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Bernal bilayer graphene hosts even denominator fractional quantum Hall states thought to be described by a
Pfaffian wave function with nonabelian quasiparticle excitations. Here we report the quantitative determination
of fractional quantum Hall energy gaps in bilayer graphene using both thermally activated transport and by direct
measurement of the chemical potential. We find a transport activation gap of 5.1K at B = 12T for a half-filled
N = 1 Landau level, consistent with density matrix renormalization group calculations for the Pfaffian state.
However, the measured thermodynamic gap of 11.6K is smaller than theoretical expectations for the clean
limit by approximately a factor of two. We analyze the chemical potential data near fractional filling within a
simplified model of a Wigner crystal of fractional quasiparticles with long-wavelength disorder, explaining this
discrepancy. Our results quantitatively establish bilayer graphene as a robust platform for probing the nonabelian
anyons expected to arise as the elementary excitations of the even-denominator state.

Nonabelian anyons[1] are thought to enable fault toler-
ant topological quantum bits through their non-trivial braid-
ing statistics [2, 3]. In an ideal scenario, the error rate
of such qubits is limited only by the density of ther-
mally excited quasiparticles present in the system. Such
processes—analogous to quasiparticle poisoning in supercon-
ducting qubits—are exponentially suppressed at low temper-
ature by an Arrhenius law, nqp ∝ exp (−∆qp/2kBT ), where
∆qp is the energy gap for nonabelian quasiparticles and T is
temperature. The energy gap is thus a key figure of merit for
candidate nonabelian states. According to numerical calcu-
lations [4, 5], nonabelian ground states are the leading can-
didates to describe the even denominator fractional quan-
tum Hall (FQH) states observed in the second orbital Lan-
dau level of single-component systems such as GaAs quan-
tum wells [6]. While these numerical results are thought to
be reliable, the small energy gaps measured for these states in
GaAs [7–10] have hampered experimental efforts to directly
probe nonabelian statistics via fusion and braiding of individ-
ual quasiparticles.

Within the simplest model of bilayer graphene, the N = 0
and N = 1 orbital levels are both pinned to zero energy[11].
Combined with the spin- and valley degeneracies native to
graphene quantum Hall systems[12], this produces an eight-
fold degeneracy—a seemingly inauspicious arena for the
single-component physics of nonabelian FQH states. How-
ever, as a wealth of experimental work has shown, all of these
degeneracies are lifted by the combination of electronic in-
teractions and the applied displacement field[13–23]. In par-
ticular, broad domains of density and displacement field are
characterized by partial filling of a singly degenerate N = 0
or N = 1 Landau level. In the N = 1 regime, an incom-
pressible state is observed at half-integer filling[18, 21–23],

which calculations show should be described by a nonabelian
Pfaffian ground state[22, 24–26]. Prior measurements of en-
ergy gaps have found activation gaps as large as 1.8K at
B = 14T; however, precise comparisons of activation and
thermodynamic gaps to theoretical expectations have not been
previously reported.

Here we report energy gaps for both odd- and even-
denominator FQH states in bilayer graphene using both trans-
port and chemical potential measurements. Thermally acti-
vated transport measures the energy cost of creating a physi-
cally separated quasiparticle-quasihole pair. We measure acti-
vated transport using a Corbino-like geometry[27, 28], which
directly probes the conductivity of the gapped, insulating bulk.
Chemical potential measurements record a jump at incom-
pressible filling factors known as the thermodynamic gap,
which—in the clean limit—measures the difference between
adding charge ±e to the gapped system. We measure the ther-
modynamic gap using a direct-current charge sensing tech-
nique based on a double-layer device[29, 30]. Combining
these techniques, we find several new features, including weak
FQH states at ν = 5/11, ν = 6/11 and ν = 5/9 of a par-
tially filled N=1 Landau level. Moreover, both schemes show
an energy gap for a half-filled single component Landau level
that is several times larger than reported to date for a can-
didate nonabelian state in any system [7–9, 22, 23, 31–33].
Notably, these measurement schemes effectively average over
∼ 10µm2 sized areas, a testament to the exceptional unifor-
mity of the electron gas in bilayer graphene.

Fig. 1A shows a schematic of the experimental geometry
used to measure the chemical potential µ. A graphene bi-
layer hosting the FQH system of interest is separated by a
62 nm-thick hexagonal boron nitride (hBN) dielectric from a
graphene monolayer that functions as a sensor. Both layers
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FIG. 1. Chemical potential and inverse compressibility of bilayer graphene fractional quantum Hall states. (A) Device schematic
showing the hBN layers (blue), top and bottom graphite gates (dark grey), monolayer graphene detector layer connected to Corbino contacts,
and bilayer graphene sample layer. (B) Optical image of the Corbino contacts to the monolayer graphene detector. White dashed lines show
the trajectory of a chiral edge state along trenches etched through the device, which ensures contact between the metal and dual gated sample
bulk. (C) The top panel shows the measured µ at B = 13.8T and T = 50mK in the partially filled N=0 level spanning 0 < ν < 1. The
bottom panel shows the inverse compressibility, dµ/dν, calculated by numerically differentiating the data in the top panel. (D) The same as
C, but for the partially filled N=1 orbital Landau level spanning −1 < ν < 0.

are encapsulated by additional hBN dielectrics and graphite
gates, creating a four plate geometry that allows independent
control of the carrier density on both the monolayer detector
and bilayer sample layer. We measure Corbino transport in
the detector layer, where a FQH state functions as a sensi-
tive detector of the local potential. An optical image of the
Corbino contacts is shown in Fig. 1B. As described in de-
tail in the supplementary information, monitoring transport in
the sensor layer allows us to precisely determine µ of the bi-
layer sample. An advantage of our technique is that it avoids
finite-frequency modulation of the carrier density, allowing us
to accommodate charge equilibration times as large as a sec-
ond. The current technique is less invasive than previous ca-
pacitance measurements[22], requiring no modulation of the
sample density and reducing heating due to cryogenic semi-
conductor amplifiers.

Figs. 1C-D show µ and dµ/dν measured in our bilayer
graphene device at B = 13.8T. In the N = 0 Landau level,
incompressible spikes are observed at fillings corresponding
to the two- and four-flux ‘Jain’ sequence[34], with denomina-
tors as high as 17. In the N = 1 orbital, a different hierarchy
is observed, including a prominent state at ν +1 = 1/2 along
with states at 8/17 and 7/13 filling. This sequence is consis-
tent with a Pfaffian state at half filling and abelian ‘daughter’
states built from its elementary excitations[22, 35]. Additional
peaks are observed at fillings consistent with the four-flux Jain
sequence, at 3/5 and 2/5, and finally several weaker states
at 5/11, 6/11 and 5/9 which were not previously reported.
Away from these incompressible fillings, the compressibility
is negative throughout the partially filled Landau level[36, 37].
Additional negative compressibility is observed near the in-
compressible states, associated with the formation of Wigner

crystals of fractionally charged quasiparticles at low quasipar-
ticle density.

Fig. 2A shows the two terminal conductance (G) in a sec-
ond sample consisting of a dual gated bilayer with Corbino-
like geometry (see supplementary). Measurements are taken
at B = 12T in a partially filled N=1 Landau level corre-
sponding to filling factors 0.25 ≲ ν + 3 < 0.75 (see sup-
plementary information). The activation gap and chemical
potential measurements were not performed in the same fill-
ing factor range due to constraints arising from the electrical
contacts to the bilayer or sensor layer. However, the states
originate from the same orbital level and differ only in their
valley isospin. Consequently, they are treated theoretically in
the same way, taking into account orbital levels and a single
spin/valley component. The three most prominent FQH states,
at ν+3 = 1/3, 1/2, and 2/3, all show vanishing conductance
at the lowest temperatures. Fig. 2B shows the minimal con-
ductance for ν+3 = 1/2 and 2/3 as a function of temperature,
along with fits to an Arrhenius law G ∝ nqp ∝ e−∆qp/2kBT .
For the 1/2 state, the activation gap is found to be 5.1K at
B=12T, considerably larger than previous measurements in
other two-dimensional electron systems[7–10, 32, 33]. The
increase relative to the GaAs ν = 5/2 state is expected due to
the higher electron density and lower dielectric constant of the
VdW platform. Interestingly, the gap is also much larger than
previously reported in bilayer graphene[22, 23], under the
same conditions. We attribute this to the Corbino geometry
used here, which directly probes the bulk conductivity, avoid-
ing systematic underestimates resulting from poor equilibra-
tion of electrical contacts with the chiral edge states[27, 28].

We may compare the result for the activation gap with a
numerical calculation that accounts for the microscopic de-
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FIG. 2. Comparison of activation and thermodynamic gaps in a
partially filled N = 1 Landau level. (A) Two terminal conductance
measured in a Corbino geometry as a function of filling factor at
B = 12T for different temperatures. The temperature spacing is
5mK. (B) Activation gap from the Arrhenius fit for ν = −3 + 1/2
(red) and ν = −3+2/3 (blue). (C) Chemical potential measurement
near ν0 = −1 + 1/2 (red dots) at B = 13.8T. Theory fit using
the Wigner crystal model in the clean limit (light red line) and in
the disordered limit (red line). (D) Chemical potential measurement
near ν0 = −1+2/3 (blue dots) at B = 13.8T. Theory fit using the
Wigner crystal model in the clean limit (light blue line) and in the
disordered limit (blue line).

tails of bilayer graphene, accomplished using the density
matrix renormalization group (DMRG) [38, 39]. Following
Ref. [22], these calculations are conducted on an infinite cylin-
der within a 4-band model of BLG and account for mixing
between the N = 0 and 1 Landau levels, screening from
the gates, and—crucially–screening due to inter-Landau level
transitions, which is treated within the random phase approx-
imation (see supplementary information). We obtain a quasi-
particle gap ∆DMRG

qp = 0.011EC , where the Coulomb energy
scale EC depends on both the magnetic field and the dielec-
tric constant for hBN, which we take as ϵhBN =

√
ϵxyϵz =

4.5[30]. The calculated gap is 5.6K at 12T, within 10% of
the experimental value.

The jump in chemical potential at fractional filling, ∆µ,
provides an alternative measurement of the FQH energy gaps,
as shown in Figs. 2C-D measured at B = 13.8T. For the
1/2 state in Fig.2C, the ∆µ jump of 1.0meV corresponds to
a temperature of 11.6K. In the clean limit, ∆µ corresponds to
the energy cost of adding a whole electron to the gapped sys-
tem, and is expected to be e/e∗ times larger than the quasipar-
ticle gap, where e∗ is the quasiparticle charge. At ν = −1/2,
where e/e∗ = 4, the quasiparticle gap ∆µ

qp = ∆µ/4 = 2.9K
implied by the thermodynamic measurement is significantly
smaller than ∆act

qp ≈ 5.1K, even before accounting for the

small difference in B between Figs. 2A and C. A similar dis-
crepancy is seen at ν +1 = 2/3, where ∆act

qp = (7.6± 0.5)K
but the quasiparticle gap from thermodynamic measurements
is ∆µ

qp = 5.2K.

We attribute the discrepancy to the contrasting role of dis-
order on the thermodynamic and activation gaps. In the sim-
plest model for activated transport[40] disorder does not re-
duce the activation gap, while in more detailed models the
activation gap is reduced by an amount that depends on the
spatial correlations of the disorder potential[41, 42]. On the
other hand, disorder always reduces the thermodynamic gap
as it produces in-gap localized states which result in a finite
compressibility. So while disorder affects both gaps, it does
so through different mechanisms, and we expect the reduction
of the thermodynamic gap to be larger. To assess this hypoth-
esis, we compare our data against a phenomenological model
for µ(ν) that accounts for both the disorder and quasiparti-
cle interactions. Our model assumes that the compressible
states adjacent to the incompressible FQH states are Wigner
crystals of fractionally charged quasiparticles[37, 43]. As a
starting point, we compute the energy density E(ν) of this
pristine Wigner crystal under the assumption that the frac-
tional point charges e∗ form a triangular lattice and interact
through an effective Coulomb potential which accounts for
screening from the gates as well as the dielectric response of
the parent gapped state. In the disorder-free limit, we obtain
theoretical µ(ν) curves in which an infinitely-sharp jump of
∆µ = e

e∗∆qp is flanked by the negative compressibility of
the screened Wigner crystal (see supplementary information).
As shown in Figs. 2C-D, we find this disorder-free model pro-
vides a good fit to the data at moderate quasiparticle densities,
where the compressibility is strongly negative.

To account for disorder, we make the assumption that the
disorder potential varies slowly in comparison with both the
inter-quasiparticle distance and the distance to the gates. As
described in the supplementary material, this allows us to
make a local density approximation; µ(ν) can then be solved
for explicitly given the interaction energy density E(ν) and the
disorder distribution P [VD], which we assume to be a Gaus-
sian of width Γ. We note that these assumptions may not be
correct. For example, it will not be the case if the disorder
arises from dilute Poisson-distributed charge impurities in the
hBN. Nevertheless, it results in a tractable model that accounts
for the competition between disorder and interactions.

Fits to this model are shown in Fig.2C-D near ν = −1+1/2
and ν = −1+2/3. The fit is parameterized by the quasiparti-
cle gap ∆fit

qp, a phenomenological parameter χ which accounts
for the dielectric response of the parent state, and the disor-
der broadening Γ (see supplementary information). We find
quantitative agreement between the Wigner crystal model and
experiment, providing strong evidence for a Wigner crystal of
fractionalized quasiparticles. From the fit we infer ∆fit

qp = 7K

for the 1/2 state, within 20% of ∆DMRG
qp = 6.0K. The same

analysis for the ν0 = −1 + 2/3 gives ∆fit
qp = 11.6K, again

within 20% of the ∆DMRG
qp = 11.7K. For both fillings, we
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find Γ = (1.0± 0.5)meV, consistent with previous estimates
for the Landau level broadening [27, 28]. The comparison
between experimental and theoretical gaps is summarized in
Table I.

Filling
ν + 1

B ∆act
qp ∆µ

qp ∆fit
qp ∆DMRG

qp

1

2

12T 5.1K − − 5.6K

13.8T − 2.9K 7.0K 6.0K

2

3

12T 7.6K − − 10.8K

13.8T − 5.2K 11.6K 11.7K

TABLE I. Comparison of the quasiparticle gaps at 1/2 and 2/3 filling
in the N = 1 Landau level as determined by DMRG calculations
∆DMRG

qp , thermally activated transport ∆act
qp , the chemical potential

jump ∆µ
qp, and from the fit to the Wigner crystal model ∆fit

qp.

Given the rather large discrepancies between experiment
and numerics in GaAs[44]—particularly at half filling—the
level of agreement we find for both activated and thermody-
namic gaps with numerical modeling is encouraging. We note
that several sources may account for the remaining quantita-
tive discrepancies in our work. These including differences
in inter-Landau level screening strength at ν ∼ −3 relative
to ν ∼ −1[45], as well as possible spin textures in the ex-
citation spectrum, which can lower the activation gap but are
not accounted for in our modeling. For ∆fit

qp, moreover, the
phenomenological nature of our model for disorder may not
capture the microscopic physics at a quantitative level. Fi-
nally, we note that the discrepancy between theory and exper-
iment is greater at 2/3 than at 1/2, perhaps due to the greater
quasiparticle charge resulting in a greater effect of the disorder
potential.

Fig. 3A shows the µ measured at different temperatures
near the ν + 1 = 1/2 gap. We focus on the strong temper-
ature dependence of ∆µ, plotted for several incompressible
filling factors in Fig. 3B (see also the supplementary infor-
mation). We fit the low temperature limit of ∆µ(T ) using the
Sommerfeld expansion ∆µ(T ) = ∆0 − bT 2 + · · · , which is
justified so long as the quasiparticles experience short-range
repulsion. The fitted values ∆0 and b are reported in Figs. 3C
and D, respectively.

Notably, the ν = −1+1/2 state shows anomalously strong
temperature dependence, manifesting as a large value of the
b parameter. Note that this state becomes compressible at
about 800mK in Fig. 3A, which corroborates with the de-
viation from activated transport at high temperature in Fig.
2A. According to the Maxwell relation dµ

dT

∣∣
n
= − ds

dn

∣∣
T

, this
suggests an anomalous contribution to the entropy in the di-
lute quasiparticle limit. Anomalous entropy is expected in the
vicinity of nonabelian states[46] owing to the topological de-
generacy of a dilute gas of nonabelian anyons. However, this
contribution is considerably smaller than the anomalous en-
tropy we observe. This implies that the anomalous entropy
near ν = 1/2—at least at the filling factors corresponding
to the extrema in µ—does not arise solely from the topologi-

cal degeneracy. Notably, these extrema occur at a density of
quasiparticles where the average inter-quasiparticle distance
is larger than the distance to the gate. Disorder is expected
to dominate this regime, as inter-quasiparticle interactions are
screened. Crudely, if disorder is more important than the
long-range Coulomb interaction, we expect b ∝ (e/e∗)2/Γ,
where Γ is the strength of the disorder. However, determin-
ing the prefactor requires understanding the thermodynamics
of a Coulomb glass of fractionalized particles in an unknown
disorder distribution, a challenge we leave to future work.

In closing, we note that a related manuscript reports scan-
ning tunneling microscopy to study the same bilayer graphene
FQH states studied here[47]. In that work, the gate volt-
age δVg over which the FQH gaps appear provides a local
measurement of the thermodynamic gap. Those authors find
4∆STM

qp = 30K for the 1/2 state at B = 14T. This result is
consistent with the intrinsic gap inferred from our WC model,
4∆WC

qp ∼ 28K, as expected for a local measurement that
probes the chemical potential at length scales smaller than the
disorder correlation length. The large intrinsic gaps manifest-
ing across several experimental techniques show that bilayer
graphene is an ideal platform to explore the intrinsic physics
of nonabelian anyons in the solid state.

FIG. 3. Temperature dependent µ near fractional filling. Mea-
surements are performed at B = 13.8T. (A) Chemical poten-
tial near half filling of an N = 1 Landau level at several different
temperatures. (B) Chemical potential jump across the incompress-
ible states as a function of temperature for different filling factors
in an N = 1 LL (dots). The solid lines are a low temperature fit,
∆µ(T ) = ∆0 − bT 2. (C) Chemical potential jump ∆0 extracted
from the fit for different fractional states in the N = 0 (ν̃ = ν, red
dots) and N = 1 (ν̃ = ν+1, orange dots) orbital Landau levels. (D)
Temperature decay parameter b extracted from the fit.

The authors would like to acknowledge discussions with A.
Stern, and A. Yazdani for a related collaboration and shar-
ing unpublished results, and E. Redekop for providing the de-
vice image shown in Fig. 1A. Experimental work at UCSB
was primarily supported by the Office of Naval Research un-



5

der award N00014-23-1-2066 to AFY. AFY acknowledges
additional support by Gordon and Betty Moore Foundation
EPIQS program under award GBMF9471. MZ and TW were
supported by the U.S. Department of Energy, Office of Sci-
ence, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, under Contract No. DE-AC02-
05CH11231, within the van der Waals Heterostructures Pro-
gram (KCWF16). RM is supported by the National Sci-
ence Foundation under Award No. DMR-1848336. KW
and TT acknowledge support from the Elemental Strategy
Initiative conducted by the MEXT, Japan (Grant Number
JPMXP0112101001) and JSPSKAKENHI (Grant Numbers
19H05790, 20H00354 and 21H05233). This research used the
Lawrencium computational cluster provided by the Lawrence
Berkeley National Laboratory (Supported by the U.S. Depart-
ment of Energy, Office of Basic Energy Sciences under Con-
tract No. DE-AC02-05CH11231)

∗ andrea@physics.ucsb.edu
[1] G. Moore and N. Read, Nuclear Physics B 360, 362 (1991).
[2] A. Y. Kitaev, Annals of Physics 303, 2 (2003).
[3] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and

S. Das Sarma, Reviews of Modern Physics 80, 1083 (2008).
[4] R. H. Morf, Physical Review Letters 80, 1505 (1998).
[5] E. H. Rezayi, arXiv:1704.03026 [cond-mat] (2017), arXiv:

1704.03026.
[6] R. Willett, J. P. Eisenstein, H. L. Stormer, D. C. Tsui, A. C.

Gossard, and J. H. English, Phys. Rev. Lett. 59 (1987).
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