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The square-lattice Hubbard and closely related t-J models are considered as basic paradigms for under-
standing strong correlation effects and unconventional superconductivity (SC). Recent large-scale density ma-
trix renormalization group (DMRG) simulations on the extended t-J model have identified d-wave SC on the
electron-doped side (with the next-nearest-neighbor hopping t2 > 0) but a dominant charge density wave
(CDW) order on the hole-doped side (t2 < 0), which is inconsistent with the SC of hole-doped cuprate com-
pounds. We re-examine the ground-state phase diagram of the extended t-J model by employing the state-of-
the-art DMRG calculations with much enhanced bond dimensions, allowing more accurate determination of the
ground state. On 6-leg cylinders, while different CDW phases are identified on the hole-doped side for the dop-
ing range δ = 1/16 − 1/8, a SC phase emerges at a lower doping regime, with algebraically decaying pairing
correlations and d-wave symmetry. On the wider 8-leg systems, the d-wave SC also emerges on the hole-doped
side at the optimal 1/8 doping, demonstrating the winning of SC over CDW by increasing the system width. Our
results not only suggest a new path to SC in general t-J model through weakening the competing charge orders,
but also provide a unified understanding on the SC of both hole- and electron-doped cuprate superconductors.

Introduction.— Understanding the mechanism of uncon-
ventional superconductivity (SC) in cuprates is a major chal-
lenge of condensed matter physics [1, 2]. Soon after the
discovery of cuprate superconductors, the resonating valence
bond (RVB) theory [3] was proposed to describe unconven-
tional SC. The square Hubbard (with large U ) and closely re-
lated t-J models are considered as the minimum models [1–8]
to realize unconventional SC, which have attracted intense ex-
plorations [6–14]. However, it remains illusive if these mod-
els can describe the SC of cuprates. In the presence of strong
correlations, analytical solutions are not controlled, while nu-
merical studies in the relevant regime [15–48] are also ex-
tremely difficult in determining the ground state due to the
extensive entanglement and low-energy excitations associated
with competing spin and charge degrees of freedom. In recent
years, numerical simulations have reached a possible consen-
sus on the ground states of the pure large-U Hubbard and t-J
models near the optimal doping, which is the stripe phase [15–
28] characterized by a charge density wave (CDW) order co-
existing with π-phase shifted antiferromagnetic domains, ac-
companied by exponentially decaying SC correlation.

On the other hand, the Fermi surface topology identified ex-
perimentally for cuprates indicates the importance of a small
next-nearest-neighbor (NNN) hopping t2 [49], with the sign
of t2 modeling the hole- (t2 < 0) and electron-doped (t2 > 0)
cuprates, respectively [50]. Numerical studies on 4-leg Hub-
bard and t-J models find that introducing either positive or
negative t2 can lead to the coexistence of quasi-long-range
SC and CDW orders [37–40]. To improve our understand-
ing of how these orders evolve towards two dimensions (2D),
recent density matrix renormalization group (DMRG) studies

on 6- and 8-leg t-J model (with the nearest-neighbor (NN)
hopping t1 > 0) have identified a robust d-wave SC with sup-
pressed CDW at t2 > 0 [41–43], giving insights into the SC
of electron-doped cuprates. For t2 < 0, the stripe order ap-
pears to win over SC near the optimal doping [41, 44, 51],
in sharp contrast with hole-doped cuprates [52]. However,
while accurate DMRG simulations have been applied to 6-
leg ladders [42, 43, 51], large-bond-dimension simulations are
absent for 8-leg systems, which leaves the true nature of the
ground state of the hole-doped t-J model an open question.

In this Letter, we study the phase diagram of the hole-doped
t-J model and examine the interplay between SC and CDW
through accurate DMRG calculations. By tuning the doping
level δ and hopping ratio t2/t1 on 6-leg system, we identify
the dominance of CDW phases at δ = 1/16 − 1/8. How-
ever, the SC and weak CDW can coexist at lower doping re-
gion δ = 1/24 − 1/36 [Fig. 1(a)], where pairing correlations
show the d-wave symmetry and slow power-law decay with
the exponent Ksc ≲ 1. Importantly, we observe dominant
quasi-long-range SC order at the optimal doping (δ = 1/8)
on 8-leg cylinder [Fig. 1(b)]. On the electron-doped side
(t2 > 0), we confirm the existence of a robust uniform d-wave
SC in agreement with previous studies [41, 44]. On the hole-
doped side (t2 < 0), we observe the remarkable emergence
of SC with weak or vanishing CDW order in our large-bond-
dimension simulation, with power-law decaying pairing cor-
relations (Ksc < 2). Furthermore, we confirm the robustness
of these SC phases at different model parameters. Our work
suggests that the t-J model may offer a unified framework for
understanding the unconventional SC for both electron- and
hole-doped cuprates.
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Model and method.— The Hamiltonian of the extended t-J
model is defined as

H = −
∑

{ij},σ

tij(ĉ
†
i,σ ĉj,σ +H.c.)+

∑
{ij}

Jij(Ŝi · Ŝj −
1

4
n̂in̂j),

where ĉ†iσ (ĉiσ) is the creation (annihilation) operator of the
electron with spin σ (σ = ±1/2) on site i = (xi, yi), Ŝi is the
spin-1/2 operator, and n̂i =

∑
σ ĉ

†
iσ ĉiσ is the electron num-

ber operator. The Hilbert space for each site is constrained
by no double occupancy. We consider the NN and NNN hop-
pings (t1 and t2) and spin interactions (J1 and J2). We choose
J1 = 1.0 and set t1/J1 = 3.0 to make a connection to the cor-
responding Hubbard model with U/t = 12 [53]. The length
and width of the lattice are denoted as Lx and Ly , giving total
site number N = Lx × Ly . The doping ratio δ is defined as
δ = Nh/N (Nh is the number of doped holes). We focus on
the doping regime 1/36 ≤ δ ≤ 1/8 on 6-leg cylinders and
δ = 1/8 on 8-leg cylinders, and tune t2/t1 with fixed relation
(t2/t1)

2
= J2/J1 [42, 43]. We also examine the SC phases in

the t1-t2-J1 model with t1/J1 = 2.5, 3.0, as shown in Fig. 5.
We solve the ground state of the system by DMRG [54]

calculations with SU(2)⊗U(1) symmetry implemented [55].
We study cylindrical systems with open and periodic bound-
ary conditions along the axial (x) and circumferential (y) di-
rections respectively, and keep the bond dimensions of SU(2)
multiplets up to D = 15000 for 6-leg and 28000 for 8-leg sys-
tems, equivalent to about 45000 and 84000 U(1) states respec-
tively, which ensure accurate results with the truncation error
less than 1.2×10−6 for 6-leg and 2.5×10−5 for 8-leg systems
(see Supplemental Materials (SM) for more details [56]).

Quantum phase diagram.— Our results are summarised in
the phase diagram Fig. 1 as a function of hopping ratio t2/t1
and doping level δ. For 6-leg system with −0.22 ≤ t2/t1 ≤ 0
[Fig. 1(a)], we identify two charge ordered phases: a stripe
phase with wavevector Q = (3πδ, 0) and a Wy3 CDW phase
with Q = (6πδ, 2π/3) (see SM for the results of the Wy3
state [56]), which shares a similar charge density distribution
with the W3 phase found in the t1-t2-J1 model [41]. Strik-
ingly, below δ = 1/18, we find a quasi-long-range SC order
(Ksc ≲ 1) coexisting with a weak CDW.

For the 8-leg system with −0.2 ≤ t2/t1 ≤ 0.3 at δ = 1/8
[Fig. 1(b)], a robust d-wave SC order emerges for t2/t1 ≳
0.12 with a uniform charge density distribution, which is sim-
ilar to the uniform SC phase found on 6-leg cylinder [43]. This
uniform SC phase may extend to larger t2/t1 regime [42, 57]
and persist in 2D limit. Remarkably, the quasi-long-range SC
order is also observed on the hole-doped side for t2/t1 ≲
−0.05, which exhibits a very weak or vanishing charge or-
der. The SC power exponent Ksc < 2 indicates a divergent
SC susceptibility at zero-temperature limit. This result contra-
dicts a previous work studying a similar t1-t2-J1 model that
claims the absence of SC at t2 < 0 [41], which may be at-
tributed to the existence of competing charge ordered states in
low-energy regime. In our calculation, extremely large bond
dimensions are used for reaching convergence and identifying
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FIG. 1. Quantum phase diagrams of the t1-t2-J1-J2 model at dif-
ferent system widths. (a) Ly = 6 cylinder with −0.22 ≤ t2/t1 ≤ 0
and 1/36 ≤ δ ≤ 1/8. We identify a stripe phase, a Wy3 CDW
phase, and a SC + CDW phase with coexisted d-wave SC and a weak
CDW. (b) Ly = 8 cylinder with −0.2 ≤ t2/t1 ≤ 0.3 at δ = 1/8.
We identify two SC phases and a stripe phase. The hole-doped SC
phase at t2/t1 < 0 has a weak or vanishing CDW order. Pairing
correlations in the Ly = 8 stripe phase show a slow increase with
bond dimension, but its tendency to develop a quasi-long-range SC
order cannot be pinned down within our currently accessible bond
dimensions. The symbols denote the parameter points that we have
calculated. The same SC phases on both 6- and 8-leg systems are ob-
tained in our model with (t2/t1)

2 = J2/J1 and the t1-t2-J1 model
with t1/J1 = 2.5 and 3.0 (see Fig. 5 and SM [56]).

the emergence of SC. For both 6- and 8-leg systems at hole
doping, SC emerges through suppressing charge order.

SC pairing correlation.— We examine SC by the dominant
spin-singlet pairing correlations Pα,β(r) = ⟨∆̂†

α(r0)∆̂β(r0 +

r)⟩, where the pairing operator is defined as ∆̂α (r) =
(ĉr↑ĉr+eα↓ − ĉr↓ĉr+eα↑) /

√
2 and eα=x,y denote the unit

vectors along the x and y directions. Since the wave func-
tion in DMRG calculation is represented as a matrix product
state, correlation functions usually decay exponentially at fi-
nite bond dimensions [59]. We make the bond dimension scal-
ing to demonstrate the true nature of correlations at D → ∞
(see Fig. 2 and SM [56]).

We first examine pairing correlations on 6-leg systems. In
the stripe phase represented by t2/t1 = −0.06 and δ = 1/12
[Fig. 2(a)], the pairing correlation Pyy(r) follows an expo-
nential decay Pyy(r) ∼ exp (−r/ξsc) with ξsc ≃ 3.69 after
the extrapolation to D → ∞. In the SC + CDW phase, as
shown in Fig. 2(b) for t2/t1 = −0.08, δ = 1/24, Pyy(r) in-
creases drastically compared with that in the stripe phase and
exhibits an algebraic decay Pyy(r) ∼ r−Ksc with Ksc ≃ 0.82,
characterizing a quasi-long-range SC order. We also confirm
that other pairing correlations satisfy Pyy(r) ≃ −Pyx(r) ≃
Pxx(r), in accordance with the d-wave symmetry illustrated
in the inset of Fig. 2(b) rather than the plaquette d-wave sym-
metry found in the 4-leg Hubbard model at t2 < 0 [39].
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FIG. 2. SC pairing correlation functions. (a) Semi-logarithmic plot
of the pairing correlations Pyy(r) at different bond dimensions in
the stripe phase at Ly = 6. The correlation length ξsc is obtained
by exponential fitting. (b) Double-logarithmic plot of Pyy(r) in the
SC + CDW phase on 6-leg cylinder. The dash line represents the
algebraic fitting of the data extrapolated to D → ∞. The power
exponent Ksc ≃ 0.82 characterizes a quasi-long-range SC order.
The inset shows the d-wave pairing symmetry. (c) and (d) are similar
plots in the hole-doped SC (t2 < 0) and electron-doped uniform d-
wave SC phases (t2 > 0) on 8-leg cylinders, both with Ksc < 2
indicating the divergence of SC susceptibilities [58].

To further investigate whether SC can emerge on wider sys-
tems, we extensively simulate the 8-leg cylinder at δ = 1/8,
which is more relevant to the experiments of cuprates. For
t2/t1 = −0.1 [Fig. 2(c)], the pairing correlations at long dis-
tance grow rapidly with bond dimension. The extrapolated
results at D → ∞ can be fitted by a power-law decay with
Ksc ≃ 1.46, demonstrating an emergent quasi-long-range SC
order. In the uniform SC phase at t2 > 0 [Fig. 2(d)], pairing
correlation exhibits a slow algebraic decay with a small expo-
nent Ksc ≃ 0.57 characterizing a robust SC phase. We have
also checked the triplet pairing correlations in both SC phases
on 8-leg systems. While the p-wave symmetry can appear at
t2 > 0, the corresponding pairing correlations always decay
very fast, indicating the absence of triplet SC order [56].

Charge density distribution.— Except in the Wy3 phase,
the converged charge density distributions are uniform along
the y direction, and we show the averaged charge density
for each column as n(x) =

∑Ly

y=1⟨n̂x,y⟩/Ly in Fig. 3.
For 6-leg systems, we find the CDW wavelength λ ≃
4/(Lyδ) in the stripe phase [Fig. 3(a)], corresponding to
four holes on average for each CDW unit. In the SC +
CDW phase, λ ≃ 2/(Lyδ) indicates two holes per CDW
unit [Fig. 3(b)]. Significantly, the oscillation amplitude of
n(x) (i.e. charge order) is much weaker than that in the
stripe phase shown in Fig. 3(a). The momentum distribution
n(k) = (1/N)

∑
i,j,σ⟨ĉ

†
i,σ ĉj,σ⟩eik·(ri−rj) in the SC + CDW

phase [the inset of Fig. 3(b)] exhibits the unenclosed Fermi

10 20 30 40
x

0.85

0.9

0.95

1

n(
x)

(a)  = 1/12, t2/t1 = -0.06, Ly = 6

 Lx = 48

10 20 30 40
x

0.85

0.9

0.95

1

n(
x)

(b)  = 1/24, t2/t1 = -0.08, Ly = 6

 Lx = 48

5 10 15 20 25 30
x

0.8

0.85

0.9

0.95

1

n(
x)

(c)  = 1/8, t2/t1 = -0.1, Lx = 32
 Ly = 6
 Ly = 8

5 10 15 20
x

0.8

0.85

0.9

0.95

1

n(
x)

(d)  = 1/8, t2/t1 = -0.2, Ly = 8

Lx = 24

 D = 6000
 D = 10000
 D = 12000
 D = 16000

 D = 20000
 D = 24000
 D = 28000

FIG. 3. Charge density profiles n(x) in the (a) stripe phase and (b)
SC + CDW phase on 6-leg cylinders with Lx = 48. The inset of
(b) shows the corresponding electron momentum distribution n(k).
(c) Comparing n(x) in the SC phase on Ly = 8 and stripe phase on
Ly = 6 at t2/t1 = −0.1 and δ = 1/8, obtained with D = 24000
and 15000, respectively. (d) n(x) in the SC phase of 8-leg cylinder
at t2/t1 = −0.2, δ = 1/8 obtained by different bond dimensions.

surface topology around k = (±π, 0) and (0,±π) in consis-
tent with that observed in the ARPES measurement of hole-
doped cuprates [49, 60, 61], which is distinctly different from
the topology for electron doping at t2 > 0 [41, 43], where the
Fermi surface forms a closed pocket around k = (0, 0).

A natural question is how the charge order evolves towards
2D limit. Crucially, we find that the strong CDW in the stripe
phase for Ly = 6 can be significantly suppressed on wider
system, as shown in Fig. 3(c). The quite weak charge density
oscillation for Ly = 8 is similar to that of the SC + CDW
phase on 6-leg cylinders [Fig. 3(b)], which is accompanied
with the emergent quasi-long-range SC order [Fig. 2(c)]. In
Fig. 3(d) for t2/t1 = −0.2, one can find the charge distri-
bution is gradually transformed from a CDW-like pattern to
a nearly uniform one with growing bond dimension, demon-
strating an extremely weak or vanishing charge order in the
hole-doped SC phase and the importance of a large bond di-
mension for reaching the true ground state (see SM [56]).

Correlation functions.— In Fig. 4, we further compare cor-
relation functions in each phase. While all the correlations
are presented in the semi-logarithmic scale, the exponents K
and correlation lengths ξ are obtained by power-law and ex-
ponential fittings, respectively [56]. For the stripe phase on
6-leg cylinders [Fig. 4(a)], while the single-particle Green’s
function G(r) = ⟨

∑
σ ĉ

†
x,y,σ ĉx+r,y,σ⟩ and pairing correla-

tion appear to decay exponentially [56], the intertwined den-
sity correlation D(r) = ⟨n̂x,yn̂x+r,y⟩ − ⟨n̂x,y⟩⟨n̂x+r,y⟩ and
spin correlation F (r) = ⟨Sx,y · Sx+r,y⟩ are more dominant
at long distance. In contrast, in the SC + CDW [Fig. 4(b)],
hole-doped SC [Fig. 4(c)], and uniform d-wave SC phases
[Fig. 4(d)], pairing correlations are dominant over other cor-
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FIG. 4. Correlations in different phases. The data are those extrapo-
lated to D → ∞. Comparison of pairing correlation Pyy(r), charge
density correlation D(r), single-particle Green’s function G(r), and
spin correlation F (r) for (a) stripe phase at Ly = 6, (b) SC + CDW
phase at Ly = 6, (c) hole-doped SC phase at Ly = 8, δ = 1/8, and
(d) uniform d-wave SC phase at Ly = 8, δ = 1/8. The correlations
are rescaled by δ to make a direct comparison. The power exponent
K and correlation length ξ are obtained by algebraic and exponential
fittings, respectively (see the details in SM [56]).

relations at long distance. Furthermore, on 8-leg systems,
G(r) and F (r) show exponential decay with short correlation
lengths at t2/t1 = 0.3, which is consistent with the DMRG
results of the same model at t2/t1 ≈ 0.5 corresponding to
doping either the J1-J2 spin liquid or valence bond solid [57].

Robust SC phases at different model parameters.— In
the study of extended t-J models, the t1-t2-J1 model with
t1/J1 = 2.5 has also been widely considered [19, 41, 62]. To
confirm the discovered SC phases at hole doping for differ-
ent model parameters, we further examine the t1-t2-J1 model
with t1/J1 = 2.5 and 3.0 (J2 = 0). By comparing the pair-
ing correlation and charge density distribution on 6- and 8-leg
systems (see Fig. 5 and SM [56]), we confirm that the identi-
fied SC phases are robust against both a small change of t1/J1
and the absence of J2 interaction.

Summary and Discussion.— We have presented a global
picture for both the electron-doped (t2 > 0) and hole-doped
(t2 < 0) t-J models by DMRG calculations. While we con-
firm the d-wave SC for electron doping [41] on wider cylin-
ders, we find that the ground states of the hole-doped case
can also be superconducting, at both the low doping regime
δ = 1/36 − 1/24 for Ly = 6 and optimal doping δ = 1/8
for Ly = 8 with d-wave symmetry. For δ = 1/8 at hole dop-
ing, SC turns out to be favored on wider system, where the
enhanced phase coherence of paired holes [51] helps to desta-
bilize CDW and thus allows superconductivity to develop.

Despite the strong competition between stripe and SC or-
ders under hole doping [41], the SC phases we obtain on both
6- and 8-leg systems are stable against a small tuning of t1/J1,
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FIG. 5. Robust SC states at different model parameters on the 8-leg
cylinders at δ = 1/8. (a) Pairing correlations Pyy(r) for t1/J1 = 3,
J2/J1 = (t2/t1)

2; t1/J1 = 3, J2 = 0; and t1/J1 = 2.5, J2 = 0.
We fix t2/t1 = −0.1. The data are those extrapolated to D → ∞.
The algebraic fitting of the results at t1/J1 = 2.5, J2 = 0 gives
Ksc = 1.37. (b) Charge density distributions n(x) obtained under
different bond dimensions for t2/t1 = −0.1, t1/J1 = 2.5, J2 = 0.
(c) and (d) are similar plots for t2/t1 = −0.2.

and therefore are established as a common phase for different
extended t-J models. Thus, we conclude that the single-band
t-J model has some generic features including the uniform SC
at electron doping, and the dominant SC with near vanishing
or coexisting CDW order at hole doping, which may provide
a basic description of the cuprate superconductors.

At last we discuss some open questions. For the hole doped
t-J model, the charge order with suppressed SC is commonly
observed as the ground states of narrower systems (Ly = 6)
with hole binding [41, 51], which may have some connec-
tion with the pseudogap physics [63, 64] of cuprate systems.
The d-wave SC on the electron-doped side turns out to be ro-
bust on wider cylinders, however the nature of its magnetic
order is still under debate [41, 43]. While our analyses of
spin correlation lengths suggest a magnetic order at small dop-
ing δ ≃ 1/24, we find the magnetic order is suppressed for
δ = 1/8 as the ratio of ξs/Ly reduces with increased Ly [56].
For the stripe phase at Ly = 8 (see SM [56]), the CDW order
appears to be stable with improved bond dimension, but the
pairing correlations keep growing slowly, showing a possible
tendency to develop a weak quasi-long-range SC. We believe
our work will stimulate more future studies to address these
challenging issues.
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son, C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J. Millis,
N. V. Prokof’ev, M. Qin, G. E. Scuseria, H. Shi, B. V. Svis-
tunov, L. F. Tocchio, I. S. Tupitsyn, S. R. White, S. Zhang, B.-
X. Zheng, Z. Zhu, and E. Gull (Simons Collaboration on the
Many-Electron Problem), Phys. Rev. X 5, 041041 (2015).

[21] G. Ehlers, S. R. White, and R. M. Noack, Phys. Rev. B 95,
125125 (2017).

[22] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin,
R. M. Noack, H. Shi, S. R. White, S. Zhang, and G. K.-L. Chan,
Science 358, 1155 (2017).

[23] E. W. Huang, C. B. Mendl, S. Liu, S. Johnston, H.-C. Jiang,
B. Moritz, and T. P. Devereaux, Science 358, 1161 (2017).

[24] K. Ido, T. Ohgoe, and M. Imada, Phys. Rev. B 97, 045138
(2018).

[25] H.-C. Jiang, Z.-Y. Weng, and S. A. Kivelson, Phys. Rev. B 98,
140505 (2018).

[26] B. Ponsioen, S. S. Chung, and P. Corboz, Phys. Rev. B 100,
195141 (2019).

[27] M. Qin, C.-M. Chung, H. Shi, E. Vitali, C. Hubig,
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