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We present an approach for GW calculations of quasiparticle energies with quasi-quadratic scaling by ap-
proximating high-energy contributions to the Green’s function in its Lehmann representation with effective
stochastic vectors. The method is easy to implement without altering the GW code, converges rapidly with
stochastic parameters, and treats systems of various dimensionality and screening response. Our calculations on
a 5.75◦ twisted MoS2 bilayer show how large-scale GW methods include geometry relaxations and electronic
correlations on an equal basis in structurally nontrivial materials.

Many-body perturbation theory (MBPT) within the first-
principles GW approximation is a proven and widespread
method for computing accurate quasiparticle (QP) properties
of materials [1–5]. Obtaining fully converged QP energies
within the GW approach for small to moderately sized bulk
systems, with up to a few hundred atoms in the unit cell, is a
routine procedure with modern high-performance supercom-
puters [6–9]. However, exploring the more complex many-
body physics of large systems that are relevant in electronic
and technological applications is difficult due to the quartic
scaling in system size of the standard GW formalism [2],
limiting the applicability of the method in large-scale prob-
lems such those involving twisted materials displaying moiré
physics [10–17].

Several approaches have been developed recently to deal
with these shortcomings. They fall mainly into two cate-
gories: modifying the standard reciprocal-space GW formal-
ism, wherein the electronic Green’s function G is still eval-
uated in its Lehmann representation as a sum-over-bands, or
employing different representations of the theory that avoid
the explicit sum-over-bands. Notable techniques in the former
category include replacing high-energy orbitals with simple
ansatz wavefunctions and using completion relations to trun-
cate the sum-over-bands [18–22]. Approaches in the latter cat-
egory are diverse, with several achieving cubic or sub-cubic
scaling. An important technique is transforming to bases
where the evaluation of the polarizability is formally cubic
scaling. This includes working in real space and imaginary
time where the polarizability is separable [23, 24], manipulat-
ing the spectral functions in a localized-orbital basis [25], ex-
ploiting sparse overlap integrals in a Gaussian basis [26], and
using tensor hypercontraction [27] and density-fitting meth-
ods [28–30]. Independent of these cubic scaling methods,
stochastic approaches [31–34] can achieve linear scaling with
system size by working in the time domain. Additionally,
there are representations of the theory which still scale quar-
ticly but exhibit lower prefactors, such as within the frame-
work of density-functional perturbation theory [35, 36].

In this letter, we propose a simple and rigorous approach
that combines the stochastic and sum-over-bands methods to
achieve a quasi-quadratic scaling GW formalism with a small
prefactor (speedups of ∼100-fold on systems with tens of

atoms), from given input mean-field wavefunctions. It offers
large computational savings in both the calculation of the di-
electric function and the QP self-energy. The performance
gain is achieved by the stochastic compression of all mean-
field Kohn-Sham states outside a small energy region around
the Fermi level, including occupied states.

Our approach is compatible with standard reciprocal-space
GW codes and is simple to implement. It is also straightfor-
ward to converge independently of the GW code which uses
it, and eliminates sum-over-bands truncation parameters in
the GW calculation by allowing one to include all eigenstates
from the mean-field Hamiltonian. These advantages allow
the computation of QP properties of complex systems of hun-
dreds of atoms with moderate computational expense, which
we demonstrate for several systems. Finally, unlike purely
stochastic approaches, we observe speedups with respect to
a fully deterministic approach for all system sizes, and not
only for large systems. We highlight the applicability of our
method on several systems of different dimensionality, includ-
ing a large-scale problem of a 5.75◦ twisted bilayer of MoS2.

Method.—The GW approximation in its most common
non-self-consistent form is based on the non-interacting
single-particle Green’s function,

G(ω) ≡
∑
n,k

|ϕnk⟩ ⟨ϕnk|
ω − Enk ∓ iη

≡
∑
k

Gk(ω), (1)

where |ϕnk⟩ are mean-field states, typically obtained from
density-functional theory (DFT) calculations, with band in-
dex n and wavevector k, Enk are the corresponding eigenen-
ergies, ω is the evaluation frequency, η = 0+, and where
the sign is negative (positive) when Enk is below (above) the
Fermi energy. As in other stochastic approaches to GW cal-
culations [31], our method is based on the stochastic resolu-
tion of the identity operator, limN→∞ N−1

∑N
i=1 |ζi⟩ ⟨ζi| =

1, where off-diagonals vanish with a standard deviation of
1/
√
N , and |ζi⟩ are random vectors (see Eq. (5)).

When computing electronic properties within MBPT, it is
important to accurately capture the pole structure of G close
to the Fermi energy. For instance, the non-interacting polariz-
ability matrix χ0

G,G′(q, ω) at a wavevector q and planewave
indices G and G′ has poles at frequencies corresponding to
the energy difference between conduction (c) and valence
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(v) states, χ0
G,G′(q, ω) ∼

∑
vck A

vc
G,G′(k,q)(ω ± (Eck −

Evk))
−1, where Avc

G,G′ are matrix elements. Accurately de-
scribing the low-frequency behavior of χ0 is critical in MBPT
calculations. This depends sensitively on the pole structure of
G close to the Fermi energy, but less so on the pole struc-
ture of G at farther frequencies. For instance, when eval-
uating the electronic self-energy ΣGW within the contour-
deformation approach [37–39], ΣGW depends on an inte-
gral of the screened Coulomb interaction W along the imagi-
nary frequency axis – for which the pole structure of χ0 gets
smoothed out – plus residues of W are typically evaluated at
energies close to the Fermi energy.

This motivates us to express G as one term that contains
the exact contributions to the pole structure close to the Fermi
energy, GP

k , and another contribution that we write as a sum
over NS subspaces that are farther from the Fermi energy, GS

k ,

Gk(ω) ≈ GP
k (ω) +

NS∑
S

GS
k(ω). (2)

GP
k is computed exactly within Eq. 1 for bands n ∈ P , where

P is a small protected subspace with NP bands closest to the
Fermi energy. This deterministic region contains the states of
interest for which QP properties are desired, though it is un-
necessary when computing only the polarizability [40]. The
remaining subspaces S are still required for accurately ex-
pressing the self-energy ΣGW , but their pole structure may
be approximated. For each subspace S, we first approximate
the near-continuum pole distribution or branch cut at {Enk}
for states n ∈ S with a single pole at an average energy ĒSk.
Next, we identify the sum

∑
n∈S |ϕnk⟩ ⟨ϕnk| as a projection

onto the subspace S. This projection can be compressed using
the stochastic resolution of the identity operator,

GS
k(ω) ≈

1

ω − ĒSk ∓ iη

Nξ∑
i=1

|ξSi,k⟩ ⟨ξSi,k| , (3)

where |ξSi,k⟩ are vectors that stochastically project any vec-
tor onto the subspace S of interest, and which we denote by
stochastic pseudobands. Note that the subspaces S can run
over both unoccupied and occupied states [see Figure 1(a)].

The number of stochastic pseudobands Nξ is a convergence
parameter and controls the stochastic error of the resolution
of the identity. The number of subspaces NS is also a conver-
gence parameter and controls the error of the average energy
approximation. In the limit NS , Nξ → ∞, we recover the
original Green’s function in Eq. (1). The partition Eq. (2) is a
stochastic-deterministic approach, and allows us to maintain
high accuracy for important states close to the Fermi energy
while compressing states that are less relevant. Our approach
is similar in spirit to other stochastic methods for GW calcu-
lations [32–34], but does not require propagation in real-time.

Next, we show how to partition the subspaces {S} in Eq. (2)
and construct each stochastic pseudoband |ξSi,k⟩. A prac-
tical approach is to enforce that the error from each sub-
space to the Green’s function or static polarizability matrix

χ0
G,G′(q, ω = 0) is roughly constant. This is achieved by

enforcing a constant ratio

F ≡ ∆ES

ĒS
= const, (4)

where ĒS is the average energy of the Kohn-Sham states in
each subspace S (referenced to the Fermi level) and ∆ES is
the energy range spanned by S [41]. The ratio F is inversely
proportional to the number of subspaces, F ∼ 1/NS .

Finally, for each subspace S, we construct stochastic pseu-
dobands by taking random linear combinations of Kohn-Sham
states in S,

|ξSi,k⟩ =
1√
Nξ

∑
n∈S

αS
i,nk |ϕnk⟩ , (5)

with random phases α = e2πiθ for random θ ∈ [0, 1), and
i ∈ {1, . . . , Nξ} are the different stochastic pseudobands that
realize the projection onto S.

The proposed stochastic compression can be easily imple-
mented in most MBPT codes that use a spectral representa-
tion of G, and we have implemented our developmental ver-
sion in the BerkeleyGW code [42]. One only needs to modify
the input Kohn-Sham orbitals and combine them according to
Eq. (5). In particular, no modification of the GW code is re-
quired: the pseudobands approach is a pre-processing step to
the GW calculation. We also provide a pseudocode [43] and
reference implementation [44]. The method as described here
focuses on compressing the Green’s function for the efficient
evaluation of the static dielectric function, which is the quan-
tity of interest in calculations that use plasmon-pole models.
Still, a simple extension, whereby one takes ∆ES to be a con-
stant (∆E) instead of a quantity proportional to ĒS , allows
the evaluation of the inverse dielectric function at arbitrary
frequencies with small statistical errors and large computa-
tional savings [45]. We stress that our approach is amenable
to compressing both valence and conduction states, offering
especially large speedups for the computation of the dielectric
function, which scales with their product. We summarize the
quantities introduced in Table I below.

TABLE I. Pseudobands parameters: ‘conv.’, ‘auto.’, and ‘aux.’ are
convergence, automatically determined, and auxiliary parameters,
respectively. NP should be 0 when evaluating the polarizability for
large systems and finite to evaluate the GW self-energy of determin-
istic states.

Parameter Description Typical Value
F– conv. Constant energy ratio Eq. (4) 1% – 2%

NS– auto. Number of stochastic subspaces, NS ∝∼
1
F 10 – 200

Nξ– conv. Number of pseudobands per subspace 2 – 3
NP – aux. Number of protected bands ≥0

We note that (1) convergence testing with respect to pseu-
dobands parameters is rarely required, as the typical values
listed in Table I were sufficient to converge all systems stud-
ied and (2) NP only needs to be large enough to include
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the states of interest for computing the electronic self-energy,
and can be zero for computing only the dielectric matrix for
both semiconductors and metals [40]. Additionally, our ap-
proach removes the band truncation parameters employed in
the sum-over-states in traditional GW calculations. This is
because, when constructing the stochastic pseudobands, we
can easily consider all bands from the mean-field Hamiltonian
by diagonalizing it with scalable linear algebra packages such
as ELPA [46]. While one can benefit from similar speedups
from our pseudobands approach when generating input Kohn-
Sham states with iterative solvers, directly diagonalizing the
DFT Hamiltonian is typically faster and more numerically sta-
ble [47].

Results.—We benchmark our stochastic pseudobands ap-
proach on systems spanning dimensionality, electronic struc-
ture, and screening environment to numerically verify its con-
vergence behavior. We demonstrate quasi-quadratic scaling
for GW calculations on ZnO supercells up to 256 atoms
while maintaining constant error. Finally, we perform a large-
scale calculation of the GW QP bandstructure of a 5.75◦

twisted MoS2 moiré bilayer to address questions regarding the
emergent electronic structure in twisted 2D materials. Com-
putational details are provided in the Supplemental Mate-
rial [45]. Specific pseudobands convergence parameters are
listed with the computations below (v/c superscripts indicate
pseudobands parameters used for valence/conduction states,
respectively). Regardless of the system, we note that Nξ ≥ 2
should be used, as Nξ = 1 does not resolve the projection
over each subspace. Additionally, as currently implemented,
compressing valence states with stochastic pseudobands does
not offer advantages for calculating the self-energy operator
(as opposed to the dielectric matrix). This is because the bare
exchange contribution to the self-energy ΣX , which involves
matrix elements with occupied states, is very sensitive to the
character of the valence wavefunctions. Since the calculation
of the self-energy only scales with the sum of the valence and
conduction bands, compressing valence states does not pro-
vide significant acceleration for ΣGW in any case. However,
stochastic pseudobands always provide speedups when com-
pressing the conduction states for the operators studied here.

Convergence Behavior.—We show systematic convergence
of QP energies for two systems, an isolated benzene molecule
and bulk wurtzite ZnO. Additional benchmarks on bilayer
MoS2 and a metallic Ag54Pd nanoparticle are presented in
the Supplemental Material [48]. Figure 1 summarizes our
approach by comparing the error in QP energies for an iso-
lated benzene molecule and for wurtzite ZnO with respect
to the number of bands Nb included in the MBPT calcula-
tions – both in the summations to evaluate the dielectric ma-
trix and self-energy. For each value of Nb, we include ei-
ther the lowest Nb Kohn-Sham orbitals, in the determinis-
tic case, or both a set of NP Kohn-Sham states in the pro-
tected region plus NSNξ stochastic pseudobands, such that
Nb = NP + NSNξ. Hence, our tests assess whether, for
a fixed computational effort, stochastic pseudobands yields
more accurate QP energies by approximating the high-energy
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FIG. 1. (a) Diagram of the method’s band-partitioning scheme. Emin

is the energy of the deepest valence state. (b/c) Comparison of the
error in the QP energies for GW calculations performed with a tra-
ditional deterministic approach and using stochastic pseudobands for
(b) an isolated benzene molecule and (c) bulk wurtzite ZnO. Stochas-
tic pseudobands reach converged QP energies (within 10-100 meV)
with fewer total bands than a deterministic truncation of the Hilbert
space. Pseudobands parameters are (b) Nc

P = 50 and (c) Nc
P = 10;

both (b) and (c) used Nc
ξ = 2 and Nc

S = {1, 5, 50, 250} (corre-
sponding to Fc = {1.9, 0.42, 0.054, 0.015}). Pseudobands were
not used to compress valence states.

part of the Hilbert space that gets truncated in deterministic
calculations. Figure 1(b) shows the root mean square (RMS)

error

√
1
N

∑N
n

(
EQP

n − Eref
n

)2

over 19 QP levels around the

Fermi energy of benzene for both the deterministic calculation
and pseudobands. Figure 1(c) shows the error of the bandgap∣∣EQP

gap − Eref
gap

∣∣ of ZnO, again comparing both the determin-
istic calculations and those using stochastic pseudobands. In
both cases, Eref is obtained from a highly converged deter-
ministic calculation – utilizing 30,000 bands for benzene and
10,000 bands for ZnO.

For both materials, stochastic pseudobands outperforms the
deterministic results by 10-100-fold in error for the same com-
putational effort for all but the least converged calculations.
Conversely, we find that, to achieve the same error, the deter-
ministic calculation requires approximately 10-100 times as
many bands as used in stochastic pseudobands calculations.
We see rapid and systematic convergence behavior for all sys-
tems studied.

Scaling and Computational Cost.—In addition to the good
convergence behavior, utilization of stochastic pseudobands
also significantly improves the computational scaling of the
GW approach with system size. Traditionally, the calculation
of the dielectric matrix consists of two primary computation-
ally demanding steps: constructing the non-interacting polar-
izability matrix χ0

G,G′ , which scales as O(N2
G×Nc×Nv) ∼

O(N4), and then inverting the RPA dielectric matrix ϵG,G′ ,
which scales as O(N3

G) ∼ O(N3), where Nv and Nc are the
numbers of valence and conduction bands, and NG and N are
the number of reciprocal-lattice vectors and the overall sys-
tem size, respectively. With stochastic pseudobands, the cost
to compute the noninteracting polarizability is O(N2

GN
2
SN

2
ξ ),

since one can always take NP = 0. It still takes O(N3) to in-
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FIG. 2. Scaling curve for the dielectric computation per q/k-point for
ZnO supercells showing quasi-quadratic behavior up to 256 atoms.
Bandgap errors are maintained at < 50 meV for constant conver-
gence parameters Nξ,F [48].

vert the dielectric matrix, although that cost can be reduced
with low-rank techniques [49–51], making the GW workflow
quasi-quadratic. Our results show that the computational sav-
ings are insensitive to the details of NP (see Figure 2). Addi-
tionally, from Eq. (4), the total number of states when utilizing
pseudobands is roughly the logarithm of the initial number of
states, yielding a significant reduction in the number of states
used in the MBPT calculations and a low algorithmic pref-
actor. Moreover, due to the high performance of distributed-
memory linear algebra solvers, we find that the inversion of
the dielectric matrix is only a significant bottleneck for large
systems, with hundreds to thousands of atoms in the unit cell.
In fact, for the largest system we studied of 5.75◦ twisted bi-
layer MoS2, inversion took only 14% of the total run time.

Figure 2 shows the computational scaling for calculating
a well-converged dielectric matrix for ZnO, with a plane-
wave cutoff of 80 Ry, where we consider systematically
larger supercells containing from 8 to 256 atoms [45]. To
make these calculations feasible, it was critical to use our
approach wherein both valence and conduction states away
from the Fermi energy are compressed into stochastic pseu-
dobands. All supercells exhibited constant error < 50 meV
when we performed subsequent self-energy calculations of the
quasiparticle energies with unchanged convergence parame-
ters (Nv

ξ = 4, N c
ξ = 2, Fv/c = 0.02). Nv/c

P was chosen to be
20 for the 2× 1× 1 supercell and scales with the system size
to allow for the evaluation of the self-energy within the same
energy window [40, 45, 48]). Even with a nonzero NP , we
find that the approach displays in practice a quasi-quadratic
scaling for the evaluation of the dielectric function and self-
energy.

Application to Large Systems.— Moiré bilayers such as
twisted bilayer graphene or transition metal dichalcogenides
(TMDs) have been at the research forefront for investigat-
ing correlated electronic phases in condensed matter sys-
tems [10, 52–56]. Semiconducting TMD moiré bilayers have
gained additional interest as hosts of different types of emer-
gent excitons for possible applications in optoelectronic and
exciton-based qubit devices [57–67]. A correct description of
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3R BZ

(a) (b)
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M

FIG. 3. (a/c) GW (computed with stochastic pseudobands) and DFT
band structure for the 5.75◦-twisted moiré system in the moiré BZ.
(b) Band structure for the untwisted, 3R-stacked MoS2 bilayer (solid
lines) and the corresponding unfolded band structure of the 5.75◦

twisted moiré system (dots), at the DFT and GW levels. The weight
of the projection represents the contribution of the unit cell state to
the corresponding moiré state at the same energy. Inset above (c):
BZs of the twisted and untwisted structures.

the QP properties is often a prerequisite to understanding these
emergent phenomena, but the large system size and variations
of the dielectric function [68, 69] requiring fine Brillouin zone
(BZ) samplings [70] has made them difficult to study with
first-principles GW calculations.

Using the pseudobands approach, we perform explicit GW
calculations on a 5.75◦-twisted bilayer of MoS2 containing
546 atoms in the moiré supercell [Figure 3(a)], and further
unfold the moiré band structure to the unit cell of the high-
symmetry, 0◦-twisted bilayer structure [71, 72], known as the
3R stacking [red dots in Figure 3(b)]. We compare such large-
scale GW calculations to DFT calculations performed directly
on the 3R structure [blue lines in Figure 3(b)] and find differ-
ences in the bandgap, the relative energy splitting, and band
ordering.

We rationalize these differences through contributions from
moiré and quasiparticle effects. To understand moiré effects,
we perform DFT calculations on the twisted structure [Fig-
ure 3(c)] and unfold the resulting band structure onto the BZ
of the 3R structure [blue dots in Figure 3(b)]. Compared to
direct DFT calculations on the 3R structure, the DFT calcula-
tions on the 5.75◦-twisted system display a larger energy split-
ting between the first two valence states at Γ. This is expected
since these states originate from the interlayer chalcogen in-
teractions, which change with stacking and twist angle. Next,
to capture quasiparticle effects, we perform GW calculations
on the 3R structure [red lines in Figure 3(b)]. Compared again
to the DFT calculation on the 3R structure, QP effects mainly
increase the bandgap and reorder the conduction states at the
K and Λ valleys. Our calculations highlight that moiré ef-
fects and quasiparticle corrections both play significant roles
in twisted materials and need to be accounted for on the same
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footing [17], and are additive here to within 100 meV [73].
Conclusion.—We present a mixed stochastic-deterministic

approach for GW calculations. Given input mean-field states,
the method displays quasi-quadratic scaling for the tests per-
formed up to 256 atoms, ∼100-fold speedups for systems of
tens of atoms, and smooth convergence behavior. The us-
age of stochastic pseudobands is compatible with systems of
any dimension, nontrivial screening environments, and ex-
tends standard MBPT codes to handle systems of several hun-
dreds of atoms with moderate computational expense. We en-
vision that, beyond further studies on moiré systems, struc-
turally large and technologically relevant systems such as in-
terfaces, surfaces, and extended defects can be studied with
this approach to address fundamental questions involving the
interplay between nonlocal screening environments and self-
energy effects.
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[62] O. Karni, E. Barré, S. C. Lau, R. Gillen, E. Y. Ma, B. Kim,
K. Watanabe, T. Taniguchi, J. Maultzsch, K. Barmak, R. H.
Page, and T. F. Heinz, Phys. Rev. Lett. 123, 247402 (2019).

[63] O. Karni, E. Barré, V. Pareek, J. D. Georgaras, M. K. L.
Man, C. Sahoo, D. R. Bacon, X. Zhu, H. B. Ribeiro, A. L.
O’Beirne, J. Hu, A. Al-Mahboob, M. M. M. Abdelrasoul, N. S.
Chan, A. Karmakar, A. J. Winchester, B. Kim, K. Watanabe,
T. Taniguchi, K. Barmak, J. Madéo, F. H. da Jornada, T. F.
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