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Atomic sized two-level systems (TLSs) in amorphous dielectrics are known as a major source of
loss in superconducting devices. In addition, individual TLS are known to induce large frequency
shifts due to strong coupling to the devices. However, in the presence of a broad ensemble of TLSs
these shifts are symmetrically canceled out and not observed in a typical single-tone spectroscopy
experiment. We introduce a two-tone spectroscopy on the normal modes of a pair of coupled
superconducting coplanar waveguide resonators to reveal this effect. Together with an appropriate
saturation model this enables us to extract the average single-photon Rabi frequency of dominant
TLSs to be Ω0/2π ≈ 79 kHz. At high photon numbers we observe an enhanced frequency shift
due to nonlinear kinetic inductance when using the two-tone method and estimate the value of the
nonlinear coefficient as K/2π ≈ −1×10−4 Hz/photon. Furthermore, the life-time of each resonance
can be controlled (increased) by pumping of the other mode as demonstrated both experimentally
and theoretically.

The characterization of a nonlinear medium often in-
volves the usage of a strong (pump) field which modifies
the medium properties, combined with a weak (probe)
field which is used for measurement. When the nonlin-
ear response of a resonant device is probed, the finite
linewidth limits the available pumping bandwidth and
thus might hide the full nonlinear behavior. Here we
show how this problem can be solved by using the normal
modes of a coupled system. When two modes share the
same spatial volume but have different frequencies, one
mode can be pumped strongly, modifying the medium
locally overlapping with the other mode which is used
for probing. When the splitting between the modes is
large enough the pumped mode can modify the spectral
components of the medium outside of the other mode’s
linewidth. In this Rapid Communication we demonstrate
how this method can reveal nonlinear properties which
would have remained hidden even for the strongest drive
possible if the standard method was used. In partic-
ular, we measure low-power nonlinear frequency shifts
of resonances formed by coupled superconducting copla-
nar waveguide resonators (CPWR)1. As we show, these
shifts, caused by pumping at a detuning of ∼ 1000 times
the resonance linewidth, are well explained by the sat-
uration of two-level systems (TLSs) in the device’s di-
electrics. Thus, this method can be used to give valuable
information about TLSs, which was unavailable other-
wise. Furthermore, at high powers, when kinetic induc-
tance nonlinearity is dominant, our two-tone method pro-
vides twice the nonlinear sensitivity, which might be use-
ful for applications such as microwave kinetic inductance
detectors2 and resonators’ frequency tuning3.

Investigated in the context of amorphous material
physics4–6, TLSs in dielectrics were brought into focus
again since the discovery of their critical role as a loss
mechanism in superconducting devices7. While the ef-
fect of TLSs saturation by probe power on the imagi-

nary part of the dielectric constant Im (ε) (i.e. internal
loss) was investigated thoroughly7–13, the modification
of Re (ε) (i.e. frequency shift) by the drive has remained
hidden14. Here we demonstrate how by applying a pump-
probe measurement on coupled modes this effect can be
revealed.

Coupled resonators with a strong Josephson nonlinear-
ity were used e.g. for quantum-limited amplification17,
stabilization of photon-number states18 and for simulat-
ing a Bose-Hubbard chain19. Here we use coupled res-
onators as a tool to characterize the intrinsic nonlinear-
ities of the resonators. For an ideal coupled pair of two
identical resonators the normal modes will be a symmet-
ric mode and an antisymmetric one for which the wave
functions are identical up to a phase. This allows us to
ignore uncertainties e.g. in electric field distribution and
treat the modes referring only to the ability to saturate
detuned spectral components of the nonlinear medium
(see Fig. 1).

Our device consists of two capacitively coupled λ/2
CPWR made from ∼ 120 nm Al sputtered on high-
resistivity Silicon (ρ > 5000 Ω·cm), see Fig. 1. These
resonators are physically identical, hence their bare (un-
coupled) resonance frequencies are the same, but due to
the coupling, two modes split by ∼ 63 MHz at 5626 and
5689 MHz are formed. We characterize the resonances
by measuring the transmission through a common feed-
line to which they are capacitively coupled using a vector
network analyzer. The resonance frequency f0, internal
quality factor Qi and the steady-state average number
of photons 〈N〉 stored in the resonator are extracted by
fitting the complex transmission data S21 (f) to an ap-
propriate model20–23. In order to quantify the nonlinear
response of the resonances the probe power is scanned
at a range which corresponds to 〈N〉 = 101 − 108 pho-
tons, and the dependence of various parameters on 〈N〉
is analyzed. All measurements were conducted at a tem-
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FIG. 1. (a) Design of the coupled resonators device15. Empty
area represents Si substrate, gray area represents metal (Al).
Feedline and resonators are black for clarity. Dark-red dashed
box marks the coupling region. (b) Cartoon of the experimen-
tal idea. Magenta bars represent the resonators, the x axis
is the position along their lengths. In analogy to coupled
pendula the coupling results in the forming of a symmetric
and an antisymmetric modes which differ only by the phase
between the electric fields in both resonators (blue and red
curves)16. TLSs (represented by ’X’) experience the same to-
tal field intensity (black curves) in both modes, except for the
small coupling area in which the resonators’ fields interfere.
This allows ignoring other details than the frequency detuning
between the modes.

perature of ∼ 20 mK with the device mounted to the
base plate of a dilution refrigerator.

In Fig. 2 we show the resonance frequency f0 and in-
ternal loss 1/Qi of the resonances obtained using the
standard single-tone spectroscopy method (for a uniform
medium and electric field 1/Qi = tan δ, the bulk loss
tangent, see23). The frequency of a single-tone probe is
scanned around one resonance for various probe powers
and the parameters are extracted as detailed above. As
shown in Fig. 2b the loss dependence on 〈N〉 agrees well
with the TLS model23. In addition, as predicted by this
model9, for stored energies corresponding to 〈N〉 <∼ 105

there is no observable frequency shift. For higher probe
powers there is a strong negative shift which depends lin-
early on the number of photons. This linear shift is ex-
plained as resulting from nonlinear kinetic inductance24

which can be modeled as a Kerr nonlinearity25 (the weak
negative shift for 105 <∼ 〈N〉 <∼ 107 resulting in a discrep-
ancy from the fits at low powers might be due to the finite
number of TLSs, see23). We elaborate more on the high
power regime below. We stress here that in fact TLSs
far detuned from resonance contribute to the real part
of the dielectric constant ε9 and therefore should effect

f0, but because the standard method uses a single tone
which saturates TLSs symmetrically around resonance
this nonlinear effect is effectively hidden (See Figs. 4a
and 4b).

FIG. 2. (a) Resonance frequency shift and (b) Internal loss
(shown in a log-log scale in the inset) vs 〈N〉 for the probe-
only experiment for the resonances at 5626 MHz (green) and
5689 MHz (blue). Dashed lines in 2a are linear fits of the high
power shifts to a Kerr nonlinearity model as detailed in the
text. Dashed lines in 2b are fits to the standard TLS model
(23 Eq. (29)). Inset in Fig. 2a: a typical fit of the transmission
data.

The full nonlinear behavior of the resonances is re-
vealed when we use our two-tone pump-probe method.
This is done by pumping strongly at a frequency close to
one resonance while measuring S21 (f) of the other res-
onance using a weak probe. Fig. 3a shows the results of
this experiment. Notice that while in Fig. 2 the x axis
indicates the average number of photons in the probed
resonance, in Fig. 3 the x axis shows the average number
of photons in the pumped resonance and the weak probe
power is held constant23. In contrary to the kinetic in-
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ductance nonlinearity at high photon numbers which is
common to both types of experiments, at lower powers
there is a significant frequency shift in the pump-probe
experiments which is not observed in the probe-only ex-
periments. Furthermore, the direction of the resonance
shift depends on the relative position of the pumped and
probed resonances. A negatively-detuned pump induces
a negative shift on the probed resonance and vice-versa.
These shifts can be explained by generalizing the TLS
model to the pump and probe case. We first give a qual-
itative explanation of the physical reasoning behind the
differences and then give the details of the full deriva-
tion. The effect of one TLS on the probed mode fre-
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FIG. 3. (a) Resonance frequency shift and (b) Internal loss
vs the average number of photons 〈N〉 in the pumped mode
for the pump-probe experiment. Green (blue) points are for
probe at 5626 MHz (5689 MHz) and pump at 5689 MHz (5626
MHz). The dashed lines in Fig. 3a are linear fits of the high
power shifts to a Kerr nonlinearity model as detailed in the
text. Solid lines are sums of the fits to the prediction of the
generalized model of frequency shift due to TLSs (Eq. (4))
and the linear fits. In Fig. 3a constant shifts were added for
clarity.
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FIG. 4. Qualitative picture of the generalized TLS saturation
model for the resonance shift. A black ’X’ represents a TLS.
A red ’X’ represents a saturated TLS. Green arrows repre-
sent the level repulsion (the length indicating the repulsion
strength). Red arrows represent the pump tone. (a) In the
absence of pumping the TLSs are symmetrically distributed
around a resonance, resulting in a broadening without a fre-
quency shift. (b) A symmetric pump around one resonance
narrows the linewidth without a frequency shift. (c) When
two resonances are present, strongly pumping symmetrically
around the lower resonance results in an asymmetric repulsion
for the higher resonance, causing a frequency shift. (d) When
the pump power increases, the repulsion of the higher reso-
nance becomes more and more symmetric, causing a decrease
in the frequency shift.

quency can be approximately described by the dispersive

shift26 ∆ωpr = g2

∆ 〈Ŝz〉, where g is the coupling strength
between the TLS and the mode, ∆ ≡ ωTLS − ωpr is

their detuning and Ŝz = ±1 is a TLS state operator
(this result is obtained by applying second order pertur-
bation theory on the Jaynes-Cummings Hamiltonian27,
assuming g < ∆ and can be understood as resulting
from level repulsion between the mode and the TLS).
Since TLSs density of states is uniform in energy6 they
will be distributed symmetrically around ωpr resulting in
equal negative and positive shifts which sum to a zero
shift with a broadened linewidth (Fig. 4a). When a
TLS is pumped strongly it populates the excited state
half of the time, yielding 〈Ŝz〉 = 0. Nevertheless, when
the standard probe-only method is used, TLSs are satu-
rated symmetrically around ωpr, hence the effect is only
linewidth narrowing (i.e. reducing the internal loss) but
no observable frequency shift (Fig. 4b). The situation is
different when one mode is pumped while the other is
probed. The presence of another mode opens a spectral
window for asymmetric saturation of TLSs which effects
the probed mode due to the spatial coexistence of both
modes’ fields. When a mode negatively (positivity) de-
tuned from the probe field is pumped strongly TLSs neg-
atively (positivity) detuned from ωpr are saturated, while
positivity (negatively) detuned TLSs are less affected, re-
sulting in a negative (positive) net shift (Fig. 4c). In-
creasing pump power increases also the TLSs satura-
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tion (from power broadening), initially increasing the
shift but eventually making saturation more and more
symmetric, hence reducing the shift (Fig. 4d). We now
present a full quantitative model to explain the results23.
A single TLS is characterized by an asymmetry energy
∆j , a tunneling amplitude ∆0j resulting in the eigenen-

ergy Ej ≡ h̄ωj ≡
√

∆2
j + ∆2

0j and an electric dipole mo-

ment pj
6. The dipole coupling coefficient to a uniform

electric field occupying a volume V filled by a material

with a dielectric constant ε is gj ≡
cos θjpj

√
ωpr√

2h̄εε0V

∆0j

h̄ωj
, where

θj is the angle between the electric field and the dipole
and ωpr is the probed mode frequency. Summing contri-
butions from all TLSs we obtain the frequency shift

∆ωpr = Re

∑
j

g2
j

〈Ŝz,j〉
ωj − ωpr + i

T2j

 , (1)

where T2j = 2T1j are the relaxation and dephasing times
of the TLS (assuming a negligible TLS-TLS interaction).
The population difference induced by pumping yields6

〈Ŝz,j〉 = − tanh

(
h̄ω

2kBT

)
×1−

T1jΩ
2
Rj/T2j

(ωj − ωpump)2
+ T−2

2j

(
1 + Ω2

RjT1jT2j

)
 (2)

where ωpump is the pump frequency and the TLS Rabi
frequency due to pumping is given by

ΩRj ≡
∆0j

h̄ωj
cos θjΩ0, h̄Ω0 ≡ 2pjFpump, (3)

with the pump field Fpump. Using the standard TLS
model distribution we obtain that in the strong field
regime Ω0T1T2 � 1 the frequency shift due to pumping
is23

∆ωpr

ωpr tanh
(
h̄ωpr

2kBT

) =

√
2P0p

2π2

8εε0

∆ω

Ω0

√
1 +

Ω2
0

2∆ω2 − 1√
1 +

Ω2
0

2∆ω2 + 1

,

(4)
where ∆ω ≡ ωpump − ωpr is the detuning between the
pump and probe frequencies and P0 is the TLSs den-
sity of states. As expected from the qualitative pic-
ture, for small fields (Ω0 � ∆ω) the shift increases with

〈N〉 as ∆ωpr ∝ Ω0 ∝
√
〈N〉, while it decreases as

∆ωpr ∝ Ω−1
0 ∝ 〈N〉− 1

2 for high fields (Ω0 � ∆ω). In
addition, the direction of the shift follows the sign of
∆ω23 as expected. In Fig. 3a we show fits to this model
for both resonances23. From the fits we obtain an esti-
mate to the average single photon Rabi frequency of a
dominant TLS ΩN=1

0 /2π ≈ 79 kHz23. These values con-
firm the predictions of previous studies28,29 and of our
Monte-Carlo simulations23 that TLSs at regions of strong
fields dominate the nonlinear behavior. In comparison
to the frequency shift the internal loss needs a much

larger number of photons to show a significant response
(Fig. 3b), This agrees with our theoretical calculations23

and demonstrates the fact that the imaginary part of ε
is only sensitive to nearly resonant TLSs9.

As mentioned above, for large 〈N〉 a negative frequency
shift is observed in both probe-only and pump-probe ex-
periments. This shift can be attributed to nonlinear ki-
netic inductance24 which might be explained e.g. as re-
sulting from quasiparticle microwave heating30 or modifi-
cation of the superconducting ground state by the field31.
Following Yurke and Buks25 we model this effect as a
Kerr nonlinearity, resulting in a frequency shift which is
linear in the number of photons

∆f0 =
K

2π
〈N〉, (5)

where K is the Kerr coefficient. A linear fit to the single-
tone experiments high-power frequency shifts (Fig. 2a)
yields K

2π = −1.11(0.05) × 10−4 Hz/photon for the reso-

nance at 5626 MHz and K
2π = −1.23 × 10−4 Hz/photon

for the resonance at 5689 MHz. These results agree
with order of magnitude estimations based on a sim-
ple nonlinear kinetic inductance model23. These close
values for both resonances agree with the fact that ki-
netic inductance should depend on the superconducting
Al properties30–32. Generalizing the model to the case
of coupled resonators23 we find that the expected shift
of one resonance due to photons in the other resonance
is linear in the number of photons with the coefficient
K ′ = 2K, i.e. doubled. Fitting the two-tone experi-
ments high-power frequency shifts (Fig. 3a) we obtain
K′

2π = −5(1) × 10−4 Hz/photon for the 5626 MHz res-

onance and K′

2π = −2.4(0.8) × 10−4 Hz/photon for the
5689 MHz resonance. For the 5689 MHz resonance we
obtain an agreement with the expected theoretical dou-
bling, but for the 5626 MHz resonance there is a discrep-
ancy which might be a result of an additional TLS shift
due to non-uniform electric field or imperfections in the
calculation of the number of photons at high powers23.
Similar enhancement of the cross-Kerr shift in compar-
ison to the self-Kerr one was observed with a strong
Josephson nonlinearity33. Here it is used as a tool for
measuring the intrinsic nonlinearity of a presumably lin-
ear resonator.

In conclusion, a novel method for the characterization
of nonlinearities using a pump-probe scheme on the nor-
mal modes of coupled resonators was implemented and
analyzed. Using this method the effect of TLS saturation
by drive power on the real part of the dielectric constant
ε was uncovered and the average single photon Rabi fre-
quency of dominant TLSs was extracted. In addition, the
Kerr coefficient quantifying the strength of nonlinear ki-
netic inductance was measured, yielding K

2π ≈ −1×10−4

Hz/photon. Knowledge of the nonlinearities of presum-
ably linear CPWRs down to the single photon limit is
important for quantum information applications, such as
the implementation of recent proposals for encoding log-
ical qubits by multiphoton cat states34. In addition, the
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ability to reduce the internal loss of one mode by pump-
ing the other mode can be used to enhance the resonance
lifetime while keeping the number of probing photons
small, as required e.g. for dispersive readout in circuit
QED26.
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