RH and S agree on the sign of the majority carriers, one where 

they do not). In all cases the samples are labeled with their room temperature µH. All data are at 

room temperature (∼300 K).   

 

Figure 4. Temperature-dependent electronic transport measurements. In the top panel the 

temperature (T) dependence of the resistivity (ρ) is shown in (a) Regime I, (b) Regime II, and (c) 

Regime III. The bottom panel shows ln W vs. ln T generated from the data in the top panel, 

where W = -dlnρ/dlnT. Slopes of m = ½ and 1 are shown, where m is the exponent in ρ = ρ0 exp 

(T0/T)m. The room temperature (∼300 K) apparent Hall mobility (µH ) for each sample is labelled. 

Two samples are shown in Regime I (one crystal, one film), and three films are plotted in 

Regime II, illustrating the behaviors discussed in the text.  

 

Figure 5. Schematic density-of-states. Schematic available density-of-states (D(E)) vs. energy 

(E) plot for the illustrative case of a Gaussian donor band (DB, blue) overlapping with a free-

electron-like conduction band (CB, green). Five illustrative potential Fermi energy locations, E1 

through E5, are indicated by the red dashed lines. The inset shows a density-of-states with a 

Coulomb gap of width ΔC around a potential Fermi energy location E6.     
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