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The issue of reversibility in hydromechanical sprinklers that auto-rotate while ejecting fluid from
S-shaped tubes raises fundamental questions that remain unresolved. Here we report on precision
experiments that reveal robust and persistent reverse rotation under suction and a model that
accounts for the observed motions. We implement an ultra-low friction bearing in an apparatus
that allows for free rotation under ejection and suction for a range of flow rates and arbitrarily
long times. Flow measurements reveal a rocket-like mechanism shared by the reverse and forward
modes that involves angular momentum flux, whose subtle manifestation in the reverse case stems
from centrifugal effects for flows in curved conduits. These findings answer Feynman’s long-standing
question by providing quantitatively accurate explanations of both modes, and they suggest further
inquiries into flux-based force generation and the roles of geometry and Reynolds number.

Puzzles, paradoxes, and thought experiments in
physics play the important role of probing abstract con-
cepts in concrete contexts. An enduring riddle in fluid
mechanics popularized by Richard Feynman pertains to
a type of auto-rotating lawn sprinkler that spins when
fluid is expelled from its S-shaped tubes: Does the sprin-
kler also rotate if fluid is instead sucked in, and if so,
in what direction [1-3]? While flows are certainly irre-
versible in the inertial regime [4], the consequences for the
dynamics of the reverse sprinkler remain unclear. The
problem invites reasoning based on fundamental princi-
ples while also exposing subtleties, for example, in the
application of momentum conservation to systems with
sources, sinks or otherwise open and subject to mass flux
and flow throughput [5, 6]. The fluid dynamical com-
plexities pertain to flow-structure interactions involving
chiral geometries and flows due to suction into orifices
[7-10], as jets emitted from moving bodies [11-13], and
in curved conduits [14-16], all of which may depend on
the strength of driving or Reynolds number.

Conflicting answers to Feynman’s question have come
from past studies that employ principle-based reasoning
and fluid mechanical argumentation. Applications of an-
gular momentum conservation have predicted no rotation
[17, 18] or reverse rotation opposite to the sense of the
forward sprinkler [19, 20]. The effects of viscosity and
turbulence have been invoked as possible causes of re-
verse rotation in steady state [20-22]. Other work argues
for reverse torques by appealing to the distorted flow and
pressure distribution in curved pipes [23]. The challenge
of such approaches, and perhaps cause of the disagree-
ments, is they rely on untested assumptions (e.g. state
of the flow) and do not furnish testable predictions that
would justify the focus on one effect over others.

The thought experiment has been turned into a real
one, as done by Feynman and later by others in systems
involving S- or L-shaped rigid tubes connected to flexible

hosing whose twisting motions are observed [17, 24-26].
These studies report a transient effect but no response
in steady state. Other experiments employing a central
hub mounted on rotary bearings report various outcomes
under suction: no steady-state rotation [27, 28], steady-
state reverse rotation [23, 29, 30], and unsteady motions
including changes in direction [29]. These inconsisten-
cies may be due to bearing friction, which was overcome
with a floating sprinkler but whose limited run times did
not distinguish transient and steady-state outcomes [31].
Other experiments report rotations of either sense for
modified internal geometries [28, 30]. Hence, the dynam-
ics may be sensitive to details of the geometry.

Here we answer Feynman’s question through precision
experiments on freely-rotating and long-running sprin-
klers, measurements of their flow fields, and a model
whose quantitative predictions are tested and validated.
Our approach exploits surface tension effects to both float
the sprinkler at the water surface and permit free rota-
tion in response to suction or expulsion. A cut-away
view in Fig. 1(a) shows the sprinkler’s construction.
Arms formed from curved tubes emanate from a cylin-
drical hub with closed bottom. An external siphon tube
is inserted through an opening in the top to withdraw
or inject fluid. The annular top breaches the free sur-
face and induces downward-deflected menisci on its in-
ner and outer perimeters. Slight deflections are achieved
by adding air to an internal cavity of the hub such that
the system is slightly negatively buoyant, with surface
tension making up the difference to achieve vertical force
balance. The downward menisci interact with the upward
menisci on the siphon tube and an outer ring, both made
of hydrophilic glass. The repulsive interaction between
oppositely signed menisci [32-34] ensures that the sprin-
kler remains stably centered while free to rotate. Thus,
the sprinkler is the rotor and the glass surfaces serve as
stators in a rotational bearing that, lacking any solid-
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FIG. 1. Experimental setups. (a) Cut-away schematic of the floating sprinkler, which consists of tubular arms connected to a
cylindrical hub. Capillary interactions with a siphon tube and outer ring center the sprinkler and allow it to rotate freely. (b)
Flow control apparatus (not to scale) operating in suction mode. A siphon draws water through the sprinkler at rate @, and
a valve allows for impulsive start-up. Overflows maintain the levels in the main and side tanks. (c) Flow imaging with a laser
sheet illumination of particle-laden water. A camera captures photos and videos in the regions of interest.

solid contacts, has extremely low friction. Details of the
experimental systems are provided in the supplement.

The surrounding components allow for the control of
the flow throughput — both direction (suction or expul-
sion) and magnitude — as well as time-resolved tracking
of the sprinkler’s rotation. Figure 1(b) shows the oper-
ation under suction. A side tank of lower water level
draws fluid through a siphon from the main tank, whose
level is maintained by a pump and overspill system. The
level in the side tank is also held constant by an over-
flow that is intercepted for measurement of the volumet-
ric rate @ through the sprinkler. Thus, the system runs
indefinitely under constant conditions. The driving pres-
sure is proportional to the difference h in water levels,
which is controlled and varied via the height of the side
tank. Expulsion is achieved similarly: the siphon flow is
reversed by raising the side tank higher than the main
tank, with the pump replenishing the former and @ mea-
sured from the latter. In both modes, a side-view camera
(not shown) images markers on the sprinkler hub to mea-
sure the instantaneous rotation rate Q(¢).

When fluid is expelled from the sprinkler, it rotates
in the expected “forward” direction with the orifices of
the arms trailing, as shown in Fig. 2(a) and Supple-
mental Videos 1 and 2. Displayed as the red curve are
representative time series data of the sprinkler’s angu-
lar velocity for flow that is impulsively started at ¢t = 0
and quickly reaches a constant value of Q = 2.0 cm?/s.
Steady-state rotation with positive time-averaged angu-
lar velocity @ > 0 (red dot) is reached after about a
minute, as verified in repeated trials (gray curves). When
fluid is instead suctioned in at the same |@)|, the sprinkler
rotates in “reverse” with 2 < 0 and the orifices leading.
The blue curve and associated gray ones show a tran-
sient burst followed by a terminal state with significant
fluctuations but definitively negative time-average Q < 0

(blue dot). The reverse mode is about 40 times slower
than the forward, and hence the two cases are displayed
with different vertical scales. Videos 3 and 4 show that
reverse motion is observed for sprinklers of opposite chi-
rality, which indicates that the cause is intrinsic propul-
sion rather than an external influence (e.g. the Earth’s
rotation or background flows).

These findings are robust across varying @ or, equiv-
alently, the pipe flow Reynolds number Re = 2pVa/pu.
Here p and p are the fluid density and viscosity, respec-
tively, and V = |Q|/2ma? is the section-averaged flow
speed through each arm of inner radius a. As shown
by the plots of the measured Q in Fig. 2(b), the termi-
nal speed of the forward sprinkler increases quasi-linearly
with @ or Re. In contrast, the reverse case has opposite
sign, uniformly lower magnitudes, stronger relative fluc-
tuations, and a markedly nonlinear trend. For the lowest
Re tested, the reverse motion is weak and undirected
with Q =~ 0. The potential roles of bearing friction and
manufacturing errors are discussed in the supplement.

We propose that both modes of the sprinkler are driven
by a common mechanism similar to the classical rocket.
This hypothesis is intuitive for the forward case, for which
flow visualizations support the view as a rotational ana-
logue to the rocket. Video 5 and the photograph of
Fig. 3(a) are obtained by adding green dye to the sup-
plied fluid, which fills the hub and exits out the arms.
The lab-frame speed of the exhaust is slowed due to
the oppositely-sensed motion of the sprinkler, and this
manifests as the gradual widening of the spiral-shaped
streaklines. A closer view is provided in Video 6 and the
time-exposed photograph of Fig. 3(b) that employs the
setup of Fig. 1(c¢) involving laser-sheet illumination of
microparticles seeded throughout the fluid. Concentrat-
ing on a downward-moving outlet, an oppositely directed
jet flow is revealed by the long pathlines.
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FIG. 2. Rotational dynamics in forward and reverse and across flow rates. (a) Instantaneous angular velocity Q(t) for expulsion
(red) and suction (blue) for flow of volumetric rate |Q| = 2.0 cm® /s initiated at t = 0. The gray curves are repeated trails. (b)
Long-time average or terminal velocity Q versus flux @ or Reynolds number Re for experiments (dots) and a model (squares).
(c) Model prediction for torque 7 due to angular momentum flux. Inset: Dimensionless torque coefficient C; versus Re. In
all plots, bars on experimental data represent standard deviations and are suppressed when smaller than the symbol. Bars on
model data are propagated from measured fluctuations in the PIV flow data.

FIG. 3. Flow visualizations in the forward (F) and reverse (R)
modes. All scale bars are 1 cm and flow rates |Q| = 1 cm®/s.
(a) Streakline photograph using fluorescein dye. (b) Pathline
image of the emitted jet taken at a moment when the outlet
moves downward. (c) Pathlines of the suction flow near an
upward moving outlet in reverse mode. (d) The jets inside
the hub undergo a glancing collision and form four vortices.

Just as the conventional rocket analysis relates propul-
sion forces to momentum flux from the exhaust, we con-
sider a model of the thrust torque derived from the flux of
angular momentum out of the outlets. Considering the
normal velocity profile V(x, z) relative to an outer ori-
fice and across its cross-section, our calculations identify
a flux-based thrust torque 7pr = —2 [ pzV?(z,2)dA =
2pX00Q?%/3ma?. Here Xpo measures the appropriate
projected distance of the outer orifice from the hub cen-

ter, and we assume a parabolic or Poiseuille flow pro-
file issuing from the arms [4, 5]. The derivation in the
supplement employs a control volume that encloses the
sprinkler with portions of its surface spanning the pipe
outlets. The thrust 7p7(Q) is plotted as the red curve in
Fig. 2(c). Predicting the resulting spin rate of the sprin-
kler requires a model of rotational drag and its depen-
dence on Q. As detailed in the supplement, we estimate
the skin friction and pressure drag contributions from the
various components and surfaces of the structure [35, 36].
Balancing flux-based thrust, which is reduced due to the
retreating motion of the orifices, with the drag torque
yields a prediction for Q(Q) that is plotted as the red
curve in Fig. 2(b). The model shows strong agreement
with the experimental measurements, indicating that the
rocket mechanism quantitatively accounts for the forward
mode. The linear trend Q ~ @ results from the scalings

of thrust as Q2 and drag as 0 for high Q.

Flux from the outlets is one of many potential contri-
butions to thrust. The general control volume analysis [5]
presented in the supplement shows that this term appears
among others associated with fluxes, changes of momen-
tum, and surface stresses. Nonetheless, our model’s good
accounting of the forward mode motivates the evaluation
of this same source of thrust for the suction mode, whose
flows are altogether different due to irreversibility. In-
deed, pathline visualizations at the outer terminus of the
arm [Video 7 and Fig. 3(c)], which now functions as an
inlet, reveal the expected sink-like flows. The functional
outlets reside inside the hub, whose internal flows are vi-
sualized in Fig. 3(d). We observe a robust flow pattern
consisting of four vortices separated by the two primary
jets from the outlets that meet near the center of the hub
and two secondary outgoing jets that are produced as a
result of the collision. For increasing Re, a prominent
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FIG. 4. Flow field measurements near the internal orifice for the reverse sprinkler. (a) Flow profiles along several transects for
Re = 300 extracted from video via particle image velocimetry (PIV). (b) Profiles V(z) across the inner orifice and for varying
Reynolds and Dean numbers (color bar), with temporal fluctuations (+ one standard deviation) represented by colored bands.

(c) Profiles normalized by their maximum values.

asymmetry develops in the secondary jets, which form
an increasingly large angle away from vertical. Supple-
mental Videos 8, 9 and 10 document this trend.

These observations motivate a closer interrogation of
the flow exiting the pipe inside the hub. Focusing on
the region indicated in Fig. 3(d), we capture high-speed
video to extract time- and space-resolved maps of the flow
via particle image velocimetry (PIV) [37-39]. Method de-
tails and errors are given in the supplement. Figure 4(a)
shows sample transects of the jet flow in a static sprin-
kler for appreciably large Re = 300, revealing a strongly
skewed profile with the velocity maximum displaced from
the pipe centerline. Not shown is the other jet, whose
skewness in the opposite direction reflects the chiral ar-
rangement of the arms. The asymmetric primary jets
meet in a glancing collision that gives rise to the an-
gled secondary jets of Fig. 3(d). Further, the skewness
becomes more pronounced with increasing Re, as docu-
mented by the extracted profiles V(z) displayed in Fig.
4(b). Normalizing each by its maximum yields the curves
of Fig. 4(c) that show increasingly strong asymmetries.

Considering the inner orifice of each arm as an effective
outlet for the reverse sprinkler, we analyze the profiles to
determine the momentum flux and thrust torque. The
derivation in the supplement involves a control volume
selected such that portions of its surface span the inner
termini of the pipes. Because we measure the flow along
a transect, the velocity field over the disk-shaped surface
of the outlet must be interpolated to compute the flux in-
tegral and associated thrust 7pr = —2 [ pzV?(z, 2)dA.
There is no flux and no torque for parabolic flow or any
other symmetric profile, so skewness is essential. The
computed torque is shown as the blue markers in Fig.
2(c), with the bars indicating fluctuations propagated
from the flow measurements. The sign of the torque is
set by the skewness and proves to be consistent with re-
verse motion. Balancing against drag yields predictions
for Q(Q) that are shown as the open squares in Fig. 2(b).
The propagated fluctuations in © are of similar magni-
tude to those measured, suggesting that unsteady flows

play a role. The time-averaged motions and nonlinear
trend are well predicted, and we thus conclude that flux-
based torque drives the reverse sprinkler.

The jet asymmetry is consistent with secondary flows
in curved pipes that have been argued as central to the
sprinkler problem [23]. Long, slender pipes of constant
curvature k — i.e. helical tubes — are well studied as the
Dean flow problem [14-16, 40-42], which has the con-
trolling parameter De = Rey/ax. For De of order 10,
centrifugal effects induce a transition from the typical
parabolic profile to one in which the velocity maximum
is displaced to the outside of the bend [43, 44]. Although
the sprinkler arms do not satisfy the requisite geometry,
we may evaluate De by associating x with the curvature
of the elbow. Close inspection of Figs. 4(b) and (c)
shows that Re ~ 100 — 200 or De ~ 40 — 80 marks the
range of significant distortion, with lower values yielding
symmetric flow and higher values tending to saturate on
a strongly skewed profile. These trends are reflected in
the torque, as made apparent by the thrust coefficient
Cr = ZTFT/pVZa3 plotted in the inset of Fig. 2(c). The
rise and plateau of C(Re) correspond respectively to the
turn-on and saturation of skewness, and these effects un-
derlie the nonlinear response of Q(Q) seen in Fig. 2(b).

These results identify a rocket-like mechanism involv-
ing angular momentum flux from outlets as a primary
source of propulsion in both modes of the sprinkler. The
forward mode is a direct rotational analogue to a rocket
in which jets are ejected outward and circumferentially.
The reverse mode is subtle due to its jets being aimed
inward but which are effectively offset from one another
due to their skewness. These results are shown to hold
for the standard S-shaped sprinkler over Re € [25,400].

This mechanism is distinct from previous hypotheses.
Rueckner associates reverse motion with a swirling flow
in the hub that rotates oppositely to the sprinkler [30].
This picture relates to Mungan’s earlier reports of rota-
tion but only for designs in which the arms enter the hub
non-diametrically — i.e. displaced or angled away from



the center — presumably setting up an internal vortex
[28]. These works report no rotation for the standard
sprinkler design, a result inconsistent with our findings
and which may be due to bearing friction. Rueckner
claims that no vortex is present, whereas we document
two pairs of counter-rotating vortices, a flow structure
that we view as a side effect of the skewed jets. Our mech-
anism explains Mungan’s variants in terms of momentum
flux from internal jets. Beals cites the distorted profile for
curved pipe flows to argue that pressure differences in the
elbow region drive reverse rotation [23]. Jenkins had pre-
viously argued for no rotation due to two countervailing
pressures [21], which Beals rebuts by asserting that forces
may cancel and yet a torque is produced if the pressures
are differently distributed. However, slower rotation was
reported for a sprinkler variant with elongated arms [23],
a result that contradicts the elbow pressure mechanism.
Our mechanism predicts that such a design should indeed
move slower due to symmetrization of the flow during its
longer path to the hub and consequent decrease in mo-
mentum flux. Future work should revisit this design and
compare experiments with model predictions.

Our results provide an answer to the Feynman sprin-
kler problem in a form missing from previous studies:
A mechanism is translated into a concrete model whose
quantitative predictions are validated against experimen-
tal measurements under documented conditions. Future
studies aimed at further exploring the roles of Reynolds
number and sprinkler geometry would benefit from such
an approach and from the methods developed here.
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