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Isotropy of cosmic rays beyond 10 eV favors their heavy mass composition
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We report an estimation of the injected mass composition of ultra-high energy cosmic rays (UHE-
CRs) at energies higher than 10 EeV. The composition is inferred from an energy-dependent sky
distribution of UHECR events observed by the Telescope Array surface detector by comparing it
to the Large Scale Structure of the local Universe. In the case of negligible extra-galactic magnetic
fields the results are consistent with a relatively heavy injected composition at £ ~ 10 EeV that
becomes lighter up to £ ~ 100 EeV, while the composition at £ > 100 EeV is very heavy. The
latter is true even in the presence of highest experimentally allowed extra-galactic magnetic fields,
while the composition at lower energies can be light if a strong EGMF is present. The effect of the
uncertainty in the galactic magnetic field on these results is subdominant.

Ultra-high energy cosmic rays (UHECR) are charged
particles, likely protons and nuclei, with energies greater
than 1 EeV (108 eV) that are reaching the Earth from
space. The flux of particles at these energies is tiny,
of order 1 km~2sr'yr—!, so they can be detected only
indirectly via extensive air showers (EAS) of secondary
particles they initiate in the Earth atmosphere. Despite
several decades of study the origin of UHECR and the
nature of their primary particles remain unknown. The
UHECR energy spectrum was measured with a good pre-
cision [1, 2]; its general shape is consistent between the
two modern experiments Pierre Auger (Auger) [3] and
Telescope Array (TA) [4] and with theoretical models [5-
7], except a minor discrepancy [8] at highest energies.
The spectrum measurements alone, however, have a lim-
ited potential to discriminate between various models of
UHECR origin. The mass composition measurements
have generally better discriminating power. But in op-
posite to the spectrum, the mass composition measure-
ments of Auger [9, 10] and TA [11, 12] are more affected
by various systematic effects and not covering the highest
energy part of UHECR spectrum. At the same time the
UHECR arrival directions are measured with a sufficient
precision of order 1°. Unfortunately, this does not allow
one to directly identify the sources since the deflections of
UHECR are highly uncertain because of both unknown
event-by-event primary particle charges, and because of
large uncertainties in the galactic and extragalactic mag-
netic fields. Several approaches have been proposed in
the literature to decipher the origin of UHECR using
complex anisotropy observables [13-16].

In this letter we use a novel method to infer the in-
jected UHECR mass composition from the arrival direc-
tions of the TA events. The method was proposed and
described in detail in Ref. [17]. It takes advantage of
the accurate measurements of UHECR arrival directions
and energy, while circumventing the uncertainties arising
from cosmic magnetic fields. The method is based on the
observation that the magnitude of UHECR deflections is
determined predominantly by particle charges that may
range from 1 for protons to 26 for iron, while other factors

are expected to give an order of magnitude smaller effect.
Comparing the energy-dependent UHECR distribution
over the sky calculated with various injected mass com-
positions with the observed distribution one may identify
the models that are compatible or incompatible with the
data. At this stage, the parameters of the UHECR, mod-
els other than the mass composition are fixed by some
conservative assumptions. One may then vary these pa-
rameters to check if the conclusions about the mass com-
position are robust with respect to this variation. Some-
what similar approaches to UHECR mass composition
estimation from their anisotropy have been proposed in
Refs. [18, 19].

The Telescope Array [4] is the largest cosmic-ray ex-
periment in the Northern Hemisphere. It is located at
39.3° N, 112.9° W in Utah, USA. The observatory in-
cludes a surface detector array (SD) and 38 fluorescence
telescopes grouped in three stations. The SD consists of
507 plastic scintillator stations of 3 m? each, which are
placed in a square grid with the 1.2 km spacing, cover-
ing in total the area of ~ 700 km?. The TA SD can
detect EAS produced by cosmic ray particles of ~EeV
and higher energies. The TA SD operates since May
2008. In this analysis we use the data collected by the
TA SD during 14 years of operation from May 11, 2008
to May 10, 2022. We use the quality cuts described in
Ref. [20], and select events with zenith angle 6 < 55° and
energy F > 10 EeV. We also use the data of the National
Lightning Detection Network [21] to filter out the events
possibly caused by lightnings as described in Ref. [22].
The resulting data set contains 5978 events, including
the event with the highest energy of 244 EeV [23] and 18
other events with £ > 100 EeV.

Each event that activates the SD trigger is recorded,
and the kinematic parameters of its primary particle are
reconstructed. The arrival direction is determined from
the relative difference in arrival times of the shower front
at each surface detector, which is measured with the pre-
cision of 20 ns. The energy of the primary particle is es-
timated using the EAS particle density Sggp measured at
a distance of 800 m from the shower axis. The measured
value of Sggg is converted to the reconstructed SD en-
ergy taking into account the zenith angle dependence by



means of a Monte-Carlo simulation that uses the COR-
SIKA software package [24]. Finally, thus reconstructed
SD energy is calibrated to the calorimetric energy mea-
sured by the fluorescence detectors; this amounts to a
rescaling by the factor of 1/1.27 [2]. The resolution of the
SD at E > 10 EeV is 1.4° in arrival direction and 18% in
the logarithm of primary energy [2, 25]. The systematic
uncertainty in the energy determination is estimated at
21% [26].

The implementation of our method is organized in
three steps. First, we generate a large mock set of realis-
tic UHECR events for each injected composition model
considered. Second, we define the test-statistics (TS)
that quantifies the overall magnitude of deflections of a
given event set with respect to the Large Scale Structure
of the Universe (LSS) and that is robust to the uncer-
tainties of the magnetic fields. Finally, we calculate this
TS for each mock event set as well as for the real data,
and quantify the compatibility of each composition model
with the data. The effect of the uncertainties in magnetic
fields and injection spectra is estimated by varying their
parameters for each composition model.

We now describe these steps in more detail, start-
ing with a brief description of the key properties of the
UHECR mock event sets; more thorough discussion is
given in a complementary paper [27]. We assume that
UHECR sources trace the matter distribution in the local
Universe. Statistically, this can be achieved by assuming
equal intrinsic UHECR flux for each galaxy in a com-
plete volume-limited sample. In practice we use the flux-
limited galaxy sample with a high degree of completeness,
derived from the 2MRS galaxy catalog [28] by cutting out
galaxies with mag > 12.5 and with distances below 5 Mpc
and beyond 250 Mpc. We assign a progressively larger
flux to more distant galaxies to compensate for the obser-
vational selection inherent in a flux-limited sample. The
sources beyond 250 Mpc are assumed to be distributed
uniformly with the same mean density as those within
this distance. Their contribution is added as a properly
normalized fraction of isotropic events. The exact proce-
dure is described in Ref. [29]. This source model covers
all the source scenarios with sufficiently numerous sources
(source number density p > 107> Mpc~—3). The source
densities of order 10~° Mpc~2 are not excluded experi-
mentally [30] (see, however, recent studies [31, 32]). In
this case the sensitivity of our method to the mass compo-
sition decreases; we discuss this issue in a complementary
paper [27].

We fix the injection spectrum for each nucleus by deriv-
ing it from the separate fit to the TA and Auger observed
spectra [27, 33]. As a result the following spectra are
taken for the UHECR flux simulation: power law with
the slope —2.55, —2.20, —2.10 and without the cut-off
for protons, helium and oxygen, respectively; power law
with the slope —1.50 and with a sharp cut-off at 280 EeV
for silicon; power law with the slope —1.95 and with a

sharp cut-off at 560 EeV for iron. The secondary particles
produced upon propagation of injected primary nuclei
through the interstellar medium are taken into account
for helium and oxygen nuclei and reasonably neglected
for other primaries; the details are given in Ref [33]. We
also consider separately a best-fit injected composition
model from the Auger work [34], where we take into ac-
count all the secondaries and model the deflection of the
full flux according to its average charge.

The deflections in magnetic fields are treated with
the account of primary particle charge Z and its en-
ergy E. The deflections in the extra-galactic magnetic
field (EGMF) are simulated as a direction-independent
smearing of the sources with the von Mises-Fischer distri-
bution. For our basic model its magnitude is set to zero,
which corresponds to either Bgagmr < 1 nG for the cor-
relation length A ~ 1 Mpc or Bggmr < 0.1 nG for A of a
cosmological scale. We discuss the possible effect of non-
zero EGMF among other uncertainties. The deflections
in the regular galactic magnetic field (GMF) are simu-
lated using the backtracking technique with the GMF
model of Ref. [35]. The deflections in the random GMF
are simulated as a galactic-latitude-dependent smearing
according to the data-driven relation of Ref. [36]. Finally,
the event distribution is modulated by the geometrical
exposure of the TA. The energies of the events in the
mock sets are generated according to the observed TA
spectrum with the account of the TA energy resolution.
In a complementary paper [27] we estimate the impact of
uncertainties in the energy scale and in the parameters of
the injection spectra and magnetic fields on the inferred
mass composition.

We define the test-statistics (TS) using the expected
UHECR flux maps built by a similar procedure as used
for the mock sets generation, but with smaller number of
free parameters. Namely, we use the same 2MRS-based
source catalog, assume flux attenuation as protons with
~ E~255 injection spectrum without cutoff and a uni-
form smearing of sources. The magnitude of this smear-
ing 01¢¢ defined at 100 EeV is the only free parameter on
which the TS depends. For each given value of 6199 we
build a set of maps @ (6100, n) where n is the direction
in the sky, k denotes the energy bin and the smearing of
each map scales properly, as 100 EeV/Ej. Then the test
statistics TS(f100) for a given event set with directions
n; is defined as follows:

S(6100) = _22 (Zl Py 9100>nz)> Y

1@0 n’L)

where the sum run over the events ¢ and energy bins k,
and we have included a standard overall normalization
factor —2. The normalization factor ®is(n;) = ®(c0, n;)
corresponding to an isotropic distribution is added for
convenience. In the limit of a large number of events,
this test statistics is distributed around its minimum ac-
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FIG. 1. Top panel: Example of the map ®; (E > 100 EeV,
0100 = 10°) used for test-statistics computation, overlaid with
the distribution of the TA SD events with E > 100 EeV.
Galactic coordinates. Bottom panel: The distribution of test-
statistics over #1090 evaluated for experimental data in five
energy bins. The number of events in each bin is shown, in
the legend.

cording to y2-distribution with one degree of freedom.
The position of the TS minimum O for each event set
is interpreted as the energy-rescaled mean event deflec-
tion with respect to the LSS. Thus, for a mock set of
a given composition model and a very large number of
events, the TS should have a deep and narrow minimum,
with the value of 6% being characteristic of this com-
position model. These values could then be confronted
with the T'S(6100) evaluated for the data.

To estimate the mass composition we divide the energy
range into 5 bins starting from 10 EeV with a quarter-
decade width and with the last bin being an open interval
E > 100 EeV. The dependence of TS(610g) on 619 for the
data in each bin is shown in Fig. 1. The curves for all but
the penultimate bin (red curve) are consistent, at the 2o
level, with isotropy which corresponds to 6199 = 200° in
our notations — the value that is beyond the size of the
TA field of view. In the bin 19.75 < log,4[E/eV] < 20.0
the TS has a distinct minimum at 6758 = 22.2° that
deviates from isotropy with the significance of 2.30.

In Fig. 2 we present a bin-wise comparison of the data
with various composition models. The data points are in
correspondence with the TS(0109) curves shown in Fig. 1:
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FIG. 2. The test-statistics for the data compared to sev-
eral injected composition models. Regular GMF model of
Ref. [35] is used, and deflections in EGMF are neglected. Note
that several heavy composition models yield the same value
of 5% = 200°, i.e. they are indistinguishable in our method.
The corresponding lines which merge together on the plot are
indicated by arrows. Left panel: p-Fe mix composition mod-
els. Right panel: pure nuclei composition models.

the central points show values of #3 in each bin, while
the error bars represent lo- and 2o-deviations from the
minimum as calculated from the corresponding curve. It
should be stressed that, by definition, the data points
show typical deflections of cosmic rays in the correspond-
ing bin rescaled to E = 100 EeV. While the energy de-
pendence of deflections is taken into account in this way,
there other factors such as the difference in attenuation
at different energies (and, therefore, relative contribution
of close and distant sources) are not. Hence the varia-
tions of 9341 from bin to bin. Regardless these variations,
it is manifest in Fig. 2 that the small values of 019 are
not compatible with the data at all energies, which is ev-
ident already in Fig. 1 from the steep rise of the curves

at small 61¢p.

The colored lines in Fig. 2 show predictions for differ-
ent composition models which should be compared to the
data. With our assumptions and zero EGMF the pure
proton composition (red line) is not compatible with the
data as it predicts 075" < 2° in all energy bins. The
injected light or intermediate composition is also incom-
patible with the data as in this case the flux is domi-
nated by secondary protons. At the same time the data
are compatible with the injected silicon at all energies
except £ > 100 EeV and with injected iron at all en-
ergies except E > 57 EeV. The Auger best-fit model is
compatible with the data at 20 level. In general, one
can see a trend: the preference for heavier composition
at 10 < E < 18 EeV changes in favor of a lighter one
at 57 < E < 100 EeV, while at £ > 100 EeV the data

prefer a very heavy composition — even beyond iron.
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FIG. 3. The test statistics for the data compared to various injected composition models. Left panel: p-Fe mix composition
models for two different regular GMF models. Right panel: pure nuclei composition models without EGMF and with extremely

strong EGMF.

We turn now to the discussion of uncertainties af-
fecting these results, of which the most important are
those related to the magnetic fields, the experimental en-
ergy scale and the injection spectrum. In our setup all
these uncertainties affect only the positions of model lines
shown in Fig. 2. The injection spectrum uncertainty was
tested by varying the spectrum parameters within +1o
around their best fit values. This variation was found
to have negligible impact on the results, see Ref. [27] for
details.

To estimate the effect of GMF uncertainty we gener-
ate new mock sets, this time assuming the regular GMF
model of Ref. [37]. Note that the UHECR deflections in
both models are similar in magnitude but substantially
differ in direction. The comparison of predicted values of

min is shown in Fig. 3, left panel, for the same composi-
tion models as in Fig. 2. One can see that the predicted
values of O are quite close in almost all cases, so that
the change of the GMF model does not change the level

of compatibility of the composition models with the data.

The EGMF is more uncertain than GMF. To esti-
mate its impact on the results, additional assumptions
are required. In general, there are three possible regimes
where EGMF may affect the UHECR deflections. First,
there could be an intergalactic magnetic field IGMF in
voids of Large Scale Structure. If its origin is not cos-
mological its correlation length is expected not to exceed
~ 1 Mpc [38]. Then its strength is bounded from above
as Begmr < 1.7 nG [39] and UHECR deflections are de-
scribed by a uniform smearing [40]. It is straightforward
to implement such a smearing into our simulation of mock
sets. In the opposite case of the IGMF of cosmological
origin, its amplitude is constrained to be B < 0.05 nG for
any correlation lengths [41], that leads to deflections neg-

ligible comparing to that in the GMF'. Finally, the IGMF
can be negligible but there could be an EGMF in a local
extragalctic structures such as a local filament. There
is no observational bounds on such fields; however, con-
strained astrophysical simulations predict its strength in
the range 0.3 < B < 3 nG in the ~ 5 Mpc vicinity of our
Galaxy [42]. Even in the conservative case the expected
deflections in such a field would be several times smaller
that the maximum possible deflections in IGMF.

Given all these considerations we test the possi-
ble effect of EGMF conservatively assuming the high-
est allowed parameters for non-cosmological field [39]:
Begayr = 1.7 nG and Aggyr = 1 Mpce. This may lead
to deflections as high as 7° for protons at 100 EeV. We
are simulating such deflections by an additional direction-
independent smearing of sources that scales according to
the primary particle charge and energy. The results in-
cluding both GMF and EGMF are shown in Fig. 3, right
panel, in comparison with the zero EGMF case. As one
can see from the plot, the inclusion of the maximum al-
lowed EGMF significantly increases the value of 632 in
all models and makes even the pure proton composition
compatible with the data in lower energy bins at the 20
level. In the last bin corresponding to E > 100 EeV,
this increase is not sufficient except in the case of pure
iron composition which becomes fully compatible with
the data.

The impact of the uncertainty related to the systematic
of the experiment’s energy scale is of the same order or
smaller than the impact of the GMF uncertainty. More
detailed discussion of all the mentioned uncertainties is
given in Ref. [27].

The interpretation of the results differs significantly de-
pending on the assumed deflections in EGMF, while the



difference due to the GMF assumptions is subdominant.
As it was mentioned, in the case of negligible EGMF the
data prefer a heavy composition at low energies, a rela-
tively light one at 57 < E < 100 EeV and a very heavy
one (beyond iron) at E > 100 EeV. The latter result is in
agreement with Ref. [23], which finds that the TA high-
est energy event is not correlated with the LSS unless its
deflection is very large. In the case of extreme EGMF
the data is consistent with both heavy and intermediate
composition at £ < 100 EeV. In particular oxygen and
even proton compositions became more compatible with
the data at ' < 57 EeV.

Importantly, the evidence of heavy composition at
E > 100 EeV survives the assumption of even extremely
strong EGMF, while the light or intermediate composi-
tion remains in tension with the data. For instance, to
reconcile the proton or helium composition with the data
at F > 100 EeV at least at 20 level the EGMF should be
stronger than 20 nG for A = 1 Mpc, that is far beyond
the upper limit discussed earlier. It is also interesting
that pure silicon is compatible with data from 10 EeV
up to 100 EeV irrespective of the EGMF.

In conclusion, an important comment concerning the
interpretation of our results in the low energy bins is in
order. The logic here can be inverted: taking at face
value the light or intermediate composition measured at
10 £ E <50 EeV by the fluorescence experiments [9, 11],
our results implying relatively large UHECR, deflections
at these energies point towards the existence of a strong
EGMF close to the current experimental limit. The
quantitative discussion of this observation will be given
elsewhere.
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